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ABSTRACT
Objective To create a computable MEDication
Indication resource (MEDI) to support primary and
secondary use of electronic medical records (EMRs).
Materials and methods We processed four public
medication resources, RxNorm, Side Effect Resource
(SIDER) 2, MedlinePlus, and Wikipedia, to create MEDI.
We applied natural language processing and ontology
relationships to extract indications for prescribable,
single-ingredient medication concepts and all ingredient
concepts as defined by RxNorm. Indications were coded
as Unified Medical Language System (UMLS) concepts
and International Classification of Diseases, 9th edition
(ICD9) codes. A total of 689 extracted indications were
randomly selected for manual review for accuracy using
dual-physician review. We identified a subset of
medication–indication pairs that optimizes recall while
maintaining high precision.
Results MEDI contains 3112 medications and 63 343
medication–indication pairs. Wikipedia was the largest
resource, with 2608 medications and 34 911 pairs. For
each resource, estimated precision and recall,
respectively, were 94% and 20% for RxNorm, 75% and
33% for MedlinePlus, 67% and 31% for SIDER 2, and
56% and 51% for Wikipedia. The MEDI high-precision
subset (MEDI-HPS) includes indications found within
either RxNorm or at least two of the three other
resources. MEDI-HPS contains 13 304 unique indication
pairs regarding 2136 medications. The mean±SD
number of indications for each medication in MEDI-HPS
is 6.22±6.09. The estimated precision of MEDI-HPS is
92%.
Conclusions MEDI is a publicly available, computable
resource that links medications with their indications as
represented by concepts and billing codes. MEDI may
benefit clinical EMR applications and reuse of EMR data
for research.

INTRODUCTION
Medication and diagnosis data are vital to clinical
care and are core features of electronic medical
records (EMRs). Medications are prescribed to treat
disease (ie, the medication’s intended indication), but
they can also cause disease (ie, an adverse effect).
Linking medications with their diagnoses electronic-
ally could improve evaluating treatment outcomes,1 2

assessing healthcare quality,3 4 and performing clin-
ical and genomic research by enhancing understand-
ing of a patient’s longitudinal disease and treatment
record.5 6 However, medications are not explicitly
linked to their indications within most EMRs, and
research into computational resources to enable such
linkage is limited. In this paper, we integrated four
medication resources to create a freely available,

computable MEDication-Indication (MEDI)
resource, and describe its initial evaluation to assist in
computational linkage of medications to their
indications.

BACKGROUND
A medication’s indication is the disease or condi-
tion for which it was prescribed in a given instance.
Medications are typically prescribed without any
structured record of indication in the EMR. In
some cases, such as for medications prescribed
using explicit order sets designed for a given diag-
nosis, a human can infer the indication from the
order or clinical documentation. However, in
general, computational inference of a medication’s
indication from EMR data is difficult. For example,
disease-specific order sets are primarily found only
in the inpatient setting, are not comprehensive for
all diagnoses, and do not assert the diagnosis with
certainty (eg, a provider may use the pneumonia
order set for convenience when in fact the patient
has a different infection).
Each medication can have many indications, and

indications can be classified as either on-label or
off-label. On-label indications are proposed in the
early process of drug development by the manufac-
turer and later approved by the Food and Drug
Administration (FDA) after demonstrating efficacy
through clinical trials. These on-label indications
appear on the package insert for the medication.
For example, metformin is FDA-approved to treat
type 2 diabetes, and ampicillin may be prescribed
to treat urinary tract infections, otitis media, or
pneumonia. Many on-label indications can be
retrieved freely from the FDA’s DailyMed website.7

DailyMed currently contains drug labels for about
40 994 brand and generic medications for both
humans and animals. Off-label indications are con-
ditions for which the medication is used, but which
have not been approved by the FDA and do not
appear on the package insert. Many medications
have common off-label indications.8 For example,
metformin is used off-label to treat polycystic
ovarian disease,9 and ampicillin is used off-label for
diverticulitis.10

Typically, off-label indications are based on scien-
tific evidence found subsequent to the FDA approval
process and collective physician experience.11 By
nature, off-label indications can be controversial,
such as the use of statins (a class of cholesterol-
lowering medications) for diabetes, regardless of the
patient’s cholesterol levels.12 13 Evidence for off-label
use may be scattered among various drug resources.
Although some proprietary resources list both
on-label and off-label indications (eg, Epocrates,
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FirstDataBank, and LexiComp), these resources are not freely
available. Thus, it can be difficult to obtain a complete list of medi-
cation indications, and using a single resource (especially
DailyMed) may miss important or common indications. These
resources are generally formatted as free text, and require extra
processing to convert them into a computable format.

Various medication resources have been created by leveraging
either the EMR or literature for pharmaceutical research (eg,
new drug discovery and adverse drug detection).14 For instance,
the Therapeutic Target Database (TTD) contains information
about medications and their therapeutic targets and provides
corresponding cross-links from the ClinicalTrials.gov database.15

However, TTD is designed for new drug discovery; most of its
data are oriented for drug development instead of clinical use.
Another resource, the Side Effect Resource (SIDER), was devel-
oped using text-mining techniques applied to FDA-approved
drug labels. SIDER provides a list of FDA-approved indications
on marketed medications mined from FDA drug labels obtained
from DailyMed.16 Since its major focus is on side effects rather
than indications, the indication list has not been thoroughly
evaluated. Another important and relevant source is RxNorm,
developed and maintained by the National Library of Medicine
(NLM).17 RxNorm is an ontology designed for exchanging
medication information among clinical systems. It maintains a
comprehensive list of commonly used medications (both generic
and branded, with structured linkages between them), along
with their forms, ingredients, and dosages. The integration of
RxNorm with the National Drug File–Reference Terminology
(NDF-RT) from the Veterans Health Administration has added
significant indication information between single-ingredient
medications and diseases through ‘may_treat’ and ‘may_prevent’
therapeutic relationships.17 NDF-RT includes both on-label and
off-label indications, but its performance on indications has not
been previously reported. Preliminary work with earlier versions
of RxNorm and NDF-RT demonstrated that a number of medi-
cations were lacking indications.18 19

In this paper, we proposed a novel ensemble approach that
embraces multiple commonly used medication resources to
create a computable drug resource, called MEDI. We believe
that MEDI may assist in clinical applications within EMRs and
the secondary use of EMR data.

METHODS
Data sources
We selected four medication resources as inputs into MEDI.
The four resources included: (1) RxNorm (downloaded on June
4, 2012); (2) SIDER 2 (released on March 16, 2012)—a public
medication knowledge base targeting adverse drug reactions
extracted from FDA drug labels; (3) MedlinePlus (http://www.
nlm.nih.gov/medlineplus)—an NLM-maintained website that
offers consumer health information for patients, families, and
healthcare providers; and (4) Wikipedia—an online collabora-
tively edited encyclopedia. RxNorm and SIDER 2 maintain
indication information within a formal table structure with
structured (ie, coded) medication and indication information.
MedlinePlus and Wikipedia are free-text based and required
further processing (figure 1).

Medication indication extraction
We retrieved all single-ingredient medication concepts (repre-
sented by RxNorm concept unique identifiers (RxCUIs) and
defined as having only one ‘has_ingredient’ relationship), includ-
ing clinical drugs and brand names from the prescribable subset
of RxNorm. We also retrieved all ingredient RxCUIs from

RxNorm, which were determined by term type (Term Type in
Source (TTY)=‘IN’ or TTY=‘MIN’, or TTY=‘PIN’) and
included both single-ingredient and multi-ingredients. RxNorm
covers almost all prescription medications currently marketed in
the USA. Based on relationships within RxNorm,17 all concepts
were then collapsed into groups by their ingredients. For
example, ‘Tylenol Caplet, 325 mg oral tablet’ (RxCUI 209387)
was mapped to ‘Acetaminophen’ (RxCUI 161).

To obtain indications of a medication from RxNorm, we
retrieved all diseases that connect with the medication through
either ‘may_be_treated_by’ or ‘may_be_prevented_by’ relation-
ships. For SIDER 2, we mapped medications to corresponding
RxCUIs where their brand names or drug names matched the
terms associated with the RxCUIs. The mapping involved two
steps: the first step was looking for exact matches and the
second step was searching for partial matches if no exact match
was found in step 1 —for example, ‘salbutamol sulfate’ was
mapped to ‘salbutamol’. We then retrieved all disease indications
documented within the SIDER 2 indication table, which are
mapped to Unified Medical Language System (UMLS) concepts.

To obtain medication indications from MedlinePlus, we first
retrieved the webpage for each medication through the
MedlinePlus Application Programming Interface (API) using the
medication’s RxCUI as the query input. The resulting Hypertext
Markup Language (HTML) pages were parsed and stored as text
files. MedlinePlus maintains a consistent document structure for
its drug monographs, although the text within each section is
free-text. We found that certain sections of MedlinePlus fre-
quently contained drug indication information. We limited our
analysis of the MedlinePlus description to the sections ‘Why is
this medication prescribed’, ‘About your treatment’, and ‘Other
uses for this medicine’, thus ignoring sections such as ‘What side
effects can this medication cause’ and ‘Precautions’. We used the
KnowledgeMap Concept Indexer (KMCI) to parse the free-text
to obtain all non-negated ‘disease and finding’ concepts, as
mapped to UMLS concepts. KMCI is a general-purpose natural
language processing (NLP) engine that maps free-text documents
to UMLS concepts and includes negation detection through an
adaptation of the NegEx algorithm.20 KMCI has performed
favorably in comparison with MetaMap21 for medical school
curriculum documents and has been validated in a variety of clin-
ical and education contexts.22–25

To identify medication pages in Wikipedia, we queried the
Wikipedia API with medication strings derived from RxNorm
(querying with both brand and generic names for each drug).
We used KMCI to identify non-negated disease concepts from
the resulting Wikipedia pages as we did for MedlinePlus.
However, since Wikipedia does not contain a formal structure
clearly annotating medication indications, we employed heuris-
tic rules. In perusal of Wikipedia entries, we noted that most
medication entries listed indications before side effects, which
were often listed in separate sections. Thus, we excluded any
concepts found after a ‘side-effect’, ‘safety’, or ‘toxicology’
section. For entries that were just text based without being sepa-
rated into sections, all content was parsed.

All disease concepts extracted from MedlinePlus or Wikipedia
were initially represented as UMLS concepts. After processing
by KMCI, concepts were restricted to those that could be
mapped to International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD9) codes using UMLS rela-
tionships (as defined in MRREL), and thus included diseases,
syndromes, symptoms, and other clinical findings. Both the ori-
ginal concept and the resultant ICD9 concept were kept for
MEDI. ICD9 codes were chosen since these are commonly
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available codes within most EMR systems. For those
SNOMED-CT concepts that could not be directly mapped to
ICD9 codes through UMLS relationships, we used the
SNOMED-CT ICD9 CrossMap26 to map them into corre-
sponding ICD9 codes, where possible. We only used relation-
ships with map advice equal to 1 (one-to-one SNOMED-CT to
ICD9 map) or 2 (Narrow to Broad SNOMED-CT to ICD9
map).

Evaluation
We categorized each medication–indication pair by the combin-
ation of resources in which it was found (RxNorm alone,
RxNorm and SIDER 2, etc). Each category, represented by a row
in table 1, is one of 15 possible combinations of our four sources.
Each source is positive for eight of these combinations, meaning
that all medication–indication pairs in that category were found
in the resource (these are indicated by a ‘Y’ in table 1).

We calculated the true positive rate for each category by
manually evaluating 50 randomly selected medication–indica-
tion pairs per category. Two practicing physicians ( JCD and
RMC) each reviewed the indications independently, and differ-
ences were resolved by consensus. Physicians used clinical
experience, search of drug resources and medical references,
and web and PubMed searching to determine the veracity of
medication–indication pairs.

We estimated precision and recall of each resource, r, using
equations (1) and (2), where C(r) is the set of eight categories

for which the resource, r, is positive, size(n) is the number of
medication–indication pairs in category n, and TPR(n) is the
true positive rate for category n.

PrecisionðrÞ ¼
P

n[CðrÞ sizeðnÞ � TPRðnÞP
n[CðrÞ sizeðnÞ

ð1Þ

RecallðrÞ ¼
P

n[CðrÞ sizeðnÞ � TPRðnÞ
P

all n sizeðnÞ � TPRðnÞ
ð2Þ

These equations estimate the standard precision and recall
measures for each resource, r, but they do so using stratified
sampling over the categories.

To demonstrate that MEDI has a broader coverage than
RxNorm, we compared the indications in MEDI with the indi-
cations in RxNorm within the context of cancer. Cancer was
chosen because it is a broad group of important diseases easily
identified through a single set of ICD9 codes (140–239)
covered primarily by prescription medications with well-defined
indications. We compared MEDI with RxNorm, and then ran-
domly selected a few medication–indication pairs for validation.
We validated through use of general medicine resources such as
UpToDate and PubMed searches.

Figure 1 Flowchart for MEDication–
Indication (MEDI) creation. HPS,
high-precision subset; ICD9,
International Classification of Diseases,
9th edition; KMCI, KnowledgeMap
Concept Indexer; RxCUI, RxNorm
concept unique identifier; SIDER,
Side Effect Resource.
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RESULTS
Medication indication extraction
From 93 479 unique concepts in the RxNorm prescribable
table, we retrieved 61 450 medication concepts that could be
mapped to a single ingredient concept (via having only one
‘has_ingredient’ RxCUI relationship) in RxNorm. Thus, these
61 450 single-ingredient medication concepts, which include
brand names and various clinical drug forms, were then
grouped into 4003 unique RxNorm medication ingredients (ie,
TTY=‘IN’ or TTY=‘MIN’, or TTY=‘PIN’). Of these 4003

medication ingredients, 3112 (78%) had at least one indication
extracted from at least one of the four resources, and 2114
(53%) had indication extracted from at least two (figure 2, left).
The 891 medication ingredients without any indication
extracted from any resource were typically not medications —

for example, ‘kiwi allergenic extract’ (RxCUI 1010926), ‘lime’
(RxCUI 1011060), and ‘sugar cane extract’ (RxCUI 1014711).

From the 3112 medications with indications, we identified
3009 unique ICD9 codes and 63 343 indication pairs (one
RxCUI and one ICD9 code) (table 2). The mean±SD number

Table 1 Validation results by two reviewers

RxNorm MedlinePlus Wikipedia SIDER 2 Size Pairs reviewed False positives Precision (%)

1 resource
N N N Y 10880 49 24 51
N N Y N 28323 45 24 47
N Y N N 10836 46 16 65
Y N N N 3683 35 4 89

2 resources
N N Y Y 1592 35 8 77
N Y N Y 1464 49 4 92
N Y Y N 1142 47 5 89
Y N N Y 813 40 1 98
Y N Y N 868 31 0 100
Y Y N N 381 39 2 95

3 resources
N Y Y Y 1066 48 1 98
Y N Y Y 603 46 2 96
Y Y N Y 375 56 2 96
Y Y Y N 408 39 1 97

All 4 resources
Y Y Y Y 909 65 0 100

N, no; SIDER, Side Effect Resource; Y, yes.

Figure 2 Weighted Venn diagram of the distribution of 3112 medications (left) and 63 343 indication pairs (right) within the four resources. Each
border color represents a resource. Different colored areas represent medications–indications that were found within different combinations of
resources. The area sizes surrounded by border color(s) are proportional to the number of medications–indications that were found within the
corresponding resource(s). SIDER, Side Effect Resource.
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of extracted indications for each medication was 20.35±22.00,
and mode was 3. Of these 63 343 indication pairs, 53 722
(85%) were found within a single resource, and 9621 (15%)
were found within two or more resources (figure 2, right).

Medication indication validation
We initially chose ∼700 medication–indication pairs for review
(∼50 pairs from each category) before we noticed that some of
the disease concepts retrieved by NLP were older CUIs that
overlapped with RxNorm concepts but appeared as duplicates
in the initial review. We then mapped older (deleted) UMLS
concepts to current UMLS concepts using the UMLS history
files; therefore, the number of medication–indication pairs
reviewed in each category was not equal. A total number of 689
medication–indication pairs were finally reviewed for validation.
Among these 689 indications, 19 were marked as uncertain (eg,
ondansetron and irritable bowel syndrome, albumin and dehy-
dration, estradiol and other malaise and fatigue, etc) because
both reviewers agreed that they really were not representative of
what the true indication was but yet were not really false indica-
tions. Therefore, we ignored these uncertain ones in subsequent
analyses. As shown in table 1, the precision was 100% for indi-
cations found within all four resources; precisions were above
95% for indications found within any three of the four
resources. Precision was near 90% for indications found within
two resources, except for indications found only in SIDER 2
and Wikipedia (a precision of 77%). For indications found
within only Wikipedia, SIDER 2, or MedlinePlus, the precision

dropped to 47–65%. In contrast, indications found only with
RxNorm still had high precision (89%). Table 3 shows a
random selection of some of the errors from each resource.

Table 4 presents the estimated recall and precision for each
resource as defined by equations 1 and 2. We found that
RxNorm gave a remarkably high precision (94%) but a rela-
tively low recall (20%). Compared with RxNorm, other
resources had lower precision (56–75%) but higher recall (31–
51%). Wikipedia achieved the best recall (51%) among the four
resources. The differences between RxNorm and the other
three resources in terms of recall and precision may be
explained by the fact that the RxNorm indications were already
curated and stored in a structured format, while the indications
from the other three resources were based on either NLP
concept retrieval or text mining techniques.

Currently, MEDI contains a total of 3112 medications and
63 343 medication–indication pairs found within the four
sources. From our validation results, we observed that high pre-
cision could be achieved with indications found within any two
(or more) of the four resources. Indications solely within
RxNorm also had a high precision. Thus, to optimize recall
while maintaining reasonable precision, we defined the MEDI
high-precision subset (MEDI-HPS) as the indications found
within either at least two of the four resources or RxNorm. The
current version of MEDI-HPS contains 13 304 unique indica-
tion pairs for 2136 medications. The mean number of indica-
tions for each medication is 6.22±6.09. The mode for each
medication is 2, while the median is 4. Examples of four com-
monly used medications from MEDI are provided in online
supplementary table S1.

MEDI-HPS offers a comparable number of indications but a
much higher precision (92%) than MedlinePlus (75%), SIDER
2 (67%), or Wikipedia (56%). Wikipedia, as the only uncon-
trolled resource we utilized, contributes the largest number of
indications, but also has the lowest precision. MEDI-HPS has
slightly lower precision (92%) than either RxNorm (94%) or
≥2 resources (93%) because the precision of medication–indica-
tion pairs found only within RxNorm is 89%.

Compared with RxNorm, MEDI-HPS maintains a similar high
precision (92%) but provides 5264 (66%) more indications. To
demonstrate this advantage, we compared the coverage of
MEDI-HPS with RxNorm within the context of cancer medica-
tions. We retrieved all medications that have cancer (ICD9 codes

Table 3 Selected example errors from each resource

Resource Medication (RxCUI) Disease (ICD9) Comment

RxNorm Captopril (1998) Rheumatoid arthritis
(714.0)

The indication was supported by a small case series in 198427 but has not been widely accepted
thereafter

Isosorbide (6057) Esophageal reflux (530.81) Isosorbide can be used for esophageal spasm, but may cause reflux
MedlinePlus Sildenafil (136411) Other malaise and fatigue

(780.79)
NLP falsely identified a concept that is irrelevant to an indication: ‘Sildenafil is used to improve
the ability to exercise in people with pulmonary arterial hypertension (PAH; high blood pressure
in the vessels carrying blood to the lungs, causing shortness of breath, dizziness, and tiredness)’

Dexmethylphenidate
(352372)

Other specified visual
disturbances (368.8)

Mismatched disease concept by NLP: ‘Dexmethylphenidate is used as part of a treatment
program to control symptoms of attention deficit hyperactivity disorder (ADHD; more difficulty
focusing,…) in adults and children’

Wikipedia Ciprofloxacin (2551) Cystic fibrosis (277.0) However, the fluoroquinolones are licensed to treat lower respiratory infections in children with
cystic fibrosis in the UK

Guaifenesin (5032) Asthma (493) Guaifenesin is claimed to be effective in the treatment of the thickened bronchial mucosa
characteristic of asthma

SIDER 2 Dobutamine (3616) Atrial fibrillation (427.31) Contraindication/side effect
Ephedrine (3966) Hypertension NOS (401.9) Contraindication/side effect

NOS, not otherwise specified; NLP, natural language processing; RxCUI, RxNorm concept unique identifier; SIDER, Side Effect Resource.

Table 2 Number of unique medications, ICD9 codes, and
indication pairs extracted from each resource

Resource
Medications (% of
total)

ICD9 codes
(% of total)

Indication pairs
(% of total)

RxNorm 1726 (56) 999 (33) 8040 (13)
SIDER 2 1554 (50) 1703 (57) 17702 (28)
MedlinePlus 1629 (52) 869 (29) 16581(26)
Wikipedia 2608 (84) 2624 (87) 34911 (55)
Union of all
resources

3112 3009 63343

SIDER, Side Effect Resource.
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140–239) as an indication. MEDI-HPS included 269 cancer medi-
cations while RxNorm only had 166. A total of 103 (38%) medi-
cations were absent in RxNorm, including plerixafor, romidepsin,
raloxifene, pralatrexate, and eribulin—all valid cancer drugs
whose indications listed in MEDI-HPS were validated through lit-
erature review.

MEDI is available in a comma-separated values file format.
The file consists of medications represented by RxCUIs and
indications mapped to UMLS CUIs and ICD9 codes, as well as
other metadata including a column called ‘possible_label_use’.
The value of ‘possible_label_use’ is 1 when the indication is
mentioned in SIDER 2 and 0 when it is not. Our assumption is
that, since SIDER 2 is extracted from drug labels, indications
mentioned within SIDER 2 are highly likely to be on-label (ie,
FDA-approved) uses.

DISCUSSION
By leveraging existing public resources, ontologies, and NLP, we
created a computable medication indication resource for both
on- and off-label indications that is mapped to standard billing
codes and structured vocabularies. The current version of MEDI
contains 63 343 medication–indication pairs for 3112 medica-
tions. MEDI-HPS, the high precision subset of MEDI, provides
13 304 indication pairs for 2136 medications. The precision or
recall of MEDI-HPS was better than RxNorm, SIDER 2,
MedlinePlus, and Wikipedia by themselves. MEDI (and future
resources like it) may facilitate computational linkage of pre-
scriptions with their indications, enabling both clinical and
research use of EMR data.

The adoption of EMRs has been rapidly expanding in the
USA since 2008, especially after the passing of the Health
Information Technology for Economic and Clinical Health
(HITECH) Act.28 Requirements such as maintaining structured
lists of problems, medications and allergies, and electronic pre-
scribing are key components of meaningful use stage one.29 The
continuing accumulation of EMR data will present unprece-
dented opportunities for clinical research. However, the ‘infor-
mation gap’ between medications and diseases precludes the
efficient use of these practice-based medication data, hindering
the primary and secondary use of EMRs. MEDI and tools like it
may begin to fill that gap.

MEDI may be useful in current phenotype algorithms30–33 or
for future deep phenotyping,5 6 34 35 both of which require
detailed clinical data to accurately classify patients into subpopu-
lations with respect to a disease, a phenotypic subclass of a

disease, or a response to a treatment. For instance, medications
were used in addition to ICD9s in EMR phenotype algorithms
for type 2 diabetes mellitus,31 33 36 Crohn’s disease,32 rheuma-
toid arthritis,30 and many of the other algorithms deployed in
the Electronic Medical Records and Genomics (eMERGE)
Network to identify cases and controls for genome-wide associ-
ation studies.37–39 MEDI may also improve the accuracy of the
detection of adverse drug reactions40 and elevate the quality
and utility of the EMR problem lists.41 In addition, tools such
as MEDI may also improve the precision of phenome-wide
EMR phenotyping methods, such as the ICD9-based phenome-
wide association studies (PheWAS) method, by allowing integra-
tion of two axes of clinical information.38 42

Wikipedia is one of the most commonly visited websites in
the world, but it has rarely been evaluated in the medical litera-
ture, owing possibly in part to being an uncontrolled source
with uncontrolled structure, challenging its use in medical appli-
cations. A small study in 2005 reported that Wikipedia had
similar accuracy to Encyclopedia Britannica.43 Our study shows
that Wikipedia’s recall on indications is significantly higher than
that of RxNorm, SIDER 2, and MedlinePlus. In addition, we
noted that Wikipedia contains a number of homeopathic/alter-
native medications and treatments (eg, parsley and nephrolithia-
sis) that are not in other resources. Homeopathic medications,
because they are not RxNorm prescribable medications, are not
included in the current version of MEDI, but may be included
in the future.

One source of error and possible area for improvement is the
mapping of indications from free-text resources. NLP-induced
errors were largely caused by a mismatched disease concept, a
failure to recognize negation, or a failure to identify that a
concept was actually a side effect/complication. For instance, in
the sentence ‘the process is called starch gelatinization’, KMCI
falsely identified a disease concept—CALL (precursor B-cell
lymphoblastic leukemia, CUI C1292769) based on the normal-
ization of the past participle ‘called’ to ‘call’, and the mapping
of ‘call’ to the acronym ‘CALL.’ This category of error may be
resolved by disallowing mappings between normalized strings
and UMLS acronyms. In another sentence, ‘Adefovir will not
cure hepatitis B and may not prevent complications of chronic
hepatitis B such as cirrhosis of the liver or liver cancer’, KMCI
failed to recognize that the ‘liver cancer’ was negated because of
the distance between the subject and the target term. We hope
to correct these classes of error in future work.

MEDI does not replace existing commercially available
resources. Many commercially available resources (eg, Epocrates44

and LexiComp45) provide not only drug–indication pairing but
also dose guidance that can be tailored to indication, drug formu-
lations, international brand names, safety warnings, and adverse
reactions; none of this information is currently provided in MEDI
(nor is it the goal of MEDI to be a comprehensive prescribing
guide). However, medication and indications are represented by
formal concepts and billing codes in MEDI rather than embedded
in free text as in Epocrates or LexiComp. Conceptual formaliza-
tion should facilitate research and application creation. A random
review of a few common medications noted that, for some, MEDI
may include more indications than commercial resources. For
example, MEDI-HPS shows that propranolol can be used for con-
gestive heart failure, panic disorder, and thyrotoxicosis (each clin-
ically valid uses not listed in Epocrates and only one of which,
thyrotoxicosis, is listed in LexiComp) in addition to hypertension,
migraines, angina, myocardial infarction, pheochromocytoma,
arrhythmias, and essential tremor, all of which are listed by all
resources. However, MEDI shows that metformin can be used to

Table 4 Estimated precision and recall for different resources

Medications
Indication
pairs

Precision
(%)

Recall
(%)

RxNorm 1726 8040 94 20
MedlinePlus 1629 16581 75 33
Wikipedia 2608 34911 56 51
SIDER 2 1554 17702 67 31
4 resources 433 909 100 2
≥3 resources 1108 3361 98 9
≥2 resources 1847 9621 93 23
MEDI (≥1 resource) 3112 63343 60 100
MEDI-HPS (≥2 or
RxNorm)

2136 13304 92 30

HPS, high-precision subset; MEDI, medication indication resource; SIDER, Side Effect
Resource.
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treat obesity, which has been supported in research trials46 47 but
is not a common indication. Thus, since MEDI is not a curated
resource, some of its listed indications will likely be false positives
compared with commercial resources.

Several limitations regarding the creation and evaluation of
MEDI should be clarified. First, MEDI is limited to medications
and indications found in those four resources. Although the
resulting precision is encouraging, the addition of other
resources may improve both recall and precision. Second, MEDI
currently primarily includes medications composed of a single
ingredient (97.7%); only 2.3% were multi-ingredient concepts.
Thus, MEDI probably does not include all prescription medica-
tions on the market today, which may be especially true for
combination medications. Users should be careful about this
limitation when they utilize MEDI or MEDI-HPS to conduct
research or create applications. Third, we have not made any
judgments about the strength of evidence for off-label uses
when building MEDI; this information is not easily found. In
addition, we estimated recall and precision for each vocabulary,
but they could be skewed because of the resources we chose and
the artifacts of NLP. Finally, we lacked a complete list of indica-
tions or a true gold standard to evaluate recall. In our analysis,
recall was estimated using the assumption that the true positive
drug–indication pairs from all sources represented the universe
of all possible drug–indication pairs. Thus, true recall is likely
lower since our method could not detect indications not listed
in one of the four resources.

This paper introduces our initial efforts to create MEDI. Future
work can make this resource more complete and more robust. For
example, further elucidation of off-label status and drug form
information would improve MEDI’s clinical usability. In addition,
medications are not all used with equal frequency. Evaluation of
indication prevalence using EMR data may aid identification of
new medication–indication pairs and improve accuracy.

CONCLUSION
In summary, MEDI is a freely available, computable medication
indication resource that is more comprehensive than existing
freely available resources. Because it utilized UMLS concepts
and ICD9 codes, MEDI can be easily used in conjunction with
billing codes or concepts extracted from free-text using NLP.
Our results demonstrate its broad coverage and high accuracy.
MEDI may enable research and clinical EMR applications.
MEDI is freely available at http://knowledgemap.mc.vanderbilt.
edu/research/content/MEDI. We plan to update MEDI periodic-
ally as component resources are revised.
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