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a b s t r a c t

The annual Bone and The Oncologist New Updates (BONUS 8) conference focuses on the current under-
standing and dilemmas in the treatment and prevention of bone metastasis in cancer, as well as novel
research on bone homeostasis and cancer-induced bone loss. We present commentaries from experts for
their own take on where they feel the field of bone-targeted therapies for metastatic breast cancer is
moving, or needs to move, if we are to make further progress.

& 2014 Elsevier GmbH. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Despite advances in breast cancer treatment, bone remains the
most common site of metastasis [1,2] occurring in around 70% of
patients with metastatic disease [3]. Bone metastases are incurable
and associated with significant morbidity in terms of fractures,
pain, and reduced quality of life. Bone destruction occurs from
disruption of the finely controlled balance between bone resorp-
tion (by osteoclasts) and formation (by osteoblasts), resulting in
net bone breakdown [4]. Increased understanding of the patho-
genesis of bone disease has resulted in the development of a
number of bone-targeted agents (BTAs), the most widely used
clinically being inhibitors of osteoclastogenesis and osteoclast
activation [i.e. bisphosphonates, or receptor activator of nuclear
factor kappa-B ligand (RANKL) inhibitors (e.g. denosumab)] [5].

However, despite the use of these increasingly potent BTAs,
progress in terms of absolute reductions in the occurrence of
skeletal related events (SREs) is modest, and further basic, transla-
tional, and clinical research is clearly needed [6–12].

The Bone and the Oncologist New Updates (BONUS) meeting is
an annual Canadian multidisciplinary conference on the interaction

of bone and cancer biology. Each year, clinical oncologists, basic
scientists, and other health researchers gather to discuss the
discoveries in bone research and their implications for cancer
patients [13]. The most recent conference, BONUS 8, was held in
Ottawa in April 2013 with featured speakers from across Canada
and the United States. Topics of discussion were diverse, and
ranged from prevention of skeletal metastases to the exploration
of biomarkers as tools to guiding treatment. As part of this
meeting's mandate is to ensure publication of findings to as broad
an audience as possible this commentary was written to assimilate
key presentations from a number of experts in the area and focus
on where the field is moving, or needs to move, if we are to make
further progress.

2. Bone specific therapy in metastatic disease—should we curb
our enthusiasm?

Quite simply the objectives of any therapy should be the prolonga-
tion of life and/or improvement of quality of life. All other endpoints
are clinically relevant only if they are associated with these goals. We
all recognize that bone metastases are common in breast cancer and
cause significant morbidity. They may lead to SREs, including patho-
logic fractures, need for surgery or radiation to bone, spinal cord
compression, and hypercalcemia [14]. These complications result in
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loss of autonomy, pain, and consumption of significant healthcare
resources. Ultimately they may also lead to decreased survival [15].

Bone-targeted therapy with bisphosphonates and more recently,
denosumab, has been seen as an important part of anti-cancer
therapy. In the bone microenvironment, bisphosphonates may exert
anti-tumor effects via attenuation of tumor adhesion and invasion,
and induction of tumor cell apoptosis [16]. This class of drugs may
also indirectly suppress tumor proliferation by virtue of their anti-
angiogenic effects [17]. Denosumab is an inhibitor of the RANK
ligand, a factor that promotes osteoclast differentiation and activa-
tion, and interruption of this interaction may lead to decreased bone
resorption and destruction [12]. Both bisphosphonates and denosu-
mab have been shown to be effective in reducing SREs [12,18,19].

However, while bisphosphonates and denosumab are effective
in preventing and delaying SREs, none have yet shown a beneficial
effect on overall or progression free survival [12,20,21]. Moreover,
the benefit in terms quality of life for patients with metastatic
cancer from the use of these bone-targeted agents is also unclear.
While long term follow up of two large trials comparing pami-
dronate to placebo showed that patients in the pamidronate arm
experienced less pain, the overall quality of life was not different
between the arms [20]. Similarly, another trial comparing zole-
dronic acid to placebo showed that while zoledronic acid did
improve pain control slightly compared to placebo, it did not
improve the overall quality of life for patients on this drug [21].
Lastly, in a trial comparing denosumab to zoledronic acid in
metastatic breast cancer, statistical improvements in quality of
life was observed with denosumab only at a minority of time
points during follow up and the analysis was compromised by the
effects of multiplicity [19].

In summary, current evidence suggests that bone-targeted agents
reduce morbidity from metastatic disease to bone, and potentially
improve quality of life in patients with metastatic breast cancer. As
there are costs and potential adverse effects associated with these
agents, care should be taken in their use. In addition, further work is
needed in the creation of meaningful measures of quality of life in
these patients [22].

3. The vicious cycle: not so simple anymore!

Metastatic tumor growth in the bone is affected by a complex
network of cellular interactions and effector molecules. The inter-
actions between osteoclasts, osteoblasts, and tumor cells have
been shown to drive tumor growth through a “vicious cycle”.
In this framework, tumor cells secrete factors such as parathyroid
hormone-related protein (PTHrP) that induce osteoblast and
osteoclast activity, leading to bone resorption and destruction,
release of growth factors such as transforming growth factor
(TGF)-β, and subsequent tumor growth and perpetuation of the
destructive cycle [23]. What has become clear over the years is
that while the “vicious cycle” was a relatively simple concept to
explain some interactions occurring in metastatic bone disease
and rationale for the development of bisphosphonates and deno-
sumab—the real picture is a lot more complex [7].

Increasingly, the importance of the tumor microenvironment
itself in this destructive cycle has come under scrutiny. Cells that
are not directly involved in bone remodeling, including lympho-
cytes, macrophages, and stromal cells may affect tumor growth
through their interactions with tumor cells. As part of the bone
marrow stromal environment, adipocytes, fibroblasts, and chron-
drocytes have been implicated in the differentiation and prolifera-
tion of both hematopoietic and cancer cells, in part through
secretion of pro-resorption cytokines by tumor cells following
their engagement with stromal cells via VCAM-1 mediated inter-
actions [24].

Myeloid-derived suppressor cells (MDSC) represent a diverse
population of myeloid-lineage cells that includes macrophages,
dendritic cells, and granulocytes. They are known to proliferate
in the setting of cancer, can down-regulate the immune res-
ponse [25], and have been linked to multiple aspects of cancer
progression, including tumor growth, angiogenesis, and metastasis
[26,27]. In a xenograft mouse model, these cells have been shown
to differentiate into osteoclasts and accelerate tumor growth and
bone destruction [28].

The extracellular matrix (ECM) of the bone is also implicated in
the metastatic process. The ECM contains a constellation of proteins
and other biomolecules that serve both as a scaffold for mineral
deposition, and as signaling molecules that help direct bone forma-
tion and resorption [29]. These interactions may become dysfunc-
tional in the setting of metastatic cancer. Bone sialoprotein (BSP) is a
major non-collagenous protein in the ECM, and can induce cell
adhesion and promote osteoclastogenesis [30]. High BSP levels are
seen in multiple cancers, and have been associated with excessive
bone resorption in animal models [31]. Indeed, preliminary experi-
ments in a mouse model using siRNA-mediated knockdown of
the BSP gene revealed reductions in both osteolysis and tumor
incidence [32].

It is clear that the process of bone metastasis involves much
more than the model of the vicious cycle itself, and that many
types of cells, effector molecules, and the extracellular matrix
participate in the development of bone metastases. However,
their precise roles have yet to be fully elucidated. Better under-
standing of their interactions with bone and tumor cells may lead
to discovery of novel protective therapies.

4. Bone-specific therapy in metastatic disease–an
oncodynamic perspective

Bone metastasis involves the dysregulation of normally tightly
controlled bone homeostasis. Tumor cells release paracrine factors
that stimulate osteoclast and osteoblast recruitment and differ-
entiation. Bone resorption due to osteoclast activity can liberate
growth factors from the bone matrix that can drive further tumor
growth [33]. Similarly, growth factors secreted by osteoblasts may
also stimulate tumors. This process is associated with significant
morbidity including bone loss, pathologic fractures, and cancer-
induced bone pain [20].

The underlying biology of cancer metabolism is complex. Multiple
biochemical pathways and their associated signaling molecules are
affected and dysregulated by cancer. Aberrant signaling in these
pathways not only drive tumor growth but can lead to signifi-
cant symptoms such as pain. This concept of abnormal cues on the
physiology of the body in the context of cancer may be termed
oncodynamics. Investigation of these abnormal cues may lead to
novel therapies for cancer-associated symptoms.

For example, glutamate is increasingly recognized as one of the
important dysregulated signaling molecules in cancer biology,
especially in the context of bone metastasis. Commonly recog-
nized as an excitatory neurotransmitter necessary for normal brain
function, glutamate is also intimately involved in bone metabolism
in both health and diseased bone [34]. Multiple cancer cell lines
are known to secrete glutamate into the extracellular environment
[35]. In vitro models have shown that its secretion by cancer cell
lines stimulated osteoblast differentiation, while inhibition of
glutamate release led to reduction of the osteoclast population
[36]. Specific glutamate receptors present on osteoclasts have been
identified, and modulation of these receptors can inhibit gluta-
mate release and bone resorption [37].

Glutamate is also associated with the perception and transmis-
sion of pain. Multiple studies involving subcutaneous administration
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of glutamate to healthy volunteers revealed glutamate to be
a potent dose-dependent inducer of the pain response [38,39].
Given its secretion by cancer cells, tumor-derived glutamate may
be involved in the generation or maintenance of cancer-induced
bone pain, through direct stimulation of perception of pain or its
disruptive effect upon bone homeostasis in the presence of bone
metastases.

Lastly, glutamate may also contribute to cancer-associated depres-
sion. Major and minor depression can be seen in over one third of
cancer patients [40], a rate that is far higher than in the general
population [41]. Abnormalities in glutamate levels have been
observed in multiple areas of the brain in patients with depression
[42]. Compellingly, the glutamate receptor antagonist ketamine has
been shown in multiple small studies to produce anti-depressive
effects in patients [43]. Whether direct links exist between tumor-
secreted glutamate and depression is currently not known but
warrants further investigation.

5. Summary

The BONUS conference continues to be a forum that attracts
oncologists, basic scientists, and other professionals interested in
bone health in cancer. This year's meeting reviewed our current
understanding of bone biology and metastasis, as well as ongoing
research in the field. What is evident is that we have likely
maximized the benefits that patients will receive from current
bone-targeted therapies and that the gains from increasingly
potent agents while statistically significant are clinically modest
[10,44]. If progress in this area is going to be made we need to use
the new knowledge we are generating around the complex
interactions that occur in bone to develop new treatment strate-
gies. Ultimately we all hope that this will also enhance our efforts
at trying to stop breast cancer from spreading to the bones in the
first case.
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