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Abstract: The time required for successful blastocyst formation varies among multiple species. The
formation of a blastocyst is governed by numerous molecular cell signaling pathways, such as the
Hippo signaling pathway. The Hippo signaling pathway is initiated by increased cell–cell contact and
via apical polarity proteins (AMOT, PARD6, and NF2) during the period of preimplantation embryo-
genesis. Cell–cell contact and cell polarity activate (phosphorylates) the core cascade components of
the pathway (mammalian sterile twenty like 1 and 2 (MST1/2) and large tumor suppressor 1 and 2
(LATS1/2)), which in turn phosphorylate the downstream effectors of the pathway (YAP1/TAZ). The
Hippo pathway remains inactive with YAP1 (Yes Associated protein 1) present inside the nucleus
in the trophectoderm (TE) cells (polar blastomeres) of the mouse blastocyst. In the inner cell mass
(ICM) cells (apolar blastomeres), the pathway is activated with p-YAP1 present in the cytoplasm.
On the contrary, during bovine embryogenesis, p-YAP1 is exclusively present in the nucleus in both
TE and ICM cells. Contrary to mouse embryos, transcription co activator with PDZ-binding motif
(TAZ) (also known as WWTR1) is also predominantly present in the cytoplasm in all the blastomeres
during bovine embryogenesis. This review outlines the major differences in the localization and
function of Hippo signaling pathway components of murine and bovine preimplantation embryos,
suggesting significant differences in the regulation of this pathway in between the two species. The
variance observed in the Hippo signaling pathway between murine and bovine embryos confirms
that both of these early embryonic models are quite distinct. Moreover, based on the similarity of the
Hippo signaling pathway between bovine and human early embryo development, bovine embryos
could be an alternate model for understanding the regulation of the Hippo signaling pathway in
human embryos.

Keywords: Hippo; blastocyst; MS1/2 (Mammalian Sterile Twenty Like 1 and 2); LATS1/2 (Large
Tumor Suppressor 1 and 2); YAP1 (Yes Associated Protein 1); p-YAP1; TAZ (Transcriptional co
activator with PDZ-binding motif); TEAD4 (TEA domain transcription factor 4)

1. Introduction
Preimplantation Embryonic Development until Blastocyst Formation

The preimplantation period of development is broadly classified as the time from fertil-
ization to mammalian blastocyst formation. The time required for blastocyst development
varies among multiple species, ranging from 4.5 days in mice (Mus musculus), to 6–7 days
in humans (Homo sapiens), to 7–9 days in the cattle (Bos taurus) [1–4]. Blastocyst formation
is one of the most critical steps during the period of preimplantation embryogenesis [5].

Successful fertilization of an oocyte with sperm leads to zygote formation [1,2,6]. The
zygote then undergoes multiple mitotic divisions, thereby progressing to later stages of
embryogenesis. These cell divisions, intrinsically driven by multiple cell signalling pathway
and polarity protein complexes, subsequently lead to the process of embryonic lineage
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specification, leading to the formation of morphologically distinct structures, namely the
morula and the blastocyst [1,7–10].

In the case of mouse embryos, the process of compaction is initiated at the eight-
cell stage (approximately day 2.5 post insemination) when the blastomeres compact and
adhere to each other to develop into the morula [11–13] By comparison, in bovine embryos,
compaction is initiated at the 16-cell stage (approximately day 5 post insemination) of
preimplantation embryogenesis, thereby leading to the formation of the morula [14]. The
nature and type of cells within an embryo change as embryonic development proceeds [15].
Until the two-cell stage of mouse embryogenesis, the blastomeres are totipotent and apolar
in nature [16]. However, during the subsequent stages of preimplantation embryogenesis,
some of the blastomeres become polarised in nature. By the morula stage, the majority of
the mouse blastomeres become pluripotent [16]. Polarisation of the blastomeres can be
attributed to a number of apical–basal and basal–lateral polarity protein complexes.

The process of compaction is followed by the formation of blastocoel cavity, known
as cavitation, which occurs during the formation of blastocyst [17]. In addition to cavi-
tation, blastocyst formation is characterized by the establishment of two important cell
lineages, known as trophectoderm (TE) and inner cell mass (ICM) [18,19]. Multiple classic
models, such as “the pre pattering model”, “the inside-outside theory”, and “the cell
polarity theory”, can be used to explain the formation of trophectoderm (TE) and inner cell
mass (ICM).

According to the “pre patterning theory”, cell fate specification depends on the molec-
ular determinants that are asymmetrically localized in the oocyte during maturation and
upon fertilization. These determinants are differentially segregated during the cleavage
events following fertilization and the cell fate decision depends on the molecular determi-
nant received by the daughter cell [20,21].

According to the “inside outside theory” postulated by Tarkowski and Wroblewska,
the blastomeres present on the outside of a totipotent embryo become the trophecto-
derm/placenta, whereas the blastomeres present inside the embryo become inner cell
mass/fetus [22]. This theory focuses on the position of blastomeres at the eight-cell stage
and suggests that the position of the blastomeres dictates the formation of trophectoderm
and inner cell mass during the formation of a blastocyst [22].

The “cell polarity theory” postulated by Johnson and Ziomek suggests that, at the
eight-cell stage, polarization of the cells is initiated. Polar cells form the outer trophecto-
derm (TE), whereas the apolar cells become the inner cell mass (ICM) [23].

Each of these three classic models and there combinations have been used to interpret
the results related to the process of cell fate specification during blastocyst formation.
However, neither of these models can be successfully used to explain the recent advances
observed regarding cell fate specification during mouse blastocyst formation [24,25].

Recently, another theory known as the “self-organization theory” postulated by Nodal
and Lefty has been shown to explain the new observations made about the process of lin-
eage segregation during mouse blastocyst formation. According to this theory, also known
as the “reaction-diffusion pattern mechanism”, the process of cell fate specification in not
just dependent upon one single factor, but is dependent on multiple variables such as cell
division pattern, cell shape, cell adhesion, and lineage specific gene expression [21,26,27].

Numerous cell signaling pathways, such as the Wnt, Notch, MAPK, and Hippo
signaling pathway, play a significant role in cell fate specification and thus are involved in
the formation of blastocyst [8,28–31].

2. Hippo Signaling Pathway—Major Components and Their Localization

The Hippo signaling pathway is known to be an important regulator of cell growth
and development [32]. The components of this cell signaling pathway can be broadly
categorised as follows: upstream regulators, core cascade components, and downstream
effectors of the pathway [33].
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2.1. Upstream Regulators of the Hippo Signaling Pathway
2.1.1. Cell–Cell Contact and Cell Polarity

Various studies conducted in the mouse model demonstrate that cell–cell contact
and AMOT (Angiomotin)-NF2-PARD6B mediated cell polarity are the key mediators
activating the Hippo signaling pathway [34–36]. During early mammalian embryogenesis,
cell polarisation and compaction are initiated at the eight-cell stage [37]. This apical–basal
and basolateral polarisation of blastomeres, during the post compaction stages, provide
clues for lineage segregation during blastocyst formation in preimplantation embryonic
development [32,38].

2.1.2. How Do Cell–Cell Contact and Cell Polarity Affect the Hippo Signaling Pathway?

The mouse model is the most widely studied model to illustrate the effects of cell–cell
contact on the Hippo signaling pathway components and the subsequent formation of
the blastocyst [28]. Inhibition of E-cadherin mediated cell–cell contact has been shown to
inactivate the Hippo signaling pathway [28,39]. Inactivation of this cell signaling pathway,
as a consequence of E-cadherin mediated cell–cell contact inhibition, interferes with lineage
segregation and, in turn, proper blastocyst development during mouse preimplantation
embryogenesis [28,39,40].

E-cadherin is expressed during all the post compaction stages of bovine embryoge-
nesis [41]. E-cadherin along with other catenins have been shown to play an essential
role in establishing cell–cell contact in early bovine embryogenesis. However, the role
of E-cadherin mediated cell–cell contact in the initiation of the Hippo signaling pathway
during bovine embryogenesis is yet to be explored.

In addition to cell–cell contact, cell polarity is another important upstream regulator of
the Hippo signaling pathway. AMOT (Angiomotin) and Nf2 (neurofibromin type 2) apical
polarity proteins are known to be significant regulators of this cell signaling pathway in
mouse and bovine embryos [36,42].

AMOT family protein components have been shown to play an important role in
the activation of the Hippo signaling pathway during mouse preimplantation embryo
development [36]. During mouse blastocyst formation, knockdown of AMOT protein
represses the Hippo signaling pathway in the apolar ICM blastomeres, whereas the Hippo
signaling pathway still remains active in the polar TE blastomeres [36]. However, in the
case of bovine embryogenesis, no effect was observed on the gene expression of YAP1
(yes associated protein 1) and TEAD4 (TEA domain transcription factor 4), the major
downstream effectors of the Hippo signalling pathway [42].

Although the presence of AMOT has been established in both mouse and bovine
embryos, the role of these cell signaling pathway components in bovine embryogenesis and
in the subsequent cell fate specification is still unknown [33,42]. In addition to the AMOT
polarity protein, RHOA, a small molecule G protein is known to play a significant role in
TE differentiation during bovine blastocyst formation [43]. Specific chemical inhibition of
this protein molecule inhibits YAP1, thereby playing an important role in TE differentiation
during bovine blastocyst formation [43].

Nf2 is another membrane-bound protein known to play a significant role in embryonic
cell fate specification [34]. Inhibition of Nf2 causes differences in YAP1 localization, thereby
aiding in the segregation of TE and ICM during mouse blastocyst formation [34,36]. This
suggests that Nf2 plays a vital role as an upstream regulator of the Hippo signaling pathway
in mouse embryogenesis (Figure 1).
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Figure 1. Schematic illustration of the differences in the localization of the upstream regulators and the core cascade
components of the Hippo signaling pathway during murine and bovine embryogenesis. (a) Organization hierarchy of
the upstream regulators (AMOT and Nf2) and core cascade components (large tumor suppressor 1 and 2 (LATS1/2)
protein kinase) of the Hippo signaling pathway during pre-compaction stages (two-cell to eight-cell stages) of mouse
embryogenesis. Arrows represent the direction of activation of the protein kinase components. (b) Protein localization
of the upstream regulators (AMOT and Nf2) and the core cascade components (mammalian sterile twenty like 1 and 2
(MST1/2) and large tumor suppressor 1 and 2 (LATS1/2)) of the Hippo signaling pathway during the pre-compaction
stages of bovine embryogenesis. Dotted arrows represent a potential link in the activation of the protein kinase components.
(c,d) Localization of AMOT, Nf2, MST1/2, and LATS1/2 in TE (trophectoderm) and ICM (inner cell mass) during blastocyst
formation in murine and bovine models, respectively. (c-i) The Hippo signaling pathway is inactive (Hippo “Off”) in
the outer polar TE cells, where AMOT and Nf2 cause the nuclear retention of YAP1. (c-ii) The Hippo signaling pathway
is active (Hippo “On”) in the apolar ICM cells, where AMOT and Nf2 cause the phosphorylation of LATS1/2 and the
subsequent cytoplasmic retention of p-YAP1. (d-i and ii) Protein localization of upstream regulators (AMOT) and core
cascade components (MST1/2 and LATS1/2) of Hippo signaling pathway components in TE and ICM during bovine
blastocyst formation. Dotted lines represent the proposed mechanism of functioning of the Hippo signaling pathway during
(i) TE and (ii) ICM formation.

2.2. Core Components of the Hippo Signaling Pathway—MST and LATS Protein Kinase
2.2.1. MST Protein Kinase

The core components of the Hippo signaling pathway include MST1/2 (mammalian
sterile twenty like 1 and 2) and LATS 1/2 (large tumor suppressor 1 and 2) [44].

MST protein kinase was first discovered in Drosophila melanogaster (fruit fly) and
termed as ‘Hpo’, as deletion of this gene led to tissue overgrowth, thereby gaining the phe-
notype of a hippopotamus [45,46]. MST protein kinase plays a significant role in inhibiting
cell proliferation and promoting apoptosis during mouse embryogenesis [47,48]. Studies
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of mouse embryonic stem cells and embryos suggest that MST1 and 2 can functionally
compensate for each other [47,49]. Mst 1 or 2 single knockout mice were fertile and showed
normal embryonic development with no significant developmental or immunological
defects [47]. In contrast, Mst1/2−/− double knockout mice died in utero with severe
developmental defects, after 8.5 days of embryonic development [47].

Similarities have been observed in the localization of MST1 and 2 in bovine and mouse
embryos [47,49]. In both species, MST1 and 2 are localised in the cytoplasm, suggesting a
similar role of these components in both mouse and bovine early embryo development
(Figure 1).

2.2.2. LATS Protein Kinase

In addition to MST protein kinase, the core cascade of the Hippo signaling pathway
consists of LATS1 and 2 [44,50,51]. LATS protein kinase plays a significant role in cell fate
specification and the subsequent formation of the inner cell mass during mouse blastocyst
development [28,51]. LATS protein kinase regulates the nuclear-cytoplasmic shutting of
YAP1 and TAZ (transcription co activator with PDZ-binding motif). During early mouse
embryonic development, LATS protein kinase is known to phosphorylate YAP1 and retain
the protein in the cytoplasm of the inner cells of the blastocyst [28,51]. Knockdown of
LATS1/2 protein kinase, at the zygote stage, increases nuclear YAP localisation in the
inner cells during preimplantation mouse embryogenesis [28]. Nuclear localization of
YAP1 causes inactivation of the Hippo signaling pathway in the inner cells of the mouse
blastocyst, whereas in the outside cells, LATS protein kinase causes YAP1 phosphorylation,
leading to increased cytoplasmic retention of p-YAP in the outside cells.

Even though the localization and role of LATS1 and 2 are well understood in early
mouse embryos, no such information is available regarding preimplantation bovine em-
bryogenesis (Figure 1). Future experiments should focus on inhibiting LATS1/2 to establish
the mechanism of action of the Hippo pathway during bovine embryogenesis.

2.2.3. How Do the Core Cascade Components of the Hippo Signaling Pathway Affect
Mammalian Embryo Development?

LATS protein kinase has been suggested to be the inter-mediatory link relaying signals
between E-cadherin mediated cell–cell contact and YAP1. During mouse preimplanta-
tion embryogenesis, LATS protein kinase acts as a key regulator in the transmission of
E-cadherin mediated cell–cell contact cues to the activation of the Hippo signaling path-
way [52]. During mouse blastocyst formation, LATS mediated Hippo signaling is inactive
in the outer cells (TE), whereas this cell signaling is active in inner cells (ICM) owing to
phosphorylation of LATS (p-LATS), thereby leading to activation of the Hippo signaling
pathway [36,52] (Figure 1).

2.3. Downstream Effectors of Hippo Signaling Pathway
2.3.1. YAP1 and TAZ

Recently, various studies have suggested that YAP1 and TAZ (or WWTR1) are key
regulators of numerous other cell signaling pathways in addition to the Hippo signaling
pathway [53], and thus could be an important conduit for the cross talk between various
other signaling pathways during early embryogenesis.

In the mouse model, translocation of Hippo signaling pathway co-activators, YAP
and TAZ, between the nucleus and cytoplasm cause the activation or inactivation of this
signaling pathway [28,51,53]. When the cell signaling pathway is active (ON), YAP and
TAZ are present in the cytoplasm in their phosphorylated forms (p-YAP and p-TAZ),
whereas when this cell signaling pathway is inactive (OFF), YAP/TAZ enter the nucleus
and cause activation of TEAD family transcription factors. During preimplantation mouse
embryogenesis, YAP and TAZ are present in the cytoplasm during the pre-compaction
stages, but are localized in the nucleus during the post compaction stages.
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Localization of the co-activators of the Hippo signaling pathway is different between
mouse and bovine embryos [28,33,44,54]. During mouse embryogenesis, p-YAP1 is present
in the cytoplasm at stages of preimplantation embryo development. During bovine em-
bryogenesis, TAZ is present in the cytoplasm during the pre-compaction stages; after the
eight-cell stage, however, TAZ is localised in the nucleus in some of the blastomeres [33].

In addition to TAZ, YAP1/p-YAP1 is another important downstream regulator of the
Hippo signaling pathway. Similar to mouse embryos, YAP1 is localized in the nucleus
during pre- and post-compaction stages of development (Negrón-Pérez and Hansen 2017).
By contrast, localization of p-YAP has been shown to be distinct in bovine embryos in
comparison with mouse embryos [33]. In the pre-compacted bovine embryos, p-YAP
has been shown to be present in both the nucleus and cytoplasm, whereas in the post
compaction stages of bovine preimplantation, embryogenesis p-YAP is predominantly
present only inside the nucleus [33] (Figure 2). This distinct localization of the downstream
effectors of the Hippo signaling pathway in early bovine embryogenesis suggests that this
pathway is differentially activated in bovine embryos as compared with mouse embryos.
Further chemical inhibition and/or siRNA knockdown studies are required to validate the
role of the Hippo signaling pathway components in bovine embryos.

2.3.2. How Do the Downstream Effectors of the Hippo Signaling Pathway Affect
Mammalian Preimplantation Embryo Development?

YAP1 and TAZ are the major downstream effectors of the Hippo signaling pathway.
Nucleo-cytoplasmic localization of these co-activators affects cell growth and proliferation.
Recently, various pharmacological inhibitors, such as Statins and Verteporfin, as well as
epigenetic alterations, such as GapmeR antisense oligo nucleotide treatment and siRNA
knockdown, have been performed to inhibit Hippo signaling pathway co-activators, YAP1
and TAZ, in multiple human cell lines and mammalian embryos [42,55,56]. Chemical
inhibition, such as Statin treatment, has been shown to diminish the size of the blastocoel
cavity and decrease the nuclear expression of YAP1 in mouse embryos; however, no such
information is available in the bovine model. Recent reports suggest differences in the
localization of the downstream effectors (p-YAP1 and TAZ) of the Hippo signaling pathway
components in bovine embryos as compared with the established hierarchy of the signaling
pathway in the mouse embryos. Further inhibition studies are required to investigate
the role of nuclear p-YAP1 [9,35,36]. These inhibition studies will demonstrate the role
of these cell signaling pathway components in cell fate specification and the subsequent
differentiation of TE and ICM.

2.3.3. TEAD Family as the Downstream Effectors of YAP1 and TAZ

TEAD4 induces the transcription of CDX2 (caudal type homeobox 2), SOX2 (SRY-
related HMG box 2), and OCT4 (octamer binding transcription factor 4, also known as
POU5F1), which have been established as the important biomarkers for TE and ICM
specification [28,54,57]. During preimplantation mouse embryogenesis, CDX2 has been
established as the significant maker for the TE cells, whereas SOX2 and OCT4 are important
ICM markers [8,9,54,57,58].

During mouse embryogenesis, interaction of TEAD family transcription factors (es-
pecially TEAD4) with YAP1 plays an essential role in the formation of TE [28,59]. TEAD4
transcripts are present during all stages of mouse embryogenesis; however, the nuclear
localization of TEAD4 is initiated at the 8–16-cell stage. When present inside the nucleus,
TEAD4 causes the transcription of CDX2. Inhibition of TEAD4 decreases the expression
of CDX2; however, no such effect was observed on the ICM transcription factors [59].
Another study further validated these results by elucidating that the overexpression of
TEAD4 has been shown to cause a parallel increase in the expression of CDX2. This finding
suggests that TEAD4 is an important regulator of TE formation [28]. SOX2 is expressed
in the nucleus during all the stages of mouse preimplantation embryo development [60].
During the formation of a blastocyst, SOX2 is exclusively present in the nucleus of apolar
ICM cells [60]. SOX2 is the initial most pluripotency marker known to be expressed in the
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inner cells of the mouse blastocyst [61,62]. Similar to SOX2, another ICM marker, OCT4,
has been shown to be universally present during all the stages of mouse embryogenesis;
however, the expression peaks at the 16-cell stage and the nuclear presence of OCT4 are
restricted to the ICM during blastocyst formation [63]. Another study suggests that the
role and expression of OCT4 are dependent on the ability of OCT4 to form a complex with
CXD2, where CDX2 is responsible for the inhibition of OCT4 expression in the TE cells
during the formation of blastocyst [64] (Figure 2).

Figure 2. Schematic illustration of the differences in the localization of downstream effectors of the Hippo signaling
pathway during murine and bovine embryogenesis. (a) Mechanism of activation of TEAD4 and other transcription factors
(CDX2, SOX, and OCT4) of the Hippo signaling pathway during pre-compaction stages (from two-cell to eight-cell stage)
of mouse preimplantation embryogenesis. The arrows represent the inhibitory mechanism between CDX2 and OCT4 in
the murine model. (b) Protein localization of downstream effectors (p-YAP1, TEAD4, and SOX2) of the Hippo signaling
pathway. p-YAP1 is localized in the nucleus and untraceable amounts of TEAD4 and SOX2 are detected during the
pre-compaction stages of early bovine embryogenesis. (c and d) Localization of YAP1/p-YAP1 and TEAD4 transcription
factors (CDX2, SOX2, and OCT4) in TE (trophectoderm) and ICM (inner cell mass) during blastocyst formation in murine
and bovine models, respectively. (c-i) In the outer polar TE cells (Hippo “Off”), YAP1 in collaboration with TEAD4 causes
the transcription of CDX2. OCT4 expression is thus inhibited by CDX2, aiding in the process of TE differentiation. (c-ii) In
the apolar ICM cells, the Hippo signaling pathway is active (Hippo “On”) and SOX2 and OCT4 are exclusively present in
the nucleus. In the ICM, OCT4 supresses the expression of CDX2 and facilitates the formation of ICM. (d-i and ii) Protein
localization of downstream effectors (p-YAP1) and TEAD4 transcription factors (CDX2, SOX2, and OCT4) of the Hippo
signaling pathway in TE and ICM during bovine blastocyst formation. The dotted line represents the proposed mechanism
of TEAD4 and CDX2 interaction during bovine TE differentiation.

In the case of bovine embryos, TEAD4 did not significantly affect the gene expression
of CDX2 or other TE/ICM transcription factors such as OCT4 and SOX2 [65]. In contrast to
mouse embryos, where SOX2 expression was initiated at the two-cell stage, the protein ex-
pression of SOX2 was initiated at the 16-cell stage of embryogenesis [66]. These conflicting
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reports suggest potential differences in the mechanism of TE and ICM formation as well as
differentiation during early mouse and bovine embryonic development [59,65] (Figure 2).

3. Unanswered Questions About the Hippo Signaling Pathway during Embryogenesis

Is the activation of the Hippo signaling pathway dependent on cell–cell contact or
cell polarity in early bovine embryos? Although the presence of the AMOT polarity
protein has been established during both mouse and bovine embryogenesis, further studies
are required to reveal the role of this polarity protein in the activation of the Hippo
signaling pathway during bovine blastocyst formation [42]. A second question remains to
be answered about the role of MST1 and 2 during bovine embryogenesis. The localization of
MST1 and 2 has been established to be the same as mouse embryos, however, the function
of this protein kinase during bovine embryogenesis still remains unknown (Sharma and
Madan, 2019). A third question pertains to the core cascade components (LATS1/2) of
the Hippo signaling pathway. Is the function of LATS1/2 during bovine embryogenesis
dependent on the signal received from MST1/2 protein kinase or does it act independently
of MST kinase and receive direct signals from the AMOT polarity protein, in a manner
similar to that established during mouse embryogenesis [28,51]? This information will fill
the existing gaps in our knowledge pertaining to the mechanism of the Hippo signaling
pathway activation during early bovine embryo development and will shed more light
on the process of blastocyst formation. Lastly, why is p-YAP1 translocated to the nucleus
during all the stages of early bovine embryogenesis [33]? Further studies about p-YAP1
and other downstream effectors (YAP1, TAZ, p-TAZ, TEAD4, CDX2, SOX2, and OCT4)
of the Hippo signaling pathway will help us better understand the process of cell fate
specification and the concept of lineage segregation during the formation of a blastocyst.

4. Conclusions

The localization of Hippo signaling pathway components is significantly different
between bovine and mouse embryogenesis, suggesting the Hippo signaling pathway is
differentially regulated in bovine embryos as compared with mouse embryos [33,51,59,65]
(Figure 2). The nuclear localization of p-YAP1 might be due to some transporter proteins
working in association with nuclear pore complexes present on the nuclear membrane [67].
Further studies need to be performed to investigate the involvement and/or regulation
of these transporter proteins in the transport of p-YAP1 to and from the nucleus and
cytoplasm in bovine embryos. These studies will shed more light on the organization
hierarchy of Hippo signaling pathway components in the bovine model and will further
establish the role of this cell signaling pathway in cell fate specification during the formation
of the bovine blastocyst. Understanding the biology of bovine blastocyst formation will
also enhance our knowledge about the mechanism of human blastocyst development,
as multiple reports suggest that the regulation of human blastocyst formation is more
similar to that of bovine as compared with the mouse model [68,69]. The study of Hippo
signaling pathway components in various species will help us better understand the
biology of mammalian blastocyst formation. Further studies pertaining to the mechanism
of activation and localization of Hippo signaling pathway components will improve our
knowledge about the processes of cell fate specification and lineage segregation during the
formation of a blastocyst.
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