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Abstract
Synthetic lethality has been widely concerned because of its potential role in cancer treatment, which can be harnessed to selectively kill cancer 
cells via identifying inactive genes in a specific cancer type and further targeting the corresponding synthetic lethal partners. Herein, to obtain 
cancer-specific synthetic lethal interactions, we aimed to predict genetic interactions via a pan-cancer analysis from multiple molecular levels 
using random forest and then develop a user-friendly database. First, based on collected public gene pairs with synthetic lethal interactions, 
candidate gene pairs were analyzed via integrating multi-omics data, mainly including DNA mutation, copy number variation, methylation and 
mRNA expression data. Then, integrated features were used to predict cancer-specific synthetic lethal interactions using random forest. Finally, 
SLOAD (http://www.tmliang.cn/SLOAD) was constructed via integrating these findings, which was a user-friendly database for data searching, 
browsing, downloading and analyzing. These results can provide candidate cancer-specific synthetic lethal interactions, which will contribute to 
drug designing in cancer treatment that can promote therapy strategies based on the principle of synthetic lethality.
Database URL: http://www.tmliang.cn/SLOAD/
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Introduction
Accumulating evidence has revealed that synthetic lethality 
(SL) has been an emerging and important therapeutic strat-
egy for cancer treatment by exploiting potential interactions 
between driving mutations and specific drug targets. A syn-
thetic lethal interaction occurs when the perturbation of two 

nonessential genes with SL is lethal (1), which can be har-
nessed to selectively treat cancer via characterizing inactive 
genes and then targeting the corresponding synthetic lethal 
partners (2). These genetic interactions between tumor sup-
pressor genes and other genes can simultaneously disrupt 
both gene functions, which further cause rapid and selective 
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Highlights 

• Integrated features from multi-omics data were firstly 
collected.

• Cancer-specific synthetic lethal interactions were then pre-
dicted using random forest.

• SLOAD, a user-friendly database, was constructed based on 
predicted results.

cell death (3). The strategy of SL provides an opportunity 
for mutations caused by a loss of function without avail-
able targeted therapies. The concept of ‘synthetic lethality’ 
has been widely concerned in cancer treatment, and treatment 
of cancer-deficient tumors with PARP inhibitors always selec-
tively kills the cancer cells in some cancers (4–9). Thus, this 
phenomenon caused by synthetic lethal interactions provides 
a possibility to develop selective anticancer drugs by targeting 
a gene whose partner is inactive only in tumor cells (1, 10).

Based on the potential application of SL in cancer treat-
ment, it is quite crucial to obtain a data set contain-
ing synthetic lethal interactions with higher confidence that 
can provide data references for precision cancer therapy. 
In recent years, many studies attempted to find synthetic 
lethal interactions, especially potential interactions in some 
model organisms (11–14) and humans (2, 15–21). Accord-
ing to phylogenetic conservation, some human synthetic lethal 
interactions have been computationally inferred from yeast 
(22) and collected via using metabolic models and evolution-
ary characteristics of metabolic genes (23–25). These pre-
dicted interactions provide many references for human genetic 
interactions, but SL in humans is far more complex than 
we initially thought. Currently, many candidate interactions 
have been reported based on diverse approaches or algo-
rithms (26–29), even via integrating multiple molecular levels, 
and these studies largely contribute to revealing the synthetic 
lethal interactions and promoting their potential application 
in cancer precision treatment. However, it is not sufficient to 
further understand these interactions, particularly in diverse 
cancer types. In-depth understanding of cancer-specific syn-
thetic lethal interactions will contribute to their application 
in cancer treatment, which will provide an important refer-
ence for exploring cancer-specific susceptibilities and further 
treatments.

Herein, toward the realization of the potential applica-
tion of the concept of SL in cancer treatment, we aimed 
to predict and analyze candidate cancer-specific interactions 
through an integrative multi-omics analysis (Figure 1). Firstly, 
currently reported candidate genetic interactions were col-
lected; an integrative analysis of multi-omics data analysis 
was performed to screen molecular features, mainly including 
DNA level [DNA mutation, copy number variation (CNV) 
and methylation] and mRNA expression level. Secondly, 
cancer-specific synthetic lethal interactions in 31 cancers were 
predicted using random forest (RF). Finally, we constructed 
a user-friendly and open-access database containing cancer-
specific gene pairs and primary analysis. Our study may 
provide cancer-specific data sources and drug targets for fur-
ther validation and clinical application in precision cancer 
therapy.

Materials and methods
Data resource and data processing
In order to obtain cancer-specific synthetic lethal interactions, 
candidate genetic interactions were firstly collected to per-
form further analysis (Figure 1). A total of predicted 142 602 
candidate synthetic lethal interactions were mainly obtained 
from DAISY (19) and MiSL (18) algorithms after removing 
redundancy. Further, 6518 pairs of experimentally validated 
synthetic lethal interactions were collected according to pub-
lished references, including 6033 pairs from Lee et al. (30); 
162 pairs validated in Hela, A549 and 293 T cell lines (31); 46 
pairs from Syn-lethality database (21); 177 pairs from Srivas 
et al. (32) and 100 reported gene pairs from published liter-
ature (Table S1). Simultaneously, another 2467 pairs without 
SL in Hela, A549 and 293 T cell lines were also collected 
(31). Of these, 177 pairs were removed due to contradic-
tory results in different analyses, 554 were removed due to 
repeated results and a total of 5859 experimentally validated 
gene pairs and 2395 validated pairs without SL were finally 
collected.

Multi-omics data, mainly including DNA mutation, 
CNV, methylation and mRNA expression data in 33 can-
cer types, were obtained from The Cancer Genome Atlas 
(TCGA) Web site using the TCGAbiolinks package (33). 
Genes were removed from further analysis if they were 
not detected in more than 10n% total samples accord-
ing to mRNA expression level (reads per kilobase per mil-
lion mapped reads, RPKM value), mutation, CNV and 
methylation (beta-value). Of these, n was defined as 7 
according to a linear relationship of distributions of the 
median and average values to ensure that abnormal data 
had the least effect on the total data distribution. Further-
more, normalized normal data in 27 cancers from Genotype-
Tissue Expression (GTEx) database (34, 35) were also 
downloaded to involve in differential expression analysis
(Table S2).

Estimation of features from diverse molecular 
levels
For gene A:gene B pair, mutation coverage was estimated at 
mutation level (36) [Equation (1)]: 

where A was the sample size with gene A mutation, B was 
the sample size with gene B mutation, C was the sample size 
with both genes mutated and D was the total sample size in a 
specific cancer type. At the mRNA level, dysregulated mRNA 
expression profiles were firstly analyzed using edgeR package 
(37), and only 31 cancer types were involved in differential 
expression analysis (mesothelioma and uveal melanoma were 
not involved in analysis due to lack of normal samples). The 
value of the mRNA expression feature was estimated using 
the following formula [Equation (2)]: 

where fold change (FC) and padj (adjusted P value) were 
obtained from differential expression analysis using EdgeR
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Figure 1. The main flow chart of SLOAD.

* indicates 2395 validated gene pairs without SL.

(37). Further, the average beta-value of each gene was calcu-
lated, and the value of methylation feature was estimated at 
the DNA methylation level [Equation (3)]: 

where BetaValueA and BetaValueB were beta-values of paired 
gene A and gene B, respectively. Finally, the feature was esti-
mated at levels of gene amplification and deletion [Equation 
(4)]: 

where A was the sample size of gene A with significant ampli-
fication (>1) or significant deletion (<−1), B was the sample 
size of gene B with significant amplification or deletion and C
was the total sample size.

Prediction of cancer-specific synthetic lethal 
interactions
RF was used to predict cancer-specific synthetic lethal interac-
tions using randomForest R package (38). The cancer-specific 
training set was firstly constructed based on the correlations 
of DNA mutation, mRNA expression and CNV levels. Specif-
ically, if one gene was detected mutation, its partner would 
have a higher expression level and would be amplified more 
frequently or deleted less frequently harboring the mutation 
(18, 31). Then, based on the potential relationships of differ-
ent molecular levels, experimentally validated gene pairs were 
defined as positive and negative samples. Moreover, some can-
cers were found with sample imbalance that might influence 
effective prediction, and a negative sampling strategy was used 
to improve recall (more than 70% after treatment in all cancer 
types). The model performance was estimated using a 10-fold 
cross-validation method, and the model was also evaluated 
using accuracy, recall and a receive operating characteristic 
curve to calculate the area under the curve (AUC). Then, for 
each cancer type, the whole data set was used to construct 
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the classifier. The primary predicted cancer-specific synthetic 
lethal interactions were collected by classifying the candidate 
interactions, and further filtering was performed based on 
strategies mentioned above to ensure the correctness.

Finally, according to predicted cancer-specific results, a 
user-friendly SLOAD database for data searching, browsing, 
downloading and analyzing was constructed.

Results
The overall predicted cancer-specific synthetic 
lethal interactions
The prediction performances using RF were better than our 
previous study using decision tree in cancers (Figure 2A). 
Both the accuracy and AUC values showed a significant differ-
ence between the two algorithms, indicating better prediction 
results using RF method (Figure 2B). Integrated feature of 
multi-omics data had a higher AUC value than the feature at 
the single molecular level (Figure 2C), despite different cancer 
types showing varied results. Of these, DNA mutation had a 
larger contribution to prediction accuracy, while methylation 
had less effect on the prediction of SL than other molec-
ular levels. These results indicated that integrative analysis 
of multi-omics data was the best choice to predict cancer-
specific synthetic lethal interactions, which provided more 
data reference for further discussing the potential molecular 
mechanisms associated with SL.

Herein, a total of 139 035 gene pairs were collected from 
31 cancer types, containing 10 377 genes. Of these, most 
genes (75.78%) were detected in more than one interaction 
with other genes (Figure 2D). Genes with one interaction 
were the most popular (24.22%), followed by two interac-
tions (10.97%), indicating that many genes were only found 
in rare synthetic lethal interactions, while some specific genes 
may have widespread interactions with other genes. For exam-
ple, KRAS, PIK3CA and CSMD3 were found more than 1000 
interactions. Indeed, KRAS, an oncogenic gene, has been val-
idated by synthetic lethal interaction with other genes, and 
the determination of synthetic lethal interactions in KRAS 
oncogene-dependent cancer cells may contribute to revealing 
novel therapeutic targeting strategies (39–41). These multiple 
interactions may implicate their important roles in tumorigen-
esis and further clinical application in cancer treatment based 
on the concept of SL.

Numbers of predicted gene pairs were different in 31 
cancer types, and many synthetic lethal interactions were 
detected in multiple cancers, especially shared by 7–14 can-
cers (Figure 2E). Some gene pairs were shared by more than 20 
cancers, such as TP53:ATR and CHEK2:TTN were detected 
in 29 cancer types. The genetic interactions among genes 
were complex (Figure 2F), especially for those pairs shared 
by multiple cancers. Some genes were involved in dynamic 
expression patterns across cancers, implicating the potential 
biological roles associated with specific cancers. These cancer-
specific synthetic lethal interactions can provide candidate 
drug targets for precision treatment.

Web interface
SLOAD (http://www.tmliang.cn/SLOAD) provides a user-
friendly web interface that allows users to query the database 
via multiple modules, mainly including ‘Search’, ‘Analysis’ and 
‘Download’ (Figure 3A). Several search/selection boxes are 

designed to select a specific cancer type or all cancer types. 
The corresponding cancer-specific synthetic lethal interactions 
will be presented via inputting the interested gene symbol or 
paired genes. Each gene pair also indicates the shared num-
ber by diverse cancers (Figure 3B). For selected gene pair, 
further analysis can be presented, mainly including analysis 
of mutation, methylation, CNV and mRNA expression levels 
(Figure 3C), and all of these visible results are also obtained 
on the Analysis page by inputting the interested genes.

Users can comprehensively browse cancer-specific synthetic 
lethal interactions and corresponding analysis results of dif-
ferent molecular levels. On the ‘Download’ page, users can 
obtain free access to the main data sets of cancer-specific syn-
thetic lethal interactions in 31 cancers. The ‘Help’ page pro-
vides the detailed information about SLOAD. Furthermore, 
SLOAD welcomes feedback via the email address presented 
on the ‘Contact us’ page.

Discussion and future directions
As a strategy in cancer therapy with increasing interests and 
potential applications, SL has been widely concerned in can-
cer treatment, especially for recent clinical success (8). Given 
the importance of SL, many studies aim to comprehensively 
obtain experimentally verified and computationally predicted 
candidate synthetic lethal interactions that can provide poten-
tial targets for anticancer drugs (18–21, 30, 32, 42–45), which 
can greatly promote the rapid development of cancer treat-
ment based on the theory of SL (46). Although the concept 
of SL is an attractive therapeutic strategy, only PARPi has 
entered the clinic. One of the major hurdles is to identify clini-
cally relevant and robust genetic interaction (47), and a critical 
challenge in personalized medicine is to identify mutation-
specific therapies for a specific cancer type. Cancer-specific SL 
may be used as a promising cancer therapy, such as ATR and 
CHK1 inhibitors (48). It is urgent to provide cancer-specific 
synthetic lethal interactions, especially according to features 
of multi-omics data.

Herein, based on reported candidate synthetic lethal inter-
actions, we aim to further predict cancer-specific SL via 
integrating analysis of multi-omics data, mainly including 
DNA mutation, CNV, methylation and mRNA expression 
levels. Although DNA mutation is the main contributor in 
the prediction of synthetic lethal interactions, other molecular 
levels also contribute to obtaining cancer-specific genetic inter-
actions, and integrating analysis of multi-omics data could 
provide more information and potential correlations among 
different molecular levels. According to obtained molecular 
features, cancer-specific gene pairs are predicted using deci-
sion tree and RF, and the latter has the better prediction per-
formance. Then, SLOAD database is constructed according 
to these predicted results using RF, and the primary analy-
sis is also provided in the database. Taken together, SLOAD 
provides cancer-specific synthetic lethal interactions via inte-
grating multi-omics analysis and prediction and also presents 
the primary analysis at the different molecular levels. These 
cancer-specific synthetic lethal interactions may contribute to 
discovering novel targets for targeted therapy and promoting 
further application in precision medicine.

In the future, we will continue to update SLOAD as fol-
lows: (i) we will perform an integrative analysis contain-
ing other molecular levels, especially the widely concerned 

http://www.tmliang.cn/SLOAD


Database, Vol. 00, Article ID baac075 5

Figure 2. Primary analysis of predicted cancer-specific synthetic lethal interactions.

(A) The distributions of AUC values based on different algorithms (decision tree and RF). (B) Significant difference of accuracy and AUC can be detected between 
different algorithms DT shows decision tree algorithm, and RF shows random forest algorithm. (C) The distributions of AUC values based on different feature 
selections across cancers. Feature selections mainly include feature of single molecular level and integrated features from multi-omics data. (D) The distribution of 
interacted numbers based on all the predicted synthetic lethal interactions, and the pie distribution is also presented. (E) The number distributions of synthetic 
lethal interactions shared by cancers. Many of these gene pairs are shared by multiple cancers, and several gene pairs shared by more than 28 cancers are 
highlighted. The below picture shows that diverse cancers are detected with different numbers of genetic interactions. (F) An example of an interaction network 
shows genetic interactions between genes. Each circle indicates a pie distribution of expression patterns in 31 cancers.
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Figure 3. Overview of SLOAD database.

(A) Main functions of SLOAD. (B) An example of searching modules in BRCA. All of synthetic lethal interactions in BRCA can be presented, and they are also 
detected in other cancer types. Amount indicates the genetic interactions shared by different cancer types. Further analysis is performed based on the selected 
gene pair of KRAS:CFDP1. (C) An example of further analysis of above-selected gene pair of KRAS:CFDP1, mainly including visible results of mutation level, 
methylation level, CNV level and mRNA expression level.

non-coding RNAs (ncRNAs). As a class of important regu-
lators in RNA regulatory network, diverse ncRNAs, mainly 
including small negative regulators, microRNAs and their 
multiple isoforms, long ncRNAs and circular RNAs, have 
been focused because of the flexible roles during perturb-
ing gene expression, particularly the cross-talks among var-
ious RNAs and subsequent biological pathways. The com-
plex interaction of ncRNAs will enrich our understanding of 
SL. (ii) More algorithms will be used to improve prediction 
accuracy, and the relevant data are simultaneously updated.

(iii) We will update additional online functions according to 
user feedback to ensure its value as a user-friendly cancer-
specific synthetic lethal interactions database. We expect that 
SLOAD can contribute to research on cancer treatment based 
on the theory of SL in precision medicine.

Supplementary data
Supplementary data are available at Database Online.

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baac075#supplementary-data
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Abbreviation lists of involved cancers in TCGA
ACC, adrenocortical carcinoma; BLCA, bladder urothelial 
carcinoma; BRCA, breast invasive carcinoma; CESC, cervical 
squamous cell carcinoma and endocervical adenocarcinoma; 
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; 
DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; 
ESCA, esophageal carcinoma; GBM, glioblastoma multi-
forme; HNSC, head and neck squamous cell carcinoma; 
KICH, kidney chromophobe; KIRC, kidney renal clear cell 
carcinoma; KIRP, kidney renal papillary cell carcinoma; 
LAML, acute myeloid leukemia; LIHC, liver hepatocellu-
lar carcinoma; LGG, brain Lower grade glioma; LUAD, 
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; 
OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic 
adenocarcinoma; PCPG, pheochromocytoma and paragan-
glioma; PRAD, prostate adenocarcinoma; READ, rectum 
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous 
melanoma; STAD, stomach adenocarcinoma; TGCT, testicu-
lar germ cell tumors; THCA, thyroid carcinoma; THYM, thy-
moma; UCEC, uterine corpus endometrial carcinoma; UCS, 
uterine carcinosarcoma.
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