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Abstract Bovine ephemeral fever (BEF) is caused by the

arthropod-borne bovine ephemeral fever virus (BEFV),

which is a member of the family Rhabdoviridae and the

genus Ephemerovirus. BEFV causes an acute febrile

infection in cattle and water buffalo. In this study, a

recombinant Newcastle disease virus (NDV) expressing the

glycoprotein (G) of BEFV (rL-BEFV-G) was constructed,

and its biological characteristics in vitro and in vivo,

pathogenicity, and immune response in mice and cattle

were evaluated. BEFV G enabled NDV to spread from cell

to cell. rL-BEFV-G remained nonvirulent in poultry and

mice compared with vector LaSota virus. rL-BEFV-G

triggered a high titer of neutralizing antibodies against

BEFV in mice and cattle. These results suggest that rL-

BEFV-G might be a suitable candidate vaccine against

BEF.

Introduction

Bovine ephemeral fever virus (BEFV) is an arthropod-

borne rhabdovirus that belongs to the genus Ephe-

merovirus of the family Rhabdoviridae [29] and causes an

acute febrile infection in cattle and water buffalo [40].

The family Rhabdoviridae includes members of the gen-

era Lyssavirus (e.g., rabies virus), Vesiculovirus (e.g.,

vesicular stomatitis virus), and Ephemerovirus (e.g.,

BEFV) and 10 other genera (e.g., fish rhabdoviruses)

[7, 29]. BEF occurs mainly in tropical and subtropical

regions of Africa, Asia, Australia and the Middle East

[17]. It is commonly known as ephemeral fever or 3-day

stiffness sickness because of the immobilization of

infected animals for 3–5 days following the height of

viremia and fever [2, 6]. Although recovery may be

complete, mortality occurs in 2 %–3 % of cases, and a

permanent drop in milk production in cows and reduced

fertility in bulls often occurs, resulting in heavy economic

losses [6].

The BEFV G protein is the virion envelope glycopro-

tein, which serves as a protective antigen [17, 20, 44]. As in

other rhabdoviruses, glycoprotein G is highly immuno-

genic and is the target of neutralizing antibodies

[13, 20, 23, 25, 36, 41]. Rhabdovirus G plays crucial roles

in attachment, fusion and entry into host cells

[10, 11, 26, 33, 34]. BEFV vaccines have been tested,

including live attenuated virus followed by inactivated

virus [19], using BEFV G as an antigen [36]. Live-vector

vaccines employing a vaccinia virus vector or a South

African vaccine strain of lumpy skin disease virus for

expression of BEFV G have been reported [20, 41].

Newcastle disease virus (NDV) has been used in vaccine

vectors for research on the characteristics of oncolytic and

foreign antigens [3, 8, 12, 13, 38, 42, 43]. The NDV genome

is simple, well characterized, and easy to proliferate in

chicken embryos for vaccine production. NDV induces

mucosal and cellular immunity [18, 32] and has been actively

developed and used for the control of human and animal

diseases in recent years [4, 5, 8, 9, 12, 14–16, 18, 22, 24, 37].

In this study, we used the attenuated NDV strain LaSota

reverse genetics system to construct recombinant NDV

expressing BEFV G (rL-BEFV-G) and evaluated its bio-

logical characteristics and immunogenicity.
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Materials and methods

Cells and virus

Baby hamster kidney (BHK-21) and Madin–Darby bovine

kidney (MDBK) cells were grown in Dulbecco’s modified

Eagle’s medium containing 5 % fetal bovine serum. NDV

LaSota as a vector virus was rescued from the genomic

cDNA of the NDV LaSota vaccine strain (GenBank

accession no. AY845400.2) with additional help from

MVA-T7 as reported previously [21, 27]. The recombinant

NDV strain rLaSota was grown and titrated in 10-day-old

specific-pathogen-free (SPF) embryonated chicken eggs by

allantoic cavity inoculation. Wild-type BEFV was grown in

BHK-21 cells as described previously [39].

Rescue of recombinant virus

pBR322 containing NDV LaSota genomic cDNA has been

described previously [12]. The open reading frame (ORF)

of the G gene from BEFV (GenBank accession no.

JX564640.1) was produced by reverse transcription (RT)-

PCR. BEFV was grown for 72 h in BHK-21 cells, with an

inoculation dose of 0.01 times the 50 % tissue culture

infective dose (TCID50) per cell. The supernatant was

harvested, and BEFV genomic RNA was extracted using a

Total RNA Extraction Kit (Omega, Norcross, GA, USA).

The G gene was amplified by RT-PCR using the following

primer pair: 50-GACTGTTTAAACTTAAGAAAAAATA

CGGGTAGAAGTCTGGCCACCatgttcaaggtcctcataattacc-

30 and 50-GACTGTTTAAACttaatgatcaaagaatctatc-30, in

which the gene end and gene start sequences of NDV

(underlined), an optimal Kozak sequence (italics), and

PmeI restriction sites (bold) were introduced. The ampli-

fied BEFV G gene was sequenced and inserted into the

LaSota genomic cDNA between the P and M genes. The

resultant plasmid (designated as pLa-BEFV-G) was used

for virus rescue as described previously [12]. The resultant

recombinant virus was designated as rL-BEFV-G.

Immunofluorescence and western blotting

BHK-21 cells were infected with rLaSota or rL-BEFV-G at

MOI 1. After 24 h, the total cellular proteins were extracted

with lysis buffer (1 % Nonidet P-40, 0.4 % deoxycholate,

50 mM Tris-HCl [pH 8], 62.5 mM EDTA) on ice for

5 min, and collected in 1.5-ml Eppendorf tubes, followed

by centrifugation for 2 min at 15,000 9 g. The supernatant

was stored at -70 �C until used for western blotting.

Western blotting was performed as described previously

[12], except the primary antibody was anti-BEFV serum

from mice and goat anti-mouse IgG F(ab0)2-peroxidase
antibody (Sigma, St. Louis, MO, USA). The primary NDV

antibody was produced in a chicken.

For confocal assay, BHK-21 cells were plated on cov-

erslips in 35-mm-diameter dishes and infected with rLa-

Sota or rL-BEFV-G at an MOI of 0.01. The experimental

procedure was performed as described previously [17],

except that the primary antibody was mouse serum against

BEFV and FITC-conjugated goat anti-mouse antibody

(Sigma) or tetramethylrhodamine (TRITC)-conjugated

rabbit anti-chicken antibody (Sigma). Finally, cells were

analyzed using a fluorescence or confocal laser micro-

scope. Images were acquired using a Zeiss Axioskop

microscope (Thornwood, NY, USA) that was equipped for

epifluorescence with a Sensys charge-coupled device

camera (Photometrics, Tucson, AZ, USA) and IPLab

software (Scanalytics, Vienna, VA, USA).

Growth in chick embryo and MDBK cells

To compare the growth kinetics in SPF chicken embry-

onated eggs, the rL-BEFV-G and parental strain rLaSota

were inoculated into the allantoic cavity of 10-day-old

embryonated chicken eggs at 104 times the 50 % egg

infective dose (EID50) in a volume of 100 ll. At 24, 48, 72
and 96 h, six chick embryos were randomly picked and

allantoic fluid was used to measure the EID50. Monolayers

of MDBK cells were infected with either rLaSota or rL-

BEFV-G at an MOI of 0.01. After replacement of the

medium with fresh medium, the infected cells were incu-

bated at 37 �C in the absence or presence of TPCK trypsin

(1 lg/ml). At 24, 48, 72, 96, and 120 h, the samples were

collected. The virus was titrated on MDBK cells.

Pathogenicity in poultry and mice

The intracerebral pathogenicity index (ICPI), intravenous

pathogenicity index (IVPI), and mean death time (MDT)

in chicken embryos were determined using the method

recommended by the Office International Des Epizooties

(OIE). To assess the pathogenicity of recombinant viruses

in mice, 4-week-old female mice (BALB/c) (Vital River,

Beijing, China) were inoculated intramuscularly (n = 10)

and intracerebrally (n = 10) with rL-BEFV-G at 107

TCID50 (30 or 100 ll). At 5 days after inoculation, tissues

were collected and homogenized from five mice of each

group. Viral titers in tissue were tested by indirect

immunofluorescence assay (IFA) as described previously

[13] and RT-PCR. The remaining 10 mice were observed

daily for 2 weeks for signs of disease, weight loss, or

death.
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Immunization studies in mice

Forty 4-week-old female BALB/c mice were divided ran-

domly into four groups, and the groups were named rL-

BEFV-G, rLaSota, inactivated BEFV vaccine (Weike

Biotechnology, China), and phosphate-buffered saline (PBS).

Ten mice in the rL-BEFV-G group were immunized with rL-

BEFV-G by intramuscular injection (100 ll, 107 TCID50).

Ten mice in the rL-BEFV-G group were immunized with

inactivated BEFV vaccine by intramuscular injection (100 ll,
105 TCID50). An equal number of mice were inoculated

intramuscularly with rLaSota (100 ll, 107 TCID50). Ten mice

were mock-infected with PBS (100 ll). Booster immuniza-

tion was performed at 3 weeks after primary immunization.

Blood samples were collected every week.

Immunization studies in cattle

Eight Holstein calves that were seronegative for BEFV

were injected intramuscularly with 4 ml of allantoic fluid

for rL-BEFV-G (2 9 107 TCID50/ml) or 4 ml of inacti-

vated BEFV vaccine. At 3 weeks after initial vaccination,

the cattle received a second immunization at the same dose.

Blood was collected 3 weeks after the first inoculation and

2 weeks after the second.

Serum neutralizing antibody titration

For the neutralization assay, sera were heat-inactivated at

56 �C for 30 min. Serial twofold dilutions were mixed with

equal volumes of virus diluted to contain 100 TCID50/50 ll
BEFV. The mixture was incubated for 1 h at 37 �C in 5 %

CO2. Then, 100 ll of the serum–virusmixturewas transferred

to BHK-21 cell monolayers in 96-well plates and incubated

for 1 h at 37 �C. The monolayers were added to 100 ll Dul-
becco’smodifiedEagle’smedium.After incubation for 72h at

37 �C, a cytopathic effect was observed. Neutralization titers
were expressed as the reciprocal of the highest dilution of

serum that resulted in at least a 50 % reduction in the number

of infected cells relative to the negative control. This assay

was performed as described previously [9].

Statistical analysis

Data on virus and antibody titers were analyzed by Stu-

dent’s t-test using the Excel program (Microsoft, Redmond

WA, USA).

Results

Expression of BEFV G protein by rL-BEFV-G

The BEFV G gene ORF was cloned between the P and M

genes of the NDV genome at the PmeI site, using the

NDV LaSota virus reverse genetic system established by

Ge et al. [12–15] in which a unique PmeI site was

introduced between the P and M gene when constructing

a full-length NDV genome plasmid (Fig. 1A). The

recombinant virus rL-BEFV-G was recovered entirely

from this cDNA using established reverse genetics pro-

cedures [13, 30]. To detect expression of BEFV G, BHK-

21 cells were infected with rL-BEFV-G at an MOI of 1.

Total proteins from cells infected with rL-BEFV-G or

rLaSota were analyzed by western blotting using anti-

bodies against BEFV. Western blotting demonstrated that

rL-BEFV-G reacted with antibodies against BEFV from

mice, producing a band of *80 kDa, which is equal to

the molecular mass of BEFV G. However, the vector

rLaSota did not react with the anti-BEFV antibodies, and

no band was detected (Fig. 1B). BHK-21 cells were also

infected with rL-BEFV-G at an MOI of 0.01, and at 48 h

after infection, the cells were fixed and incubated with

antibodies against BEFV, followed by FITC-conjugated

goat anti-mouse antibody or TRITC-conjugated rabbit

anti-chicken antibody. Confocal immunofluorescence

showed that BEFV G was expressed in cells infected with

recombinant virus (Fig. 1C). These results confirmed that

BEFV G could be correctly expressed from recombinant

rL-BEFV-G.

BEFV G expression enables rL-BEFV-G to spread

from cell to cell

BHK-21 cells were infected with rLaSota or rL-BEFV-G at

an MOI of 0.05. At different times post-inoculation, cells

were fixed and stained with fluorescein. rLaSota was

observed to infect individual cells, but the infection did not

spread to adjacent cells. At 24 h, cell-to-cell spread was

observed in cells infected with rL-BEFV-G (Fig. 2A). At

72 h, fluorescent plaques caused by intercellular spread of

virus were observed (Fig. 2A). BEFV and NDV serum

antibody could block the intercellular spread of recombi-

nant virus (Fig. 2B). These results suggest that BEFV G

enables rLaSota to spread from the initial infected cell to

adjacent cells.
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Expression of the BEFV G gene does not increase

the virulence of the NDV vector in poultry

Growth kinetics were analyzed in chick embryos and

MDBK cells. The replication of rL-BEFV-G was similar to

that of vector rLaSota in chick embryos and MDBK cells

(Fig. 3). However, in the absence of TPCK trypsin, the rL-

BEFV-G titers were higher than those of rLaSota at same

time point (Fig. 3B).

To determine whether BEFV G expression influenced

the virulence of rLaSoTa, the MDT, ICPI and IVPI values

were tested generically as parameters for evaluating the

pathogenicity of NDV strains in poultry [13, 18]. Strains

of NDV were categorized into three groups on the basis

of their MDT (velogenic, \60 h; mesogenic, 60–90 h;

and lentogenic, [90 h and ICPI: velogenic, [1.60;

mesogenic, 1.20–1.60; lentogenic, \1.20 values) [1, 31].

The values of MDT for rLaSota and rL-BEFV-G were

100 and 124 h, respectively (Fig. 3D). The ICPI values

for rLaSota and rL-BEFV-G were 0.37 and 0, respectively

(Fig. 3D). The IVPI values for rLa and rL-BEFV-G were

both 0 (Fig. 3D).
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Fig. 1 Construction and identification of rL-BEFV-G. (A) Schematic

representationof the rLaSota genomeandBEFVG inserted between theP

andM genes. (B)Western blot demonstrating the expression of BEFVG.

BHK-21 cells were infected with rLaSota or rL-BEFV-G at anMOI of 1.

After 24 h, cells were collected and lysed, and proteins in the cell lysate

were separated bySDS-PAGEand immunoblottedwithmouse anti-NDV

antibodies or BEFV G polyclonal antibody. (C) Immunofluorescence

analysis of BEFVG protein expression. BHK-21 cells were infectedwith

rLaSota or rL-BEFV-G at anMOI of 0.01. After 24 h, the cells were fixed

and then stained with chicken anti-NDV antibody or BEFVG polyclonal

antibody, followed by incubation with FITC-conjugated goat anti-mouse

antibody or TRITC-conjugated rabbit anti-chicken antibody
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Expression of BEFV G gene does not increase

the virulence of the NDV vector in mice

To investigate the pathogenicity of the recombinant virus in

mammals, mice were inoculated intracerebrally and intra-

muscularly with rLaSota and rL-BEFV-G, respectively. All

of the mice survived after inoculation. There were no dif-

ferences between rLaSota and rL-BEFV-G infection in

terms of body weight changes after intramuscular (Fig. 4A)

or intracerebral (Fig. 4B) inoculation, and no clinical

symptoms were observed. Virus was not detected by IFA or

PCR in any of the organs (data not shown).

rL-BEFV-G induces an immune response in mice

Forty mice were inoculated with rL-BEFV, rLaSota,

inactivated BEFV vaccine and PBS. Both rL-BEFV-G and

the inactivated BEFV vaccine induced an immune response

after inoculation. At 3 weeks after immunization, the titer

of the serum neutralizing (SN) antibodies against BEFV

was 1:6 in the rL-BEFV-G group and 1:16 in the inacti-

vated BEFV group (Fig. 5A). At 2 weeks after booster

immunization, the SN antibody titer was significantly

increased in the rL-BEFV-G and inactivated BEFV groups.

The SN antibody titer was 1:388 in the rL-BEFV-G group

and 1:676 in the inactivated BEFV group. The SN antibody

titers for NDV were similar for the rL-BEFV-G and rLa-

Sota groups (Fig. 5B).

rL-BEFV-G induces an immune response in cattle

Eight 1-year-old BEFV-seronegative Holstein calves

were allotted randomly to the rL-BEFV-G and inacti-

vated-BEFV-vaccine groups. The cattle in the rL-BEFV

group were immunized with 4 ml of allantoic fluid with

2 9 107 TCID50 by intramuscular injection. The cattle in

the inactivated BEFV vaccine group were immunized

with commercial inactivated vaccine by the same route

of administration. The SN antibodies in the rL-BEFV-G

and inactivated BEFV groups were titrated after the first

and second immmunizations. After the first dose, most

cattle produced detectable SN antibody (Table 1). After

the second immunization, the SN antibody titer was

significantly increased (Table 1). Generally, the com-

mercial inactivated vaccine induced higher SN antibody

titers than did rL-BEFV-G. rL-BEFV-G induced a pro-

tective effect level of SN antibody (In the field experi-

ments, the titer was 1:32, which could provide

protection.)

Discussion

BEFV causes an acute febrile infection in cattle and water

buffalo [40] and often results in heavy economic losses

[6]. To date, there have been few reports about BEFV

vaccines. The safety and efficacy of NDV as a viral

vector has been evaluated in many animals, such as

African green monkeys, rhesus monkeys, pigs, mice,

cattle, and chickens, as well as in humans [3, 8, 12,

13, 15, 16, 18, 22]. Here, we used reverse genetics to

generate a recombinant NDV, rL-BEFV-G, that expresses

the BEFV glycoprotein. We demonstrated that BEFV G

was correctly expressed in BHK-21 cells infected with rL-

BEFV-G. To evaluate safety, poultry and mice were

infected with rL-BEFV-G. BEFV G inserted into NDV

rLaSota did not change its lentogenic nature. In this

study, all of the results demonstrated that the use of NDV

as a virus vector was safe in mice, as reported previously

[9, 12, 13, 21].

rLa

rL-BEFV-G 

24 48 72 
Hours post-infection 

A 

B Mock rLa rL-BEFV-G 

Naive 

Anti-BEFV

Anti-NDV

Fig. 2 Cell-to-cell spread of rL-BEFV-G and NDV vector in BHK-

21 cells. (A) Monolayers of BHK-21 cells were infected with either

rLaSoTa or rL-BEFV-G at an MOI of 0.05. After five washes 1 h

postinfection, the infected cells were incubated at 37 �C. The infected
cells were examined at the indicated times post-infection using IFA

with chicken serum against NDV. (B) Assay for inhibition of

intercellular spread of recombinant virus in BHK-21 cells. Monolay-

ers of BHK-21 cells were infected with either rL or rL-BEFV-G at an

MOI of 0.05. After five washes 1 h postinfection, the cells were

incubated with culture medium containing 100-fold-diluted mouse

serum against NDV, mouse serum against BEFV, or naı̈ve mouse

serum. Infected cells were examined 72 h postinfection using IFA

with chicken serum against NDV
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Viruses can spread by two fundamentally distinct

modes, either by diffusion through the extracellular space

or by direct cell–cell contact [28, 35, 45]. NDV cannot

spread by direct cell–cell contact in BHK-21 cells without

trypsin. However, BEFV G expression changed NDV

transmission in BHK-21 cells, and the NDV vector

acquired the ability to spread among BHK-21 cells. The

rLRVG could not blocked by antibody against NDV [13],

but in this study, when we added an anti-NDV serum, the

ability of rL-BEFV-G to spread from cell to cell was

abolished. The mechanism by which this occurs will be

explored in the future. In the case of other viruses, such as

herpes simplex virus, the transmembrane (TM) or cyto-

plasmic (CT) domains of gE and gI are essential for

epithelial cell-to-cell spread, which relies on both the CT

domains of gE/gI, which sort the virus to cell junctions, and
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Fig. 3 Biological characteristics of rL-BEFV-G in poultry. (A) Ki-

netics of rL-BEFV-G replication in embryonated eggs. Ten-day-old

embryonated eggs were infected with rLa or rL-BEFV-G at 105

TCID50. Allantoic fluid of six eggs from each group was harvested at

24, 48, 72 and 96 h postinoculation, and virus titers were determined

in EID50 units in 10-day-old embryonated eggs. (B) Kinetics of rL-

BEFV-G replication in MDBK cells. Monolayers of MDBK cells

were infected with either egg-propagated rLaSota or rL-BEFV-G at

an MOI of 0.01. After five washes 1 h postinfection, the cells were

incubated with 100-fold-diluted mouse serum against NDV for 30

min to neutralize the residual viruses in the supernatants. After

replacement of the medium with fresh medium, the infected cells

were incubated at 37 �C in the absence (B) or presence (C) of TPCK

trypsin (1 lg/ml). The culture supernatants were collected at different

times, and their virus was titrated in MDBK cells with 1 lg of TPCK

trypsin per ml. Significant differences between rLa and rL-BEFV-G

were observed using Student’s t-test. *, P \0.05; **, P \ 0.01.

(D) Pathogenicity assay in SPF eggs and chickens. MDT, ICPI and

IVPI were determined according to the recommended OIE method
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the extracellular domains, which function to promote entry

into other host cells [27]. The mechanism of intercellular

spread of rL-BEFV-G will be investigated further.

rL-BEFV-G induced a good immune response in mice

and cattle. The titers were 1:388 and 1:64–128, respec-

tively. Other live-vector vaccines for BEFV have been

reported. Vaccinia virus expressing BEFV G induced

neutralizing antibody with a titer of *1:100 after the

second inoculation and provided protection against exper-

imental BEFV infection in cattle [17]. BEFV G vectored

by the South African vaccine strain of lumpy skin disease

virus- could induce neutralizing antibody and cellular

immune responses, but gave unsatisfactory protection from

virus challenge [41]. In this study, the SN antibody titer

was induced by the replication-defective NDV vector

1:128 in cattle. Additionally, rL-BEFV-G has the advan-

tage that it is easy to culture and grow to high titers in

chicken eggs; a high titer (256 to 512) of SN antibody can

be obtained by increasing the inoculation dose [13], and a

high concentration of the virus can be obtained from

allantoic fluid. Additionally, NDV, as a live viral vector,

can induce cellular immunity [18, 32] and be used to dis-

tinguish the wild-type virus from the vaccine strain.

As a result of the instability of BEFV, it was difficult to

carefully regulate the challenge dose prior to the trial and

successfully duplicate clinical symptoms. In this study, we

did not perform a challenge test, but this needs to be done

in the future.

In conclusion, our results demonstrate that rL-BEFV-G

is safe in mice and chickens. rL-BEFV-G induces high
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levels of neutralizing antibodies in mice and cattle, and

thus probably confers good protection against BEFV

challenge. rL-BEFV-G appears to be a promising candidate

vaccine against BEFV.
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