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Background. The emergence of next-generation sequencing platform gives rise to a new generation of assembly algorithms.
Compared with the Sanger sequencing data, the next-generation sequence data present shorter reads, higher coverage depth, and
different error profiles. These features bring new challenging issues for de novo transcriptome assembly. Methodology. To explore
the influence of these features on assembly algorithms, we studied the relationship between read overlap size, coverage depth, and
error rate using simulated data. According to the relationship, we propose a de novo transcriptome assembly procedure, called
Euler-mix, and demonstrate its performance on a real transcriptome dataset of mice. The simulation tool and evaluation tool
are freely available as open source. Significance. Euler-mix is a straightforward pipeline; it focuses on dealing with the variation
of coverage depth of short reads dataset. The experiment result showed that Euler-mix improves the performance of de novo
transcriptome assembly.

1. Introduction

With the rapid development of next-generation sequencing
technologies, studies on genomics and transcriptomics are
moving into a new era. However, while these new techno-
logies produce a great quantity of highly accurate sequences,
they also have a major drawback, in that most of these effi-
cient technologies produce shorter read lengths. For instance,
technologies based on cyclic reversible termination [1] and
ligation-based sequencing [2] produce read lengths ranging
from 15 bps to 125 bps. These lengths are sufficient for rese-
quencing, but challenging for de novo assembly. In response
to this problem, several new assemblers that are designed
for short reads have recently been introduced. They can be
divided into three categories: (1) greedy extension approach-
es, such as SSAKE [3], VCAKE [4], and SHARCGS [5]; (2)
overlap-layout-consensus approaches, such as Edena [6]; (3)
Euler-path approaches, such as Velvet [7], EULER-SR [8],
AllPATHS [9], and ABySS [10]. Among them, Euler-path

approaches seem more appropriate for processing large
amount of short reads [10], because they use k-mer hashing
to detect overlaps at less computational costs compared to
traditional overlap-layout-consensus approaches. Recently,
research works on Euler-path approaches have focused on
both error removal and repeat resolution for genomic se-
quences, whereas only a few works shed light on de novo
transcriptome assembly [11, 12]. However, de novo trans-
criptome assembly offers a unique opportunity to study the
metabolic states of organisms [12] and provides an alter-
native path to study nonmodel organisms [13] and thus is
a desirable and challenging approach. The main difference
between genome assembly and transcriptome assembly is the
variation of coverage depth. For example, in a genome as-
sembly project, short reads are randomly sampled from a
genome, and thus the coverage depth is anticipated to be uni-
formly distributed on the genome. On the other hand,
the distribution of short reads in a transcriptome analysis
project is highly dependent on gene expression levels, and
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the abundance of expressed genes exhibits a power-law distri-
bution [14]. While the coverage depth is related to the
key parameter k (or k-mer size) for Euler-path approaches
[7, 15], it seems that a single run of an Euler-path approach
program would not be sufficient for a de novo transcrip-
tome assembly project. In this paper, we study the rela-
tionships between sequencing error rate, coverage depth,
and parameter k using simulated data. Accordingly, we pro-
pose a transcriptome assembly procedure, called Euler-mix,
for de novo assembly of whole transcriptome shotgun se-
quencing data. The primary innovation of Euler-mix is to
utilize the relationship between parameter k in Euler-path
approaches and the coverage depth of sequence data. Finally,
we demonstrate the performance and practicability of the
proposed procedure, using a real transcriptome dataset of
mice.

2. Results

2.1. On the Relationship between Coverage Depth and Opti-
mum k. For genome assembly projects, it has been shown
that the parameter k of Euler-path approaches affects assem-
bly results and is related with coverage depth [7]. Because the
coverage depths of transcripts are correlated with expression
levels and are thus varied, it is necessary to study the
relationship between coverage depth and k’s that optimize
assembly. To do this, we conducted an experiment on two
simulated transcriptome datasets of mice, one is error-
free and the other is with a sequencing error rate ∼0.3%.
Each dataset is composed of 80 million pair-ended 36 bp
reads, and the range of transcript coverage depths extends
from 1 to 4266, where coverage depths are proportional to
corresponding expression levels that were computed from all
mouse libraries in the NCBI dbEST database. We separately
assembled each transcript by Velvet with different parameter
k’s, and a k value was classified as optimum for a transcript
if the consistent recall rate (Section 4) of the transcript was
above 95%. Figures 1(a) and 1(b) show the relationship
between optimum k and coverage depth for the error-free
dataset and the error-rate-0.3% dataset, respectively. Here, a
red-green heat map was used to indicate the degree of opti-
mization: a green cell represents a higher ratio of transcripts
that achieve 95% consistent recall rate and a red cell repre-
sents a lower ratio of these transcripts. From these figures,
we observed two phenomena. First, upper left corners of
Figures 1(a) and 1(b) are red, which means that optimum
k’s of transcripts of lower coverage depths are distributed on
smaller values. On the other hand, the lower right corner
of Figure 1(b) is red, which implies that optimum k’s of
transcripts of higher coverage depths are distributed on
larger values when there is a sequencing error rate.

Since the meaning of k can be treated as the minimum
length of overlap for two short reads to form a longer contig,
the lower coverage depth implies less chance to have an
overlap longer than or equal to k. This means shorter contigs
and furthermore explains why a smaller k is more suitable
for transcripts of lower coverage depths. Unsurprisingly,
the well-known Lander-Waterman model [16] explains this
first phenomenon. In their model, the expected number of

contigs in a genome assembly project is (c∗G/L) e−(1−(k/L))c,
where (1) G = genome length; (2) L = read length; (3) c =
coverage depth; and (4) k = minimum length required for the
detection of an overlap. Let every transcript be the genome
in the Lander-Waterman model. We used this formula to
estimate the relationship between optimum k’s and coverage
depth, where a k value was classified as optimum for a
transcript if the expected number of contigs is less than or
equal to 1. In Figure 3(c), we summarized the relationship
between optimum k’s and coverage depth as what we did in
Figures 3(a) and 3(b), and it showed high similarity between
Figures 3(a) and 3(c) hence described the first phenomenon.

For the second phenomenon, it should have been due
to the fact that sequencing errors would result in “tips”
and “detours” in underlying de Bruijn graphs [7]. Although
current Euler-path approaches have been designed to handle
most of such undesirable cases, the sequencing error rate
times the higher coverage depths means more erroneously
called bases, which means more chances to produce longer
tips and detours that would not be resolved. Additionally, a
smaller k, compared to a larger k, would give more chances to
produce tips and detours. Thus, using a larger k to assemble
very high coverage depth data is a practical approach when
there is a sequencing error rate.

2.2. The Effect of Sequencing Error Rate. Because a sequenc-
ing error rate of 0.3% is commonly seen in the control lane
of the Illumina Solexa sequencer [17], it is possible that the
sequencing error rate might increase for noncontrol lanes.
To see the crosstalks among coverage depth, sequencing
error rate, and optimum k, we arbitrarily picked five mouse
transcripts and generated simulated datasets with cover-
age depths 2x, 4x, 8x, 16x,. . ., and 16384x, respectively. Addi-
tionally, errors were simulated with average rates of 0%,
0.3%, 0.6%, 0.9%,. . ., and 2.4% for every coverage depth
(Section 4). Figure 2 shows results of one simulated tran-
script (see Figures S1–S4 in Supplementary Material available
on line at doi:10.5402/2012/816402) for results of other
four transcripts), which demonstrate a consistent trend with
Figure 1(b). With the increased error rate, the range of
optimum k’s of each coverage depth narrows and a posi-
tive correlation between coverage depth and optimum k’s
becomes noticeable. It should be noticed that, for all datasets
with sequencing errors, no k remains optimum for most
tested coverage depths.

2.3. The Euler-Mix Assembly Procedure. Choosing an appro-
priate parameter k for Euler-path approaches is a practical
issue for short read sequence data. From the above experi-
ments, we see that coverage depth affects the distribution of
optimum k’s and that no k is optimum for all coverage depths
if there are sequencing errors. Thus, the issue of choosing
k becomes tricky, especially for de novo transcriptome
assembly, where data of different coverage depths are mixed
in one sample. However, utilizing the correlation between
coverage depth and optimum k’s, we can merge the results of
different parameter k’s together and produce a more accurate
assembly of transcriptome sequencing data.
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Figure 1: The relationship between optimum k and coverage depth.

To this end, we propose the Euler-mix procedure, which
integrates existing assembly programs to deal with the
varying coverage depth of transcriptome shotgun sequencing
data. The Euler-mix procedure is based on two observations,
(1) a larger k is suitable for data of higher coverage depth;
while a smaller k is suitable for data of lower coverage depth
and (2) the assembly result of an optimum k is similar with
that of an adjacent optimum k in a range of coverage depth.
Note that the second observation was because of the 95%
consistent recall rate ensured by an optimum k. Figure 3
shows the overview of Euler-mix procedure.

The Euler-mix procedure contains three stages. For
the initial stage, we assembled reads using an Euler-path

approach. Since the coverage depth affects the selection of the
parameter k, we applied all applicable k’s to assemble reads.
We selected 19 as the smallest k and the length of reads as
the upper bound of k. Then, we obtained different assembled
results for the same input dataset. Because of the variation
of coverage depths and applying multiple k’s, some results
have better performance for transcripts of higher coverage
depths, while others for transcripts of lower coverage depths.
For the second stage, we use sequence assembly tools to
assemble those results again using larger overlap size. This
was done in order to join them together, because there could
be duplications and overlaps between results by different k’s.
In our experiment, we use Minimus [18] as the second stage’s
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Figure 2: The relationship between optimum k’s and coverage depth for one transcriptome sequence in different error rate.

assembler with its default overlap size (k = 40). Minimus is
a lightweight assembler, which is designed as a component
of a larger assembly pipeline. It provides a systematic way
to compute overlaps, identify uniquely assembled contigs,
and use multiple sequence alignment to generate consensus
sequences. These steps efficiently merge multiresults of an
Euler assembler with different k’s into a more accurate file of
contigs. For the third stage, we remap reads to the contig file
using resequence tools, such as AMOScmp-shortReads [19].
After this third stage, we acquired a final assembly result with
expression level information.

2.4. Comparing Euler-Mix with Existing Tools. To test the
performance of Euler-mix and compare it with existing tools,
we used the simulated dataset of the entire mouse transcrip-
tome with a sequencing error rate of 0.3% (Section 4) as
a benchmark. In the experiment, we used all k’s in three
Euler-path approaches, including Velvet, EULER-SR, and
ABySS, to compare with Euler-mix. For Euler-mix, we sepa-
rately adopted aforementioned algorithms as the underlying
assembly algorithm. Note that we processed the entire dataset
at the same time, instead of processing each transcript one by

one, because we were trying to mimic the actual application
of the transcriptome assembly. Table 1 shows the results on
the simulated data executed by Velvet with k from 17 to 35,
and by Euler-mix using Velvet as the underlying algorithm
(see Supplementary Tables S1 and 2 for other algorithms).
For overlap measures (Section 4), it shows that Euler-mix
achieved the best precision, recall, and F-measure, where the
recall rate was improved by about 5%. For the consistent
measures (see materials and methods), it shows that Euler-
mix achieved the second best precision (96.32%), whereas
the best precision (96.59%) was achieved by Velvet with
k = 17, whose recall was just 8.13%. With the best consistent
recall, Euler-mix also achieved the best consistent F-measure.
Compared with Velvet with best consistent F-measures (k =
21 and k = 23), Euler-mix improved consistent recall by
more than 4%, reduced the number of contigs longer than
or equal to 100 bps from 80,166 and 65,348 to 48,183 and
extended the average size of contigs from 582 and 701
to 1,001. It shows that Euler-mix filled many of the gaps
between highly fragmented contigs. Furthermore, the preci-
sion rate was higher than 90% no matter which underlying
algorithm was applied, which implies that the quality of
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Figure 3: Overview of Euler-mix procedure.

Table 1: Evaluation of assemblies of mouse simulated data with Velvet using different k-mer and compare with Euler-mix.

k-mer parameter 17 19 21 23 25 27 29 31 33 35
Euler-Mix
(19–35)

Precision(overlap) 99.93% 99.98% 99.99% 100.00% 99.99% 99.99% 99.99% 99.99% 99.98% 99.99% 99.99%

Recall(overlap) 9.97% 74.26% 80.27% 79.39% 77.44% 74.22% 69.53% 60.53% 42.08% 7.95% 85.32%

F-measure(overlap) 18.14% 85.22% 89.05% 88.51% 87.29% 85.20% 82.02% 75.41% 59.24% 14.73% 92.08%

Precision(consistent) 96.59% 81.29% 93.71% 95.01% 94.50% 93.57% 91.86% 89.02% 85.28% 85.05% 96.31%

Recall(consistent) 8.13% 50.28% 60.73% 60.55% 58.51% 55.28% 50.29% 42.22% 27.58% 4.25% 64.71%

F-measure(consistent) 15.00% 62.13% 73.70% 73.96% 72.27% 69.50% 65.00% 57.27% 41.68% 8.09% 77.41%

Number of contigs >=
100 bp

48236 170563 80166 65348 62817 63982 68447 76573 75896 15378 48183

Mean size (bp) 125.28 261.08 582.66 701.67 708.77 663.93 575.11 445.32 306.37 233.43 1001.79

Largest contig 413 3272 11696 27350 45270 81929 81794 27866 14648 8312 81929

N50 121 311 1112 1697 1949 2011 1798 1230 485 250 2783

resulting contigs is reliable. Such enhancement also appeared
when comparing Euler-mix with EULER-SR and ABySS.

2.5. A Transcriptome Assembly Application. To evaluate
Euler-mix in real condition, we use a real data recently pub-
lished by Trapnell et al. [20]. The data includes 430 million
pair-ended 75-bp RNA-Seq reads from a mouse myoblast cell
line over a differentiation time series. We selected the dataset
in one time point (NCBI Short Read Archive, accession no.
SRX017794, run SRR037945) which contains 44.37 million
pair-ended 75 bp reads, to evaluate Euler-mix and Velvet with
different k parameter.

In Euler-mix procedure, we performed Velvet with k
from 21 to 75 on the dataset firstly. Considering the quantity
of the results, we used Velvet in single-end mode with k = 39
as the second stage’s assembler because Minimus is a light

weight assembler which is not suitable for dataset too large.
Note that the selection of k in the second stage’s assembler
is a trade-off between precision and recall (specificity and
sensitivity). Table 2 shows the experimental results of Euler-
mix and Velvet with the best consistent F-measure (k = 33).
Note that we used RNA sequences of M musculus in NCBI
RefSeq database as reference sequences for computation of
all evaluation measures (see Materials and Methods). The
number of transcripts detected defined here is the number
of transcripts with overlap recall rate greater than or equal
to 80%. Compared with Velvet with the best consistent
F-measure, Euler-mix improved consistent F-measure by
more than 8% and increased the number of transcripts
detected from 2,544 to 10,646. This experiment result shows
that Euler-mix has significant improvement in de novo
transcriptome assembly in real case.
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Table 2: Evaluation for assemblies of a real transcriptome dataset of mice with Velvet and compare with Euler-mix.

Assembly
pipeline

Number of
contigs >=

100bp

Mean size
(bp)

Largest
contig

N50
# of

transcripts
detected

Precision
(overlap)

Recall
(overlap)

F-measure
(overlap)

Precision
(consistent)

Recall
(consistent)

F-measure
(consistent)

Velvet
(75–21)
Velvet
(39)

80644 336.32 6668 477 10646 96.44% 39.97% 56.52% 89.82% 22.30% 35.73%

Velvet
(33)

106546 191.41 2375 202 2544 97.59% 28.27% 43.85% 86.23% 16.22% 27.31%

3. Discussion

In our experiments, we found that optimal parameter k’s
of Euler-path assemblers are positively correlated with the
coverage depth of the sequence data. This phenomenon is
due to the fact that lengths of overlaps between the reads
are highly dependent on the coverage depth and error rate.
The lower the coverage depth, the lower the probability of
having a longer overlap between reads. Thus, selecting a
shorter minimum overlap as a criterion for assembling reads
is more suitable for low coverage depth data. On the other
hand, the higher coverage depth may amplify the occurrence
of sequencing errors in reads. Therefore, selecting a longer
minimum overlap as a criterion for assembling reads should
filter out the noise for high coverage depth data.

As for transcriptome sequencing data, the coverage
depths are associated with expression levels. Because the ex-
pression levels exhibit a power-law distribution, choosing an
appropriate parameter k for Euler-path approaches becomes
a problematic issue. However, these problems can be solved
by taking all of the possible overlap sizes into account. Our
experiments show that by merging the results of different k’s
of Euler-path approaches, we shall obtain better performance
for de novo transcriptome assembly.

Similarly, the same benefit also appears in the overlap-
layout-consensus approach. We applied Edena [6] to assem-
ble the simulated data with different overlap sizes, and com-
pare them with the combined result merged by Minimus.
It shows that the combined result reduces the number of
contigs longer than or equal to 100 bps and extends average
contig size, which suggests that combining results of different
k’s improves the performance (see Supplementary Table S3).

In this paper, we also proposed consistent measures in
addition to using only overlap measures (see materials and
methods). One of the most important differences between
these two kinds of measures is that consistent measures dis-
tinguish better assembly results from other assembly results.
In most of our experiments, overlap measures gave precision
higher than 99%, but consistent measures give precision
values different from each other. In other words, consistent
measures do provide a more accurate evaluation on the per-
formance of assembly results.

Our next target is to investigate how to use mate-pair in-
formation properly in Euler-mix. Because most existing asse-
mblers use mate-pair information that is aimed at repeat of
genomic DNA and based on the assumption that short read
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Figure 4: Histogram of the coverage depths (expression levels) of
the 26,332 transcripts of mice.

data have uniform coverage depth, it is an interesting issue
for transcriptome data to propagate the mate-pair informa-
tion from first stage’s assembler to the second stage’s as-
sembler correctly in Euler-mix and produce even longer and
more accurate contigs.

4. Materials and Methods

4.1. Simulated Dataset. We created a synthetic dataset that
mimicked the experimental data of transcriptome shotgun
sequencing. The synthetic dataset of 80 million pair-ended
36 bp reads was randomly sampled from 26,332 transcripts
of mice, which were collected from the NCBI RefSeq database
[21]. To mimic the varied coverage depth of transcriptome
shotgun sequencing data, the number of reads of each tran-
script was proportional to the number of ESTs multiplied
by the length of the transcript, where the EST numbers
were computed according to the NCBI dbEST database.
Most transcripts have low coverage depths, and the variation
of coverage depth is large, extending from 1 to 4,266 (see
Figure 4). Additionally, the distribution of the coverage
depth is a power-law distribution and is similar to the exper-
iment data of the whole transcriptome shotgun sequencing
for HeLa [22]. To better fit in with real-world data, we appl-
ied error rates that were slightly increased from start to end
in reads. For the average error rate of 0.3%, the error rate at
first nucleotide is 0.2% and increased 0.005% for every next
nucleotide. Similarly, for average error rates 0.6%, 0.9%,. . .,
and 2.4%, the error rates start with 0.5%, 0.8%,. . ., and 2.3%,
respectively. The sizes of inserts were uniformly distributed
from 175 to 225.
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4.2. Overlap Measures. To evaluate the performance of as-
sembly results, we created overlap measures, which take the
following steps. First, we used MegaBLAST [23] to align as-
sembled contigs longer than or equal to 100 bps to reference
sequences, and only alignments with at least 95% identity
were taken into account. The union of all alignment areas in
the reference was treated as true positives, and we computed
the overlap recall rate using the following formula:

Recall = number of true positive bases in reference
total length of reference

.

(1)

Similarly, the union of all alignment areas on the contig side
was treated as true positives in contigs, and the overlap pre-
cision rate was defined as

Precision = number of true positive bases in contigs
total length of contigs

.

(2)

By that, the weighted harmonic mean of precision and recall,
F-measure, was defined as

F-measure = 2× precision× recall
precision + recall

. (3)

Figure 5(a) presents an example of how overlap precision
and overlap recall were computed: the overlap precision rate
is (a1 + a2 + a34)/(C1 + C2) and the overlap recall rate is
(a12 + a3 + a4)/(R1 + R2). Note that the true positive area
may include overlapping regions of alignments, so we nam-
ed these measures overlap. Also note that these measures
may overestimate the performance because of recounting the
overlaps. However, most works use them as the benchmark,
for example, the “sequence coverage” used in Velvet and
the “genome coverage” used in ABySS. Accordingly, we take
overlap measures as the upper bound of performance.

4.3. Consistent Measures. Theoretically, a perfect assembly
result consists of exactly the same sequences as the reference
sequences. Thus, in such a perfect result, every repetitive
region is maintained and no alignment rearrangement is
included. In order to distinguish better assembly results from
those collapse repetitive regions or contain alignment rear-
rangements, we designed consistent measures, which exclude
some alignments from counting the true positive area. For
example, Figure 5(a) shows a case where alignments a1 and
a2 overlap in the reference sequence; similarly, alignments
a3 and a4 overlap in a contig. All these cases would amplify
accuracy aversively if considered only under the overlap mea-
sures. To remedy this problem, we choose only one alignment
from a1 and a2 as the true positive; in the same way, only
one alignment was chosen from a3 and a4. As a result, the
consistent precision rate is (a1 + a4)/(C1 +C2) and consistent
recall rate is (a1 + a4)/(R1 + R2) in Figure 5(a). Figure 5(b)
shows a case where alignments a1 and a2 are rearranged.
Since the assembly results with alignment rearrangements
should be treated differently from those without alignment
rearrangements, only one alignment is considered correct.

Figure 5(c) shows that one contig has two alignments from
different transcripts. In the case of the transcriptome as-
sembly, one contig should stand for only one transcript; thus
only one alignment is chosen in Figure 5(c).

To follow all these aforementioned rules, the consistent
measures were implemented according to the following steps.

Step 1. BLAST contigs against reference sequences; sort all
alignments according to bit scores.

Step 2. For every alignment from highest bit score to lowest
bit score, add an alignment into the list Alignment Collection
(initially empty) if

2(a) it does not overlap with any alignment in Alignment
Collection for more than 5% area in any side (the case
of Figure 5(a)),

2(b) it is “consistent” with all alignments in Alignment
Collection (the case of Figures 5(b) and 5(c)).

Step 3. Compute union area of all alignments in Alignment
Collection for reference side, take this union area as true posi-
tive, and thus compute recall rate. Similarly, precision rate
would be computed.

Note the true positive area in each contig is aligned with
the same transcript, and thus the consistent precision rate re-
presents the quality of an assembly result.
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