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Abstract

Background: TILLING (Targeting induced local lesions IN genomes) is an efficient reverse genetics approach for
detecting induced mutations in pools of individuals. Combined with the high-throughput of next-generation
sequencing technologies, and the resolving power of overlapping pool design, TILLING provides an efficient and
economical platform for functional genomics across thousands of organisms.

Results: We propose a probabilistic method for calling TILLING-induced mutations, and their carriers, from high
throughput sequencing data of overlapping population pools, where each individual occurs in two pools. We
assign a probability score to each sequence position by applying Bayes’ Theorem to a simplified binomial model of
sequencing error and expected mutations, taking into account the coverage level. We test the performance of our
method on variable quality, high-throughput sequences from wheat and rice mutagenized populations.

Conclusions: We show that our method effectively discovers mutations in large populations with sensitivity of
92.5% and specificity of 99.8%. It also outperforms existing SNP detection methods in detecting real mutations,
especially at higher levels of coverage variability across sequenced pools, and in lower quality short reads
sequence data. The implementation of our method is available from: http://www.cs.ucdavis.edu/filkov/CAMBa/.

Background
TILLING (Targeting Induced Local Lesions IN Gen-
omes) [1] is a reverse genetics approach to detect effects
of globally induced mutations in a population and iden-
tify the individuals that have mutations in genes of
interest. As long as the DNA sequence of the target
gene is known and the organism of interest can be
mutagenized, TILLING provides mutations in species
where tools applicable to other model systems are una-
vailable. Importantly, organisms amenable to TILLING
include both commercially valuable species such as rice
[2], wheat [3,4], soybean [5,6], brassica [7], oat [8], and
melon [9], and species important for research such as
medaka [10], zebra fish [11], fruit flies [12], arabidopsis
[13] and nematodes [14].
Furthermore, TILLING produces allelic series of

decreasing function allowing functional characterization
of genes whose knock-outs are lethal [15,16].

The TILLING approach is based on the ability to
detect rare mutations in large populations and thus
requires the use of methods that can detect a mutant
allele in a pool where it is diluted by many wild-type
alleles [17]. Previously, TILLING identified mutations in
8-fold pools of mutagenized individuals by detecting
mismatches between annealed wild-type and mutant
DNA strands. Subsequent to identification of a positive
pool, all members of the pool were tested to identify the
mutant individual. TILLING -by -Sequencing [18]
leverages the Illumina sequencing platform and an over-
lapping pooled experimental design. It follows up the
mutagenesis with deep sequencing of pools of indivi-
duals or populations of interest. Because of the high
throughput of current sequencing technologies, deep
sequencing to hundred and thousand fold coverage is
possible [19]. This, in theory, should allow identification
of rare mutations present at very low frequency in a
sample, such as when a single heterozygous individual is
present in a pool of 96 (1 mutant/192 alleles). Discovery,
however, requires resolving true signal from sequencing
noise. To identify both the mutations and individuals
that carry them at high resolution, overlapping pools of
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individuals are used. TILLING-by-Sequencing uses a
practical and effective overlapping pools design, where
pools of individuals overlap in their DNA content in
such a way that each individual’s DNA is present in
exactly 2 pools. We call this setup bi-dimensional pool-
ing, and illustrate it in Figure 1. This design is readily
extensible to multi-dimensional pooling, where each
individual’s DNA is present in 3 or more pools [18].
The general computational problem which arises from
TILLING-by-Sequencing is: given a stretch of DNA
from a reference genome and a set of deep sequenced,
bi-dimensionally overlapping pools, identify the posi-
tions with mutations along the DNA and their indivi-
dual carriers, or, equivalently, the position and the row-
and column-pool for each mutation. Any solution to
this problem would focus on identifying significant dif-
ferences between the reference genome and the
sequenced DNA. The problem is complicated by
sequencing noise (false calls that cannot be recognized
by simple sequencing quality criteria), the inter-depen-
dency of pools of the experimental setup, the infre-
quency of mutations’ occurrences with respect to the
size of the population under study, and also by variabil-
ity, or non-uniformity in the sequencing coverage,
which is not uncommon for 2nd generation sequencing
technologies [20].
For example, in a bi-dimensionally pooled experimen-

tal design, a mutation in a single individual is expected
to cause a higher base change frequency in one row and
one column pool, and many mutations can be recog-
nized in this way, by visual detection of outliers. In Fig-
ure 2 we show the base change frequency for each pool
at three positions with confirmed mutations from muta-
genized wheat and rice. From left to right, there is

apparent increased difficulty in identifying a mutation.
The accuracy of calls made by visual inspection depends
on the sequencing coverage, or number of nucleotide
calls per position per pool. Given a fixed probability of
base change due to error (with respect to a reference
genome), at high coverage levels pools with real muta-
tions will usually stand out clearly from the noise. As
coverage drops however, in the absence of a real muta-
tion a larger range of base change frequencies may rea-
sonably occur by chance thus increasing the number of
false positives. The visual approach cannot distinguish
these cases because it does not take coverage levels into
account, so a single gene that has low coverage on a few
libraries can cause a high overall false positive rate.
Here we propose a new method, Coverage Aware

Mutation calling using Bayesian analysis, CAMBa, (read
like the dance) which directly considers the pooled
setup and sequencing coverage levels when calculating
mutation and noise probabilities. Using data from two
TILLING experiments, one with lower sequencing cov-
erage variablility and data quality and the other with
higher, we validate CAMBa’s efficacy in identifying
mutations, and demonstrate that it does at least as well
as other mutation calling methods, and that it outper-
forms significantly the other methods on sequence data
of lower quality and higher variance in coverage across
pools.

Related Work
Several methods exist for identifying mutations in
pooled experiments. Rigola et al. [21] use a Poisson dis-
tribution based outlier approach to identify mutations
and natural variations in individuals using bi-and three-
dimensional pooling schemes coupled with high-
throughput sequencing. Shental et al. [22] apply Com-
pressed Sensing to create a variant detection technique,
ComSeq, which can handle computationally optimal
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Figure 1 Bi-dimensional arrangement of the overlapping pools
experiments. There are 96 wells and 20 pools (12 column- and 8
row-pools) in our bidimensional pooling scheme. Thus, each
individual is present in two pools.

Figure 2 Example base positions with mutations in the data of
varying difficulty for identification. Three mutations ordered, left
to right, by increasing difficulty to identify visually. Left and middle,
C ® T mutations at positions 552 and 677, respectively, in wheat
genes APHYC and AVRN, resp. Right, an A ® G mutation at position
838 in rice gene OsRDR2.Each dot in the plots is a library pool, and
on the y-axis is the frequency of the base to which the reference
has been mutated.
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pooling schemes. Unlike the Poisson outlier method,
CAMBa considers the experiment setup and models
configurations that could have yielded the observed
data. CAMBa uses sequencing coverage and bi-dimen-
sional pool overlap as model features, whereas ComSeq
uses only base change information, and a more general
pooling approach. We compare the performance of
these two methods to that of CAMBa in the Results
section.
A variety of approaches exist for calling SNPs from

non-overlapping pooled samples, e.g. VarScan [23],
CRISP [24], SNPseeker [25], the MAQ alignment tool
[26], and others; and non-pooled samples, e.g. POLY-
BAYES [27], PolyScan [28], the method by Stephens et
al. [29], and others. Our approach, CAMBa, is specifi-
cally geared to working on pooled experiments with
overlap between the DNA pools, i.e. DNA from the
same individual is present in two pools. That is not the
case for these other approaches, so we could not com-
pare them directly to CAMBa. Moreover, these other
approaches identify mutations but not the individuals in
the populations that carry them. We modified VarScan
and CRISP, the best performing ones from a previous
study [24], in order to compare them to CAMBa and
report those studies in the Results section.
Overlapping pool designs for high-throughput rese-

quencing have been recently proposed by Prabhu and
Pe’er [30], where they focus on optimizing overlaps to
increase design efficiency (as compared to optimal),
lower necessary sequencing coverage, decrease false
positives and false negatives, and identify mutation car-
riers with lower ambiguity. They do not provide soft-
ware for testing their designs and it is not immediately
clear that their designs could easily fit into standard wet
lab protocols (e.g. with respect to standard well plates,
etc.). Our overlapping pooling scheme can be evaluated
in their theoretical framework, and in terms of the
“code efficiency” it is 50% worse than the theoretically
optimal binary design (although it is not clear if that
optimum is achievable in practice).

Methods
In a bi-dimensional pooling setup we have nw wells, iwell
individuals pooled per well, il individuals in library l,
reference base r at the current position, the probabilities
pc and pnc with which a mutagen will induce a specific
canonical (G ® A or C ® T) or non-canonical base
change at a given position in a single individual, and the
fraction of induced mutations tz for each zygosity z.
The input data, D, is comprised of a set, L, of row and

column libraries of short reads, corresponding to the
pools of sequences of interest. The reads for each library
are aligned to their reference sequences (using, e.g.,
MAQ (Mapping and Assembly with Quality) alignment

tool [26]), associating each position in each sequence
with a set of nucleotide calls: either the reference
nucleotide base, r or a base change r ® m, m ≠ r. In
the alignment, or pileup, of reads, for each position we
count the total number of reads, i.e. coverage, in a given
library, denoted by nl, and separately the number of
reads that have base b at that position in that library, klb
(so nl = klA + klT + klC + klG).
To find the carriers and the mutations, given the data,

D, and the experimental setup, for each sequence posi-
tion we model the posterior probabilities of each possi-
ble mutation in each well. We assume that at most one
individual will have a mutation at any given sequence
position. 1 Thus, at most one well can have a mutation,
and that mutation will be for one specific base change.
We denote these possibilities, or configurations, as cw, m,
where w is the well, and m is the base change from
reference (since there are three possibilities for m, the
number of possible c’s is 3 times the number of column
libraries times the number of row libraries in the
design). The probabilities corresponding to the config-
urations are p(cw, m|D). We call a mutation at a given
position if the probability of at least one mutant config-
uration cw, m exceeds a predefined threshold indicating
that well w contains an individual with base change m
at the current position. If more than one cw, m pass the
threshold, then the one with highest probability is cho-
sen. The threshold is determined based on the expected
number of mutations in an experiment, as described in
the Methods section.
In the following we calculate the probabilities p(cw, m|

D). Since the experimental procedure makes the
expected number of heterozygous mutations equal to
twice the number of homozygous mutations, we further
distinguish configurations by zygosity, and use cw, m, z to
model heterozygous, z = het, and homozygous, z = hom,
mutations separately, and p(cw, m|D) = p(cw, m, het|D) +
p(cw, m, hom|D).
We compute the posterior probability p(cw, m, z|D) of

a given configuration, using Bayes’ Theorem:

p(cw,m,z|D) =
p(cw,m,z)p(D|cw,m,z)∑

c′∈C p(c′)p(D|c′)
,

where C is the set of all possible configurations cw, m, z

at the given position. Since we exclude all configurations
with more than one mutant individual for the current
position, the sum of the prior probabilities p(c’) do not
add up to 1, but normalizing does not affect the result.
Thus all we need to calculate are the terms in the
numerator.
To compute p(D|cw, m, z) we need to accurately deter-

mine the position-specific sequencing error rate for dif-
ferent base changes. Given configuration c, we can
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estimate the rate at which the reference base r is read as
m, rr®m, for a given position, as

rr→m,c =
∑
l∈Lc

klm/
∑
l∈Lc

nl.

where Lc is the set of libraries that do not contain a
mutation m at the given position, for the given c.
Now, to calculate the base change frequencies

expected from a real mutation, we compute mlc, the
fraction of mutant alleles in library l under configuration
c, from the number of individuals il in library l and the
zygosity z of the candidate mutation.
Given the sequencing error rates and mutation allele

frequencies, we can now compute rlmc, the expected rate
of reading a given base change m at the current position
in a given library l, for configuration cw, m, z: rlmc = (1
mlc)rr®m, c + mlc.
To this, we apply the Binomial distribution to estimate

the conditional probability of observing klm reads having
base m at a given position, given nl coverage for that
library and configuration cw, m, z.

p(klm|nl, cw,m,z) = B(klm|nl, rlmc).

Finally, assuming that all base change counts are inde-
pendent, we have

p(D|cw,m,z) =
∏

m∈{A,T,C,G}
m�=r
l∈L

p(klm|nl, cw,m,z).

To compute p(cw, m, z) we start from our assumption
that at most one well can contain a mutation at any
given position. The prior probability of the presence of
a particular base substitution r ® m at the current posi-
tion in exactly i out of the iwell individuals in a given
well can be estimated as:

pim =
{

B(i|iwell, pc) if r → m is canonical
B(i|iwell, pnc) if r → m is non - canonical

where B(i|iwell, pc) is the Binomial distribution, i.e. the
probability of having i successes out of iwell trials given
an individual success probability of pc.
A given well has prior probability ptm = p1m of being

a mutant well for base change m and pfm = p0m of
being a non-mutant well for base change m. The prior
probability of a given configuration cw, m, z is the pro-
duct of the prior probabilities of each well w with
respect to each possible base change for the given
position, multiplied by the fraction of induced muta-
tions with the given zygosity, if applicable. Converting
this description to a formula gives us

p(cw,m,z) = tzptmpnw−1
fm pnw

fm′ p
nw
fm′′, where m, m’, and m” are

the three possible base changes at the given position.

Note that these probabilities are the same for all wells
(i.e. they don’t depend on w).

Pre-processing
For each library, we compute a low-quality cutoff for
base calls to be one standard deviation below the mean
quality of the reference base calls. We do not search for
candidate mutations at a position if the expected value
of the total coverage there over all but two libraries is
less than 10,000 (corresponding to a min coverage per
individual of 7.23), to avoid inaccurate estimates of
rr®m.
The orientation bias of a specific base is the ratio of

reads mapping onto the forward strand to those map-
ping onto the reverse strand of the sequence. If the
reference base orientation bias for a given library at the
current position is different from the orientation bias of
base change m with pvalue <0.01, then we set p(D|cw, m,

z) = 0 to exclude each configuration c for which a well
represented in that library is a mutant well for base
change m. We also set p(D|cw, m, z) = 0 for these config-
urations if the reference base orientation bias for the
given library is greater than 10 or less than 0.1, since a
strong reference base orientation bias can make it diffi-
cult to detect a significant difference between the orien-
tation biases of the reference base and a given base
change. In addition, if a given library has more base
reads for the candidate base change than for the refer-
ence base at the current position, then we set p(D|cw, m,

z) = 0 for each configuration where a well in that library
is a mutant well for any base change.

Number of Predictions
We construct our initial estimate of the number of real
mutations in a given experiment by adding up the prob-
abilities of each possible induced base change at each
position across all TILLING sequences in all individuals,
where the probability of a given canonical or non-cano-
nical base change is determined from CEL I screening
of an experiment on the same organism using the same
mutagen [2,4], as described in the data section below.
By this method, we estimate 47 real mutations in Rice
and 69 real mutations in wheat. Since CEL I has a sig-
nificant false negative rate, we correct our initial esti-
mate using additional validation information from the
wheat experiment. When an older version of our
approach was run on the wheat experiment, 8 of the 10
predictions ranked 86 to 95 were tested and all 8 were
confirmed. We drop below this ranking to give the
semi-conservative estimate of 107 real mutations. We
divide 107 by 69 to get a candidate scaling factor of
1.55. We predict the number of real mutations for a
given experiment to be 1.55 times our initial estimate of
the number of real mutations from CEL I screening.
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The predicted number of mutations is 107, by defini-
tion, for wheat, and it is 75 for rice. This determines
our threshold.
The above approach for determining the appropriate

threshold yields very good bounds for our data and can
be applied whenever previous CEL I screening experi-
ments have been done. In the absence of such prior
experiments, one can apply the following method,
although the results may include higher false positive
rates. The false positive rate at a given number of pre-
dictions can be estimated by running CAMBa using as
input a scaled down bi-dimensional arrangement using
only the row pools. E.g., the row pools in the new
scheme could be half of the actual row pools, and the
new column pools could be the other half of the original
row pools. Since we expect few or no instances where
the same mutation occurs in two independent row
libraries, the number of row/row calls serves as an
upper bound on the number of false positives among
the row/column candidates. Similarly, we could scale
down the original arrangement using the original col-
umn pools instead of the row pools. We scale up by the
ratio of the number of row/column pools versus the
number of row/row pools, and choose the largest num-
ber of candidates for which the estimated false positive
rate is nearest to our goal threshold. As an illustration
of this method, we split the wheat data set 12 column
pools into two groups of 6 pools each, and ran CAMBa
on this new bi-dimensional pooled data of 6 rows and 6
columns. At a false positive rate of 0.05, this method
yields a threshold for CAMBa of 105 mutations.
We note that although CAMBa yields posterior prob-

abilities for each of thousands or tens of thousands of
positions, we never use hypothesis testing to determine
the threshold in either of the two approaches above, and
thus we need not correct for multiple hypothesis testing.
Due to the apparent bimodality of the calculated pos-

terior probabilities, and their clustering around the
values of 0 and 1, we apply the following function to
transform t, the posterior probabilities returned by
CAMBa:

F(t) =
{−(log10(1 − t) − log10(0.5)) if t ≥ 0.5

log10(t) − log10(0.5) if t < 0.5

F(t) is effectively the log posterior probability. For
both the rice and wheat TILLING-by-sequencing experi-
ment, the predictions of CAMBa and the other methods
are compared against the corresponding set of con-
firmed mutations.

Results and Discussion
Using data from two TILLING-by-sequencing experi-
ments we analyze the performance of CAMBa and

compare it to those of other approaches. We investigate
the effect of sequencing quality, sequencing coverage
variability, and the overlapping pool design on the fide-
lity of our and the other methods in resolving mutations
from the data.

Two TILLING Experiments
The TILLING-by-sequencing setup in one of our labs
(Comai) uses the mutagen ethyl methanesulphonate
(EMS) or the combination of sodium azide and methyl-
nitrosourea (Az-MNU) to induce mutations in a popula-
tion of 1500-6000 individuals. M2, the selfed product of
mutagen-treated individuals, are inventoried as DNA.
The mutations in this material will be heterozygous in
2/3 of the cases and homozygous in the rest. Units of
768 individuals arrayed in a 96 well-plate, 8 individuals
per well, are then screened. The row and column sam-
ples are pooled to yield 8 row- and 12 column-pools
(for a total of 20 pools), as in Figure 1.
DNA from each of the 20 pools is PCR-amplified with

primers designed to amplify 1-1.5 kb DNA segments
from up to 40 genes of interest, and subsequently
sequenced using Illumina Genetic Analyzer apparati.
The reads are then mapped onto reference genomes.
Using this setup a total of 13 rice genes (avg. TIL-

LING seq. length = 1393 bp) and 5 wheat genes (avg.
TILLING seq. length = 934 bp) of interest were
sequenced using Illumina GA machines to look for
mutations in a population of 768 individuals. The reads
on the average were of length 35 bp for the rice and 40
bp for the wheat data. There was a significant difference
in the read quality between the two: the rice sequence
had an average Phred quality score of 13 and the wheat
of 31. There was also a larger variance in coverage
between individual libraries in the rice data set than in
the wheat data set. Also, on average, the coverage was
140 × per individual in rice and 270 × in wheat. The
differences in quality, coverage, etc. between these two
data sets make them very good case studies for our
method. The TILLING-by-Sequencing experimental
methodology and these two data sets are described in
full elsewhere [18] (where they are called respectively
Experiment 1 and Experiment 2).
Using prior TILLING experiments we determine the

probabilities of a canonical mutation, pc, non-canonical
mutation, pnc. We assume position independent values
for pc and pnc, as indicated by prior experiments [2-4].
We estimate pc and pnc from ic and inc, the induced
mutation rates for canonical and non-canonical muta-
tions, and ptil(b), the fraction of TILLING reference
sequences with base b, for each b (in prior correspond-
ing experiments): pc = ic/ptilG, C and pnc = inc/pnc (2ptilG,
C + 3ptilA, T). We compute ic and inc using previously
described methods [2,4]. Thus, we get for rice, pc = 5.6
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× 10-6 and pnc = 4.93 × 10 -7, and for wheat, pc = 3.88 ×
10-6 and pnc = 0. The fraction of heterozygous muta-
tions is thet = 2/3, and homozygous mutations is thom =
1/3.
To evaluate the performance of the mutation calling

algorithms, we used two sets of mutations, one set for
wheat and one for rice, which have been previously con-
firmed using an independent method (PCR amplification
followed by Sanger sequencing) [31]. In total we had 39
confirmed mutations from the wheat experiment and 11
from the rice experiment. 2 We note that the confirmed
mutations are a fraction of the total expected mutations
in these data sets. Ideally, all predicted mutations should
be tested, but practical resource constraints dictate lim-
its on the validation.

Validation of CAMBa’s Performance
We ran CAMBa on each of the two data sets, TILLING
on rice and TILLING on wheat, for a number of differ-
ent mutation prediction thresholds, including the
recommended one (above) and a few others above it
and below it. For each threshold, we noted the number
of predicted mutations (Pred), the corresponding value
for F(t), the number of predicted mutations that overlap
with the confirmed ones (Conf) (11 in rice, 39 in
wheat), and the number of false positives (FP), false
negatives (FN), and the sensitivity (Sens) and specificity
(Spec) at that threshold. The results are given in Table
1.The last four columns were calculated by estimating
the false positive and false negative rates from the over-
lap and the expected mutations, 107 in wheat and 75 in
rice, and the total sequenced DNA positions, 18109 bp
in rice, 4670 bp in wheat. We assume that the con-
firmed mutations have been randomly chosen from the
set of all mutations, thus, we scale the true positives by
107/39, with the restriction that the number of False
Positives must be at least 0. At the recommended
thresholds, in wheat this gives TP = 99, FP = 8, and FN
= 8, for a false negative rate of 7.5 × 10-2 i.e. sensitivity
of 92.5%, and a false positive rate of 2 × 10-3 i.e.

specificity of 99.8%. Similarly, in rice, CAMBa has sensi-
tivity of 90.7% and specificity of 99.96%. The good per-
formance of CAMBa is evident around the
recommended thresholds.
It is notable that in rice, CAMBa predicted correctly

10 out of the 11 confirmed mutations at those thresh-
olds. This is strong evidence that given lower quality
data CAMBa can utilize the overlapping pools experi-
mental setup to its advantage better than the other
methods could. Even the much lower read data quality
of the rice data (as given by the Phred quality scores
above) does not seem to affect CAMBa’s performance.
At the recommended threshold of 107 mutations in

wheat, CAMBa predicted correctly 36 out of the 39 con-
firmed mutations. Looking closer in the sequence data
for the 3 false negatives, we found out that one of them
is due to strand-specific bias which resulted in wrong
frequencies of base changes, and another was due to
under-sequencing; the third showed up in the table at a
much higher threshold.

Methods for Comparison
We compare the performance of CAMBa to those of a
number of methods, which we describe next. Not all of
the other methods predict both the mutated positions
and the individual carriers. Those that do not were
either run separately on individual libraries or only pre-
dict the mutation positions. Hence, either they or
CAMBa have been modified to allow for the compari-
son. In each case we specify the modification
undertaken.
We devised the Outlier method as a naive competitor

to CAMBa. It is inspired by simple visual identification
of a row and column library pair that stand out from
the rest in terms of the frequency of a given base
change, and uses the same preprocessing techniques as
CAMBa. When considering a given position in a TIL-
LING sequence, if at least one well has a score greater
than a fixed threshold t on some base change, then we
predict a mutation for the base change and well

Table 1 Performance of CAMBa at various thresholds on the Rice and Wheat data sets

Rice Wheat

F(t) Pred Conf FP FN Sens Spec F(t) Pred Conf FP FN Sens Spec

0 308 11 233 0 100.00 98.71 -10 310 37 208 5 95.33 95.44

1 131 11 56 0 100.00 99.69 -5 172 36 73 8 92.52 98.40

2 75 10 7 7 90.67 99.96 0 107 36 8 8 92.52 99.82

3 54 10 0 21 72.00 100.00 5 92 33 1 16 85.05 99.98

4 46 9 0 29 61.33 100.00 10 81 31 0 26 75.70 100.00

5 40 7 0 35 53.33 100.00 15 59 21 1 49 54.21 99.98

Performance of CAMBa at various thresholds on the Rice (left) and Wheat data sets. F(t) = CAMBa threshold, Pred = # predicted mutations at that threshold, Conf
= # of the predicted mutations which overlap with the confirmed mutations (11 in rice and 39 in wheat), FP = # false positives, FN = # false negatives, Sens =
Sensitivity, Spec = Specificity. We underscore the line associated with the recommended number of predictions for both Rice and Wheat. We restrict our estimate
of the number of False Positives to be at least 0.
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combination with the highest score. For a given well w
and base change m, we find the z-score of the r ® m
base change frequency for both the associated row and
column library with respect to the distribution of the r ®
m base change frequencies for the remaining libraries,
and we set the score of well w on base change m to be
the lower of these two z-scores. We add 0.0001 to the
sample standard deviation to avoid division by zero.
The Poisson outlier method is described in a TIL-

LING-by-sequencing pipeline by Rigola et al. [21]. This
method consider only G to A and C to T base changes
for the purposes of mutation detection. Since MNU can
induce any type of base change in rice, we modified the
Poisson outlier method to search for all possible base
changes when detecting mutations in rice. Rather than
following the procedure for detecting natural variation,
which considers all base changes as a whole, we tested
for each base change individually, to reflect the assump-
tion that an individual will have at most one mutation
at a given position.
VarScan is a SNP identification method in individual

or pools of massively parallel sequence data by Koboldt
et al [23]. It identifies variants based on read counts,
base quality, and allele frequency. VarScan does not take
into account overlap in pools and it does not identify
the individuals carrying the mutations. To compare it to
CAMBa in a bi-dimensional setting, we ran VarScan
separately on each row pool and column pool. We then
took the intersection of the row and column calls.
CRISP [24] is a statistical method for variant detection

in pooled DNA samples, shown to dominate a number
of other methods in a direct comparison of SNP detec-
tion ability [24]. While similar to CAMBa at the model-
ing level, we note that CAMBa was developed
independently and was used in our labs for more than 6
months before CRISP was published. Additionally, pool
overlap is inherent to CAMBa’s model, while CRISP
does not utilize overlapping pools. Also, in contrast to
the other competing methods that we consider, CRISP
does not identify the mutation carriers. Thus, in the
comparisons, we considered only the position and base
change of each candidate returned by CRISP, while
requiring the other methods to also predict the correct
carrier. This decision allows a more fair comparison
between CAMBa and the other methods, though giving
CRISP a slight advantage. As with the others, we only
include results for CRISP on its default parameters.
ComSeq [22] is a computational technique that identi-

fies infrequent variants in complex pools. In contrast to
CAMBa and the Poisson method [21], ComSeq allows
for the use of computationally optimal pooling schemes
[22]. Given the particular individuals contained within
each pool and the observed frequency of a particular
base change in each pool, ComSeq applies the theory of

Compressed Sensing to infer which individuals have that
base change. ComSeq does not appear to be designed to
handle experiments with multiple individuals per well,
so to simulate the presence of one individual per well,
we multiplied the base change frequencies in each
library by the number of individuals per well, resulting
in increased sensitivity on both the Rice and Wheat data
sets. ComSeq has no user parameters to vary and does
not rank its predictions.
We also attempted comparisons with MAQ [26] but

we could not get any mutation predictions on our data
sets with their default settings.

Comparison to Other Methods
We ran CAMBa versus the mentioned competing meth-
ods on their default settings, using our set of confirmed
mutations and our prediction of the total number of
real mutations to estimate the specificity and sensitivity
of each method.
To ensure a fair comparison with CAMBa, we post-

process all competing methods to return at most one
mutation per position, selecting the best scoring candi-
date mutation for that position, where applicable. VarS-
can (when run without parameters) and ComSeq can
return multiple candidates at a given position that can-
not be distinguished by score, so in order to give them
the best possible advantage, when one of their multiple
predictions is a confirmed mutation, we allow them to
always predict that confirmed mutation.
In the Wheat data set, we adjusted the competing meth-

ods to only consider the possibility of EMS canonical muta-
tions, reflecting known information that is used in CAMBa.
This filtering is accomplished by never considering EMS
non-canonical base changes in the Poisson and Outlier
methods, which we implemented by hand, and by post-pro-
cessing the results of the other competing methods.
In Table 2 we show the number of predictions of each

method when run on its default parameters, the overlap
between those predictions and the confirmed set of
mutation candidates, the false positives, false negatives,
sensitivity, and specificity. The last four columns were
calculated by estimating the false positive and false
negative rates from the overlap and the expected muta-
tions, as illustrated above.
On the rice data set, CAMBa dominates the other

methods clearly. CRISP and VarScan return very few or
no predictions on the Rice data set, most likely due to
the lower sequencing quality. ComSeq and the Poisson
method both return a large number of false positives.
On the wheat data set, we see greater overlap between

the predictions of CAMBa and the other methods. This
is consistent with the fact that the wheat data set is of
higher quality, and thus mutations are easier 13 to
identify.
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Coverage Variability over Libraries (Pools)
CAMBa shows a small performance advantage over the
other methods on the wheat experiment, which has con-
sistently high coverage levels across all libraries and
between genes. In contrast, CAMBa has a very clear
advantage in the rice experiment, and here we investigate
the difference. While we found an explanation that
accounts for our observations of the Outlier method, the
other competing methods do not necessarily conform to
the same rule.
In Figure 3 we show the coverage variance across

libraries for all genes in both experiments, wheat in gray,
and rice in black. It is apparent that the black lines are
overall higher on the plot than the gray lines, especially
the line for gene HLP1. To test the hypothesis that insen-
sitivity to sequencing coverage variability gives CAMBa
an advantage over the other methods, we performed two
computational studies. In the first one, we modify the
rice data set to exclude the TILLING sequences for gene
HLP1 which has both the lowest mean coverage and the
highest coverage variability across libraries in this experi-
ment. On this modified data set, the Outlier method per-
forms as well as CAMBa, although the other competing
methods do not significantly improve their performance,
as shown in Table 3.
In the second study, we gradually increase the cover-

age level variance across libraries in the wheat

experiment by selectively discarding base reads. We set
the new coverage level of each library on a given gene
to be the coverage ratio of that library to the library
with the highest coverage on that gene, raised to the
scaling factor s = 5, multiplied by the coverage of the
highest coverage library for that gene. To reach the
desired coverage level for a given gene on a given
library, we discard each base call with fixed probability.
This level of coverage variance is comparable to that

of HLP1 in Figure 3. We propose that the likeliest rea-
son for the advantage we see in CAMBa’s performance
over the Outlier method, as shown in Table 4 is due to
its insensitivity to coverage variability in the data, an
effect of both its explicit use of coverage in the model,
and the greater signal sensitivity imparted by the over-
lapping pool design.
We note that while the rice experiment uses the muta-

gen MNU and the wheat experiment uses EMS, the
choice of mutagen does not seem to have a significant
effect on either the overall mutagenesis rate or the pro-
portion of canonical versus non-canonical mutations [2].

Attributing Performance Advantage to Model Features
Coverage variability does not fully explain CAMBa’s per-
formance, as its advantage is evident on both the Rice
and Wheat data (although CAMBa’s advantage is always
smaller on Wheat). The poor quality of the Rice

Table 2 Performance comparison of CAMBa to other methods using default parameters on Rice and Wheat

Rice Wheat

Method Pred Conf FP FN Sens Spec Pred Conf FP FN Sens Spec

CAMBa 75 10 7 7 90.67 99.96 107 36 8 8 92.52 99.82

Outlier 75 8 20 20 73.33 99.89 107 36 8 8 92.52 99.82

CRISP 0 0 0 75 0.00 100.00 121 32 33 19 82.24 99.28

VarScan 3 0 3 75 0.00 99.98 30 10 3 80 25.23 99.93

ComSeq 9599 10 9531 7 90.67 47.15 154 36 55 8 92.52 98.79

Poisson 6889 8 6834 20 73.33 62.10 218 35 122 11 89.72 97.33

Performance comparison of CAMBa to other methods using default parameters, on the Rice (left) and the Wheat data sets. The column abbreviations are as in
Table 1. All methods are evaluated on their ability to predict the carrier of each candidate mutation, except CRISP, which cannot make such predictions.

Figure 3 Variance in coverage across libraries in the data. Normalized variance of coverage levels across libraries in TILLING genes in rice
(black) and wheat (gray). HLP1 is on top.
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sequencing data is likely the reason that VarScan and
CRISP return so few predictions on that data set. Other
methods did not perform as well as CAMBa on either
data set. Here we discuss a number of strategies and
assumptions whose presence or absence in the various
competing methods could account for the observed per-
formance advantage of CAMBa.
CAMBa’s advantage compared to competing methods

is attributable to the combination of its comprehensive
modeling of the data variability over all libraries, effec-
tive use of the pooled design, and its ability to simulta-
neously consider all candidate configurations with and
without mutations in order to determine the best one.
While each of the comparison methods have some of
these properties, none has all three together.
Not explicitly considering coverage levels and instead

relying directly on base change frequencies (e.g. ComSeq
and Outlier), results in decreased performance relative
to CAMBa on data sets with increased coverage var-
iance. By contrast, the Poisson method, VarScan, CRISP,

and CAMBa all consider coverage directly. CAMBa,
Outlier, and Poisson are the only methods that were
designed specifically for a multi-dimensional gridded
pooling scheme. VarScan is run on individual libraries,
CRISP is designed to run on one dimension, and Com-
Seq was designed with the flexibility that it may be run
on a computationally optimal pooling scheme. Only
CAMBa and ComSeq simultaneously consider a set of
models of different possible mutant configurations and
the model of the configuration in which there is no
mutation and then use base change information across
all libraries to choose the best model. In contrast, the
Poisson and Outlier methods simply test for rejection of
the null hypothesis of a configuration with no mutation.
Interestingly, CRISP takes into consideration the model
of a configuration with no mutation and models of
mutant configurations, but it individually tests for rejec-
tion of the null hypothesis, rather than using an inte-
grated approach to determine the best configuration.

Conclusions
We demonstrated that our probabilistic method, which
explicitly takes into account the bi-dimensional, overlap-
ping pools experimental setup, and sequence coverage
at each position for each library, can effectively discover
rare mutations in large populations, as well as the indi-
viduals that carry them. It also has a performance
advantage over other methods for detecting mutations
from high-throughput sequencing of a TILLING popula-
tion when there is significant coverage variability over
libraries or lower quality data. More generally, it follows
from our experiments that accounting for sequencing
coverage variability can improve mutation detection in
overlapping DNA pools. It would be interesting to work
out the relationship between coverage depth and pool
size. Likewise, we demonstrated that an overlapping
pooling scheme, beyond offering carrier identification,
also yields increased sensitivity of mutation detection
when the data is less than ideal. This work implies a
possible association between the amount of pool overlap
(i.e. pool design code efficiency, or dimensionality of an
experimental setup) and detection sensitivity, which
deserves closer attention, especially for experiments on
larger populations.
There are several directions in which our tool can be

improved. We can add to our model an explicit account
for position dependence of the mutations. Also, we can
extend the model to allow multiple mutations at any
given position (because of prior estimates of such
events, we suspect that those improvements together
will yield less than 10% increase in efficacy). We plan to
continue using and improving CAMBa in our TILLING-
by-Sequencing experiments. As other technological
issues like higher throughput and sequence tagging get

Table 4 Performance comparison of CAMBa to other
methods using default parameters on Rice with lowered
variance

Method Rice with lowered variance

Pred Conf FP FN Sens Spec

CAMBa 73 10 9 6 91.43 99.95

Outlier 73 10 9 6 91.43 99.95

CRISP 0 0 0 70 0.00 100.00

VarScan 3 0 3 70 0.00 99.98

ComSeq 8106 10 8042 6 91.43 51.25

Poisson 6247 8 6196 19 72.86 62.44

Performance comparison of CAMBa to other methods using default
parameters, on the Rice data set, after excluding HLP1 to lower the mean
coverage variance. The column abbreviations are as in Table 1. All methods
are evaluated on their ability to predict the carrier of each candidate
mutation, except CRISP, which cannot make such predictions.

Table 3 Performance comparison of CAMBa to other
methods using default parameters on Wheat with
increased variance

Method Wheat with increased variance

Pred Conf FP FN Sens Spec

CAMBa 113 28 36 30 71.96 99.21

Outlier 113 20 58 52 51.40 98.73

CRISP 86 25 17 38 64.49 99.63

VarScan

ComSeq 743 30 661 25 76.64 85.51

Poisson 60 18 11 58 45.79 99.76

Performance comparison of CAMBa to other methods using default
parameters, on the Wheat data set after artificially increasing the coverage
variance. The column abbreviations are as in Table 1. All methods are
evaluated on their ability to predict the carrier of each candidate mutation,
except CRISP, which cannot make such predictions. We were unable to report
results for VarScan due to technical issues in generating a modified pileup of
reads.
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introduced into our pipeline, the issues of coverage suf-
ficiency and higher multi-dimensional TILLING will be
addressed.
We note that properly accounting for coverage varia-

bility may improve results in other genomics problems
benefiting from 2nd generation sequencing, like
sequence mapping, genome assembly, and motif finding.

Endnotes
1This is supported by evidence from a previous TIL-
LING experiment in tetraploid wheat using the mutagen
EMS, where Slade et al. [3] identified 50 positions for
which at least one of the 768 individuals contained a
mutation but only 3 for which there was a mutation in
two individuals. In rice, which has a significantly lower
expected mutagenesis rate at each possible reference
base [2-4], we expect an even smaller percentage of the
positions for which there is a mutation in one individual
to have a mutation in more than one individual.

2These sets of confirmed mutations come from pre-
dictions using prior iterations of our approach, and
prior experimental approaches, using CEL I, on these
data sets, all of which were subsequently confirmed with
PCR amplification.
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