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Without therapeutic intervention acute liver failure (ALF) is the consequence of a progre-
dient destruction of the liver parenchyma due to metabolic exhaustion of the hepatocytes.
Perivenous hepatocytes are responsible for the detoxification of noxious compounds via the
cytochrome P450 enzyme system. Liver transplantation is the only remaining therapeutic
option in the end-stage of the disease. Assuming that metabolic capacity could be provided
by healthy hepatocytes and thus substitute for the genuine parenchymal cells hepatocyte
transplantation since quite some time is considered to be an alternative to whole liver
transplantation. While this hypothesis achieved proof-of-concept in animal trials clinical
breakthrough is still awaiting success, the reasons of which are ongoing matter of debate.
In recent times mesenchymal stem cells (MSC) came into focus as a transplantable cell
source to treat ALF. Interestingly, as demonstrated in various rodent animal models their
mode of action is rather based on trophic support of hepatocytes remaining in the damaged
host parenchyma rather than substitution of tissue loss. Mechanistically, either direct or
indirect paracrine effects from the transplanted cells acting pro-proliferative, anti-apoptotic,
and anti-inflammatory seem to trigger the regenerative response of the residual healthy
hepatocytes in the otherwise lethally injured liver parenchyma. Thus, allogeneic MSC may
be the best choice for the treatment of ALF taking advantage of their short-term benefit
to sustain the critical phase of the acute insult avoiding long-term immunosuppression.

Keywords: cell transplantation, liver stem cells, acute liver injury, stem cell-derived hepatocytes

MOLECULAR PRINCIPLES OF TISSUE TOXICITY IN ALF
INDUCED BY PARACETAMOL
Acute liver failure (ALF) is characterized by an initial devastating
hepatic insult followed by gross parenchymal dysfunction, which
leads to a multitude of systemic organ failures due to the miss-
ing metabolic homeostasis normally provided by the healthy liver.
The most common causes of ALF are viral hepatitis, idiosyn-
cratic side reactions, chronic liver diseases, autoimmune hepati-
tis, and dose-dependent drug-induced ALF. The disease occurs
rapidly and in general requires intensive care with the known
high risk of mortality. Whole liver transplantation very often is
the only therapy option of choice (Ostapowicz and Lee, 2000;
Gill and Sterling, 2001; Rahman and Hodgson, 2001; O’Grady,
2005). The incidence of acetaminophen (paracetamol)-induced
ALF is rather high in the US and in the UK related both to
therapy-associated and suicide-driven overdosage of the drug
(Reuben et al., 2010; Lee et al., 2011). In the liver acetaminophen is
metabolized by the cytochrome P450 enzyme system located pre-
dominantly in the hepatocytes surrounding the distal branches of
the liver sinusoids, the so-called perivenous hepatocytes (Junger-
mann and Kietzmann, 2000; Benhamouche et al., 2006; Burke and
Tosh, 2006; Hailfinger et al., 2006; Gebhardt and Hovhannisyan,
2010). There are two principle ways of detoxification: (1) conjuga-
tion by sulfation and/or glucuronidation followed by elimination
and (2) cytochrome P450-dependent oxidation and formation

of N -acetyl-p-benzoquinonimine (NAPQI), which is then con-
jugated to glutathione and finally eliminated with the bile. Yet,
sustained NAPQI formation eventually causes depletion of glu-
tathione, which then in turn leads to formation of protein adducts
as well as reactive nitrogen and oxygen species (Figure 1). Very
likely mitochondrial dysfunction and increased permeability of the
mitochondrial membranes contribute to the formation of reac-
tive nitrogen and oxygen metabolites such as peroxynitrate and
hydrogen peroxide besides others, which in turn mediate protein
nitration and oxidative stress (Jaeschke et al., 2002; James et al.,
2003; Jaeschke and Bajt, 2006; Doi and Ishida, 2009). Obviously,
besides the hepatocytes non-parenchymal cells such as Kupffer
cells and sinusoidal endothelial cells seem to be involved in the gen-
eration of reactive nitrogen and oxygen species thus augmenting
protein and lipid peroxidation. Since these reactions are ultimately
mediated by the perivenous cytochrome P450 enzyme system,
apoptotic cell death followed by centrilobular necrosis is a hall-
mark of acetaminophen-induced hepatotoxicity (Figure 2). The
inflammatory environment produced during ALF is also respon-
sible for the activation of hepatic stellate cells probably mediated
by IL1, which respond with an increase in expression of α-smooth
muscle actin and matrix metalloproteinases, mainly MMP9. This
seems to favor the remodeling of the extracellular matrix, thus
augmenting hepatocyte cell death (Yan et al., 2008; Dechene et al.,
2010).
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FIGURE 1 | Acetaminophen and hepatotoxicity. Acetaminophen
(paracetamol) is detoxified in the liver by conjugation or cytochrome
P450-dependent oxidation followed by conjugation to glutathione

(GSH). Depletion of GSH leads to formation of reactive nitrogen and
oxygen species, which in turn causes cell death. For further details
see text.

FIGURE 2 | Pericentral necrosis after acetaminophen intoxication. Rats
were treated with a repeated oral dose of 4 g/kg body weight of
acetaminophen. Eighteen hours later livers were explanted and slices
prepared for hemalaun–eosin staining. Dashed lines exemplify initial (area
1) and final necrotic perivenous areas (area 2, cv, central vein) of the liver
tissue. Please note that areas around the portal vein (pv) are void of tissue
damage.

REGENERATIVE RESPONSE TO ACUTE LIVER INJURY
In the normal healthy liver tissue turnover is in the range of
0.01%. Without any challenge this rather low regenerative rate
would reconstitute the whole liver parenchyma within about 1 year
(Steiner et al., 1966; Koniaris et al., 2003). One might suspect
then that the liver had a poor regenerative potential, which is
also corroborated by the fact that after partial hepatectomy the
liver is rebuilt to the original organ size, only. After 2/3 partial
hepatectomy this would be accomplished by the 1.5-times cell
division of the remaining hepatocytes. However, this situation
does not reflect the real regenerative potential of hepatocytes.
It has been shown in serial transplantation experiments in the
albumin promoter-urokinase plasminogen activator (uPA) trans-
genic mouse that hepatocytes feature a nearly unlimited regen-
erative capacity. In this model, the intracellular activation of the

protease plasmin causes hepatocyte damage and perinatal lethality
(Heckel et al., 1990). Eventually, mice survived due to the substitu-
tion of hepatocytes bearing the transgene by healthy hepatocytes,
which obviously had a survival advantage. Transplantation of these
hepatocytes having escaped the lethal phenotype into the livers of
transgenic mice revealed the efficient repopulation of the diseased
host liver by the donor hepatocytes, thus rescuing the lethal pheno-
type. This indicates an enormous mitotic potential of hepatocytes
(Sandgren et al., 1991; Rhim et al., 1994). In another mouse model,
the knockout of fumarylacetoacetate hydrolase (FAH) leads to the
accumulation of tyrosine intermediates, which cause toxic insult of
hepatocytes. Transplanted healthy hepatocytes display a prolifera-
tive advantage over the diseased host hepatocytes, thus achieving
nearly complete replacement of the original transgenic hepato-
cytes by the transplanted cells. In this model, serial transplantation
of hepatocytes derived from mutant livers colonized with trans-
planted wildtype cells revealed that 6 rounds of liver repopulation
required a minimum of 69 cell divisions (Overturf et al., 1997,
1999; Wang et al., 2001). Thus, obviously adult hepatocytes have
a high replicative and repopulation capacity. This in turn means,
that they have the potential of self-renewal and of functional tissue
formation in vivo, which are ultimate stem cell characteristics.

Experimentally, ALF might be triggered by the use of chem-
ical noxious compounds such as carbon tetrachloride or aceta-
minophen as mentioned above. As long as the hepatocytes dispose
of sufficient metabolic capacity to detoxify the drugs no obvious
tissue lesions emerge. Yet, the production of reactive metabolites
followed by covalent protein and lipid modification due to meta-
bolic overload as mentioned above finally results in cellular dys-
function, initial cell damage and tissue injury. Depending on the
dose applied tissue damage proceeds. The initial insult resulting
in injury progression is the mitotic challenge for the hepatocytes
to restore the tissue loss by functional hepatocyte progeny. Again,
dependent on the dose of the noxious compounds the regenera-
tive potential of the liver is either sufficient for injury regression
or overwhelmed resulting in injury progression followed by ALF
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(Mehendale, 2005; Palmes et al., 2005; Figure 3). Tissue regen-
eration is accomplished by the hepatocytes themselves as long as
a minimal liver tissue mass is compliant with a certain thresh-
old of functional tissue loss. Yet, if this threshold is surpassed
the regenerative capacity of the hepatocytes does not suffice for
functional tissue restoration. In this case a progenitor cell com-
partment is activated giving rise to so-called oval cells in rodents,
which are agreed upon to be the progeny of adult hepatic stem
cells in the liver (Sell, 2001; Kofman et al., 2005). Oval cells appear
in the periportal areas after massive liver injury adjacent to the
canals of Hering, structural links between the terminal biliary
branches and the periportal hepatocytes (Fausto, 2004; Santoni-
Rugiu et al., 2005; Oertel and Shafritz, 2008). It is noteworthy that
both hepatocytes and hepatic progenitor cells may differentiate
into hepatocytes and biliary cells as well indicating their bipotent
differentiation capacity. Hence, both cell types meet the minimal
definition criteria of a stem cell, i.e., the potential of self-renewal
to maintain the stem cell reserve, and a multiple differentiation
potential giving rise to progeny of at least two different lineages.
In the latter case it is self-evident that proliferation and differenti-
ation of the offspring cells provide the functional backup for tissue
repair after injury.

HEPATOCYTE TRANSPLANTATION IN ALF
In ALF, liver transplantation is the gold standard of treatment.
However, about one third of patients on the waiting list for liver
transplantation in Europe do not profit because of the unavail-
ability of suitable donor organs1. The hepatocyte is the smallest
functional unit of the liver executing the complete metabolic
orchestra, which is provided by the liver as a whole. Therefore,
transplantation of hepatocytes might be possible to substitute for
the functional tissue loss in ALF provided the donor cells take
over hepatocyte functions in the deteriorated host parenchyma
for at least the critical period in time either required to bridge
to organ transplantation or to allow for tissue recovery from the

1http://www.eurotransplant.nl/

FIGURE 3 | Balance of tissue homeostasis after acute liver injury. The
regenerative response of the liver after acute intoxication is triggered by the
emergence of initial tissue damage and progression. Dependding on the
dose of the noxa and the regenerative capacity of the hepatocytes injury
regression and regeneration or progression and ALF develop.

toxic insult (Najimi and Sokal, 2008; Oertel and Shafritz, 2008;
Smets et al., 2008; Ito et al., 2009; Puppi and Dhawan, 2009).
Technically, in rodent small animal models the cells are delivered
to the liver either after intraportal or intrasplenic injection. It is
assumed that the cells distribute homogeneously in the liver by
passage with the blood stream where they are entrapped in the
sinusoids and eventually penetrate the endothelia, integrate, pro-
liferate, and spread into the host parenchyma. This concept has
been verified in various rodent animal models of ALF (for recent
reviews, see Fox and Roy-Chowdhury, 2004; Shafritz et al., 2006;
Seppen et al., 2009; Weber et al., 2009). There is one major con-
straint, which probably seriously hampers the clinical translation
of hepatocyte transplantation in ALF. Under non-stimulating con-
ditions the repopulation of an acutely injured liver by transplanted
hepatocytes is rather low, i.e., in the range of 1–5% of the total liver
mass (Ponder et al., 1991; Rajvanshi et al., 1996; Gupta et al., 1999;
Fox and Roy-Chowdhury, 2004; Fisher and Strom, 2006). How-
ever, if the recipient liver is challenged by a growth stimulus and
the proliferation of host hepatocytes is impaired then a significant
repopulation by transplanted hepatocytes is achieved. There is an
elegant animal model available allowing for the identification of
the transplanted cells in the host parenchyma. In this rat model
the natural mutation in the CD26 gene leads to the expression of
a non-functional protein, however, without obvious pathophysio-
logical consequences. Transplanted wildtype donor cells may then
be identified histologically in the host parenchyma by the detec-
tion of CD26. Providing selective pressure conditions by partial
hepatectomy as a mitotic stimulus and pre-treatment with alka-
loids such as retrorsine to inhibit host hepatocyte proliferation a
repopulation rate for up to nearly 100% may be achieved in this
rat model (Laconi et al., 1998, 1999). Similarly, high rates were
obtained using rat fetal liver epithelial cells but without apply-
ing selective growth conditions for the transplanted cells (Sandhu
et al., 2001; Oertel et al., 2006).

Acute liver failure in mice and rats may be induced under var-
ious experimental settings, the most common in use are those
acutely applying paracetamol or carbon tetrachloride. In general,
when adult hepatocytes or oval cells isolated from donor livers
under various inducing conditions are used for transplantation
without further selective pressure repopulation of the host liver
by the transplanted cells is poor, i.e., in the range of less than
5%. However, cells are functional and survive long-term in the
recipient liver indicating support of liver regeneration after acute
hepatotoxic injury. If in addition to the acute injury regenera-
tion by host hepatocytes is abrogated by the beforehand treatment
with mitotoxins such as the pyrrolizidine alkaloid retrorsine much
higher repopulation rates may be achieved, which clearly suffice
to substitute for the loss of metabolic capacity due to the toxic
parenchymal damage. Similar results were obtained using fetal
(ED12.5) rat hepatoblasts. Yet, using ED14 mouse hepatoblasts
10- to 20-fold higher repopulation rates were achieved without
applying selective repopulation conditions. A comprehensive sum-
mary of models and conditions used to study liver repopulation
by transplanted hepatocytes or hepatocyte progenitor cells under
normal and injury conditions is available (Sancho-Bru et al., 2009;
Shafritz and Oertel, 2011). To summarize, transplanted cells inte-
grate into the host parenchyma and even at low repopulation rates
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display hepatocyte functions. Thus, hepatocyte transplantation in
ALF aims at tissue substitution of the recipient liver in order
to functionally reconstitute the injured parenchyma by healthy
donor cells.

STEM CELL-DERIVED HEPATOCYTE TRANSPLANTATION
IN ALF
In respect to the clinical application of hepatocyte transplantation
in ALF the major hurdle is probably the scarcity of donor organs
to isolate human hepatocytes in sufficient quality and quantity.
Therefore, one feasible alternative to human adult hepatocytes is
the use of stem cell-derived hepatocytes. The bone marrow har-
bors adult stem cells, both hematopoietic and non-hematopoietic,
which are clearly superior in choice over embryonic stem cells for
clinical application because of their less ethical constraints and the
lack of teratoma formation after tissue implantation. Adult stem
cells may differentiate into hepatocyte-like cells. In the mouse
model of FAH deficiency, hematopoietic bone marrow derived
cells rescued the diseased phenotype by complementation of the
defective FAH gene with the wildtype gene in the transplanted
cells (Lagasse et al., 2000; Wang et al., 2002). It is an open question
as to whether hepatocytes derived from the bone marrow are the
product of differentiation from hematopoietic stem cells or of the
fusion with host hepatocytes (Alvarez-Dolado et al., 2003; New-
some et al., 2003; Vassilopoulos et al., 2003; Wang et al., 2003;
Camargo et al., 2004; Jang et al., 2004). In recent years stud-
ies in rats (Wang et al., 2004; Lange et al., 2005), mice (Jiang
et al., 2002), and humans (Schwartz et al., 2002; Lee et al., 2004;
Hong et al., 2005; Seo et al., 2005; Taléns-Visconti et al., 2006;
Aurich et al., 2007; Banas et al., 2007) verified that mesenchy-
mal stem cells (MSC) from various tissues like bone marrow,
umbilical cord blood, or adipose tissue may differentiate into
hepatocyte-like cells following specified growth and differentia-
tion regimens in vitro. Yet, under acute injury conditions causing
either periportal liver damage induced by allyl alcohol (Sato et al.,
2005) or perivenous damage by the use of carbon tetrachlo-
ride (Seo et al., 2005; Banas et al., 2007; Yukawa et al., 2009) or
acetaminophen (Stock et al., 2009), MSC-derived hepatocyte-like
cells integrated into the diseased host liver, though repopula-
tion rates were rather low, i.e., in the range of 1% of the total
liver mass.

Reasoning that MSC feature immunomodulatory functions in
that they are able to suppress the immune response mediated
through T and B cells, dendritic cells and other immune cells
(Chamberlain et al., 2007; Götherström, 2007; Krampera et al.,
2007; Le Blanc and Ringden, 2007) it might not be surprising
that the action of MSC in ALF is rather paracrine than direct tis-
sue support by the transplanted cells. d-galactosamine-induced
fulminant hepatic failure in rats was attenuated by MSC-derived
molecules through inhibition of apoptosis, stimulation of hepato-
cyte proliferation, and minimization of the inflammatory response
(Parekkadan et al., 2007a; van Poll et al., 2008). The paracrine
mode of action of MSC was also corroborated by the ameliora-
tion of systemic inflammation induced by LPS or burn indicating
in addition pleiotropic effects of the MSC (Yagi et al., 2010).
Ectopic recruitment of MSC from the bone marrow to the liver
has been shown in mice challenged by acute intoxication with

carbon tetrachloride or 2-acetylaminofluorene indicating chemo-
tactic activation of the MSC very likely mediated by stromal
cell-derived factor-1 (Jin et al., 2009; Chen et al., 2010). Our own
data substantiated that MSC are able to home to and integrate
into an acutely injured liver. We treated rats with acetaminophen
to induce acute liver damage. MSC derived from rat peritoneal
adipose tissue were pre-differentiated into hepatocyte-like cells
according to our standard protocol (Stock et al., 2010) and then
the cells were administered to the diseased animals via tail vein
injection. Eighteen hours after cell delivery donor-derived cells
were detected in the liver (unpublished) where they significantly
decreased acetaminophen-induced apoptosis as shown immuno-
histochemically by the TUNEL assay and stimulated proliferation
of host hepatocytes as shown by Ki67 staining (Figure 4) to regen-
erate the liver tissue after acute injury (unpublished). Besides their
anti-inflammatory and immunomodulatory impact MSC seem
also to communicate with target cells by the exchange of mRNA
or miRNA molecules (Collino et al., 2010; Deregibus et al., 2010).
Thus, genetic material is exchanged, which then might affect the
regenerative response of the host tissue cells on the one and the
differentiation of donor MSC at the site of their engraftment
into the host tissue on the other hand. This, however, means
that transplanted cells might be imprinted by their target tis-
sue and the molecular microenvironment induced by a specific
type of injury. Acute liver injury may trigger paracrine effects due
to the inflammatory environment of the diseased liver, whereas
liver regeneration after, e.g., partial hepatectomy is achieved by the
engraftment and functional tissue replacement by the MSC dif-
ferentiated into hepatocytes at the site of their engraftment. This

FIGURE 4 | Anti-apoptotic and pro-proliferative action of MSC after

acetaminophen intoxication of the rat liver. Rats were treated with a
repeated dose of 4 g/kg body weight of acetaminophen. Eighteen hours
after the last dose the animals were sacrificed and the livers prepared for
the detection of apoptotic cells (dark nuclei) by the TUNEL assay (lower
panels) or proliferating cells (dark nuclei) by the Ki67 stain (upper panels).
Where indicated animals received adipose tissue-derived rat MSC
pre-differentiated into hepatocyte-like cells (rMSC-HC) 6 h after the last
dose of acetaminophen. It is obvious that the number of apoptotic cells
was significantly lower but of proliferating cells was higher in the livers with
MSC (right panels) indicating the anti-apoptotic and pro-proliferative action
of the MSC.
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Table 1 | Summary of clinical trials involving mesenchymal stem cells of different tissue sources for the treatment of chronic liver diseases.

StudyTitle MSC source Sponsor Patients Study phase Status

Safety and efficacy of human mesenchymal

stem cells for treatment of liver failure

Umbilical cord Beijing 302 Hospital, China 70 Phase I/II recruiting

Autologous mesenchymal stem cell

transplantation in liver cirrhosis

No details Gulhane Military Medical

Academy, Turkey

25 No details recruiting

Umbilical cord mesenchymal stem cells

infusion via hepatic artery in cirrhosis

patients

Umbilical cord Qingdao University, China 50 Phase I/II Not yet recruiting

Improvement of liver function in liver cirrhosis

patients after autologous mesenchymal

stem cell injection: a phase I–II clinical trial

No details Shaheed Beheshti Medical

University, Islamic Republic

of Iran

30 Phase I/II Completed

Allogeneic bone marrow mesenchymal stem

cells transplantation in patients with liver

failure caused by hepatitis B virus

Bone marrow Sun Yat-sen University, China 120 Phase II Active, not recruiting

Human umbilical cord mesenchymal stem

cells transplantation for patients with

decompensated liver cirrhosis

Umbilical cord Shenzhen Beike

Bio-Technology Co., Ltd.,

China

20 Phase I/II Completed

Human menstrual blood-derived mesenchymal

stem cells for patients with liver cirrhosis

Menstrual blood S-Evans Biosciences Co.,

Ltd., China

50 Phase I/II Recruiting

Umbilical cord mesenchymal stem cell

transfusion in patients with severe liver

cirrhosis

Umbilical cord Chinese Academy of

Sciences, China

200 Phase I/II Recruiting

Mesenchymal stem cells after renal or liver

transplantation

No details University Hospital of Liege,

Belgium

40 Phase I/II Recruiting

Therapeutic effects of liver failure patients

caused by chronic hepatitis B after

autologous MSCs transplantation

Bone marrow Sun Yat-sen University, China 158 No details Completed

Umbilical cord mesenchymal stem cells for

patients with liver cirrhosis

Umbilical cord Beijing 302 Hospital, China 45 Phase I/II Recruiting

Efficacy of in vitro expanded bone marrow

derived allogeneic mesenchymal stem cell

transplantation via portal vein or hepatic

artery or peripheral vein in patients with

Wilson cirrhosis

Bone marrow Murat Kantarcioglu, Gulhane

Military Medical Academy,

Turkey

10 Phase II Recruiting

Transplantation of autologous mesenchymal

stem cell in decompensate cirrhotic

patients with pioglitazone

Bone marrow Royan Institute, Islamic

Republic of Iran

3 Phase I Recruiting

Efficacy and safety study of allogenic

mesenchymal stem cells for patients with

chronic graft versus host disease

No comment Chinese Academy of

Medical Sciences, China

100 Phase II, phase III Not yet recruiting

Efficacy and safety study of allogenic

mesenchymal stem cells for patients with

refractory primary biliary cirrhosis

Bone marrow Robert Chunhua Zhao,

Chinese Academy of

Medical Sciences, China

20 Phase I Not yet recruiting

Allogenic bone marrow stem cells

transplantation in patients with liver

cirrhosis

Bone marrow Sun Yat-sen University, China 60 Phase II Active, not recruiting

Allogenic bone marrow stem cell

transplantation in liver failure

Bone marrow Sun Yat-sen University, China 60 Phase II Active, not recruiting

Data are taken from reference (http://clinicaltrials.gov).

potential pleiotropic mode of action makes MSC ideal candidates
for stem cell therapy of different liver diseases (Enns and Millan,

2008; Haridass et al., 2008; Alison et al., 2009; Flohr et al., 2009;
Soto-Gutierrez et al., 2009).
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CLINICAL IMPLICATIONS
It is obvious that experimental settings in animal models aimed
to enhance liver repopulation by transplanted hepatocytes are not
suited for clinical translation. Thus, the lack of a survival and/or a
proliferative advantage of donor vs. host hepatocytes is probably
the mechanistical reason for the poor clinical progress of hepa-
tocyte transplantation. The low success rate is augmented by the
fact that human hepatocytes are isolated from marginal donor
livers not allocated for transplantation. Yet, as outlined above
MSC might be an alternate cell resource to generate hepatocyte-
like cells. MSC display hepatocyte differentiation potential, which
was substantiated both in vitro and in vivo. Even if biological
and biochemical differences might exist between MSC from var-
ious tissues they share typical MSC characteristics like marker
expression, multiple differentiation capacity, and growth on plastic
surfaces,which finally determine quantitative,not qualitative,vari-
ability in their hepatocyte differentiation potential. It is feasible to
suppose that in respect to ethical, technical and biological aspects
the transplantation of stem cell-derived hepatocytes follows the
principles of hepatocyte transplantation (Fisher and Strom, 2006).
MSC might even open a broader spectrum of activity compared
with primary hepatocytes because of their versatile properties
such as low immunogenicity as well as their anti-inflammatory,
anti-apoptotic, and pro-proliferative activities, which not only
substitute the tissue damaged but also actively might temper the
inflammatory response, e.g., after toxic or chronic injury. Recently,
a couple of clinical trials – most in China – has been initiated
or even completed to demonstrate safety and efficacy of the site
of application of MSCs concentrating on autologous stem cell
transplantation in patients suffering from chronic liver failure
(Table 1) or acute decompensation after ample liver resection2.
Yet, so far no published results are available. In these studies,
undifferentiated cells have been used bearing a potential tumor-
promoting risk (Karnoub et al., 2007), which, however, has not
been verified.

Taking ethical considerations into account these clinical condi-
tions may be adequate to assess safety of hepatic MSC transplanta-
tion. However, to take advantage of the cells’ immunomodulatory,
chemotactic, and anti-inflammatory properties, ALF offering a
highly inflammatory environment in the liver may be the dis-
ease situation of choice for the use of MSC. In this case even
the use of allogeneic cell sources may not be a serious prob-
lem since only the short-term beneficial actions of the MSC
might warrant support of liver regeneration in the critical phase
of acute poisoning. Immunosuppression may be applied from
the beginning of treatment on or even continued as long as
the recovering of the liver is ongoing but then may be ceased,
thus avoiding the theoretical risks of potential sensitization of

2http://clinicaltrials.gov

the host for future organ grafts or promoting life-threatening
septic episodes during long-term stay in the intensive care
units.

CONCLUSION
To overcome the shortage of donor organs for liver transplanta-
tion in ALF cell therapy approaches seem to be feasible, which
must achieve two principle goals. (1) The loss of metabolic capac-
ity must be substituted by the healthy donor cells, and (2) the
emergence of the inflammatory environment in ALF must be
decelerated in order to protect hepatocytes from progression into
cell death. It is obvious that the first goal might best be reached
using primary hepatocytes, which, however, do not have a survival
advantage in the deteriorated ALF liver. The second goal might
best be met by the use of MSC taking advantage of their anti-
inflammatory and – apoptotic as well as pro-proliferative features,
which, however, promises no therapeutic benefit in the case that
tissue damage has surpassed the lower threshold needed to main-
tain body metabolic homeostasis. Thus, it might be worthwhile
thinking whether a combination of hepatocytes and MSC might
be the cell therapeutic of best choice. Indeed, there is evidence
that the performance of hepatocytes is improved in co-culture
with MSC (Ijima et al., 2008; Shi et al., 2009; Chen et al., 2012),
and vice versa MSC differentiation into hepatocyte-like cells is
promoted by inflammatory liver injury conditions (Dong et al.,
2010; Li et al., 2010). Recent data even demonstrated that not
MSC themselves but as yet unequivocally unidentified soluble fac-
tors secreted by MSC exert the beneficial effects on hepatocytes
under ALF conditions in mice and rats (Parekkadan et al., 2007b;
van Poll et al., 2008; Zagoura et al., 2011). The anti-inflammatory
cytokine IL10 secreted by MSC seemed to play a major role in
alleviating liver damage after acute injury induced by carbon tetra-
chloride in the NOD/SCID mouse model (Zagoura et al., 2011).
Thus, the identification of these factors might open even cell-free
therapeutical options for the treatment of ALF with MSC-derived
molecules.

Animal models for cell therapy approaches to treat ALF as
described above enable us to earn knowledge on the mechanisms
of interactions between donor and host cells both on the mol-
ecular and cellular level, to identify the hepatotropic effects esp.
mediated by MSC and their impact on the noxious challenge in
order to optimize integration of transplanted cells into the recip-
ient tissue thereby to support efficacy of cell transplantation and
thus optimize the therapeutical outcome.
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