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ABSTRACT Kaposi’s sarcoma (KS), a highly angiogenic and invasive tumor often involving different organ sites, including the
oral cavity, is caused by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV). Diverse cell markers have been identi-
fied on KS tumor cells, but their origin remains an enigma. We previously showed that KSHV could efficiently infect, transform,
and reprogram rat primary mesenchymal stem cells (MSCs) into KS-like tumor cells. In this study, we showed that human pri-
mary MSCs derived from diverse organs, including bone marrow (MSCbm), adipose tissue (MSCa), dental pulp, gingiva tissue
(GMSC), and exfoliated deciduous teeth, were permissive to KSHV infection. We successfully established long-term cultures of
KSHV-infected MSCa, MSCbm, and GMSC (LTC-KMSCs). While LTC-KMSCs had lower proliferation rates than the uninfected
cells, they expressed mixtures of KS markers and displayed differential angiogenic, invasive, and transforming phenotypes. Ge-
netic analysis identified KSHV-derived microRNAs that mediated KSHV-induced angiogenic activity by activating the AKT
pathway. These results indicated that human MSCs could be the KSHV target cells in vivo and established valid models for delin-
eating the mechanism of KSHV infection, replication, and malignant transformation in biologically relevant cell types.

IMPORTANCE Kaposi’s sarcoma is the most common cancer in AIDS patients. While KSHV infection is required for the devel-
opment of Kaposi’s sarcoma, the origin of KSHV target cells remains unclear. We show that KSHV can efficiently infect human
primary mesenchymal stem cells of diverse origins and reprogram them to acquire various degrees of Kaposi’s sarcoma-like cell
makers and angiogenic, invasive, and transforming phenotypes. These results indicate that human mesenchymal stem cells
might be the KSHV target cells and establish models for delineating the mechanism of KSHV-induced malignant transforma-
tion.
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Kaposi’s sarcoma (KS) is the most common cancer in AIDS
patients and is caused by infection with Kaposi’s sarcoma-

associated herpesvirus (KSHV) (1, 2). KS is a highly angiogenic
and invasive tumor often involving diverse organ sites, including
skin, visceral organs, and the oral cavity. Despite intensive studies,
the histogenesis of KS tumor cells remains an enigma. The prolif-
erating KS spindle cells are generally considered to be of endothe-
lial origin because vascular channels that fill with blood cells are
the pathological feature of KS and specific markers of endothelial
cells are detected on KS spindle cells (2). However, KS tumor cells
also express other cell surface markers. In particular, mesenchy-
mal and precursor markers are in fact parts of the immunohisto-
chemical features of KS, suggesting that KS might originate from
pluripotent mesenchymal stem cells (MSCs) (3). Previous studies

have shown that human bone marrow MSCs (MSCbm) are sus-
ceptible to KSHV infection (4, 5). However, the viral replication
program and the behavior of the infected cells have not been ex-
amined. Thus, whether MSCs are the cell targets of KSHV and
whether they contribute to KS pathogenesis remain unclear. We
have recently demonstrated that KSHV can efficiently infect and
transform rat primary embryonic metanephric mesenchymal
stem cells (MM cells). KSHV-transformed MM cells (KMM)
manifest KS-like features, including expression of endothelial and
mesenchymal cell surface proteins (6).

MSCs are multipotent undifferentiated precursor cells, which
can be differentiated into various cell types, including osteoblasts,
chondrocytes, adipocytes, neural cells, and endothelial cells (7–
10). To date, KSHV has been detected in different body fluids,
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including bone marrow, peripheral blood, saliva, and urine (11–
18). Since MSCs are also widely distributed in many tissues and
fluids in the human body, including bone marrow, peripheral
blood, and the oral cavity (19–22), they could be the candidate cell
targets of KSHV.

The most common sources of human MSCs are from bone
marrow (MSCbm) and adipose tissue (MSCa), which have been
extensively studied for their potential use for tissue engineering
and regeneration medicine. Oral MSCs are of particular interest
because over 70% of AIDS-related KS cases have oral manifesta-
tions and oral KS is often the first clinical sign of the malignancy in
these patients (23). Patients with lesions of the oral mucosa have a
higher death rate and a worse prognosis than those with exclu-
sively cutaneous manifestations of KS (24). MSCs from the oral
cavity, including dental pulp tissue (DPSC), exfoliated deciduous
teeth (SHED), and gingiva tissue (GMSC) have been isolated (25–
29). These cells showed characteristics similar to those of bone
marrow-derived MSCs (MSCbm) (30). However, some differ-
ences have been noted between MSCs from the oral cavity and
MSCbm (31). For example, DPSC appear to be more committed
to odontogenic than osteogenic development (31). Still, limited
information is available on the characteristic features of oral
MSCs, and no study has examined KSHV infection of oral MSCs
so far.

In this study, we have shown that KSHV can efficiently infect
human MSCs of diverse origins, including those from oral cavi-
ties. Significantly, KSHV-infected human MSCs acquire KS-like
cell surface markers and angiogenic, invasive, and transforming
phenotypes. These results provide evidence to support human
MSCs as the candidate KSHV target cells and likely the origins of
KS tumor cells in vivo.

RESULTS
Human MSCs of diverse origins are permissive to KSHV infec-
tion. We infected human primary MSCs from five different ori-
gins, including adipose tissue, bone marrow, gingiva, dental pulp,
and exfoliated deciduous teeth with recombinant KSHV BAC16
containing a green fluorescent protein (GFP) cassette (32). We
tracked the infection by monitoring GFP-positive cells. All five
types of MSCs were susceptible to KSHV infection as indicated by
the expression of GFP in these cells (Fig. 1A). Using a multiplicity
of infection (MOI) of 2, we observed infection rates ranging from
61.29% to 78.38% at day 4 postinfection based on flow cytometry
analysis (Fig. 1B).

Different types of MSCs manifest distinctive cellular morphol-
ogies and growth rates (31). While they continued to have differ-
ent morphological changes following KSHV infection, by day 4
postinfection, all KSHV-infected MSCs (KMSCs) except SHED
acquired more spindle-like shapes (Fig. 1A). There was no signif-
icant increase of GFP-positive cells over this period, suggesting
their low proliferation rates. Examination of cell numbers over
time indeed showed that all types of KMSCs had much lower
proliferation rates than their mock-infected controls at the early
stage of infection (Fig. 1C). Since we did not observe any obvious
increase of dead cells in KMSCs during this period, we concluded
that KSHV infection might have caused growth arrest of these
cells.

To determine the viral replication programs during acute in-
fection in KMSCs, we examined the expression of transcripts of
representative KSHV latent and lytic genes, including ORF73,

ORF50, ORF29, and ORF65, by using reverse transcription–
quantitative real-time PCR (RT-qPCR). Although there were
some differences in expression levels for individual transcripts
among these cells, the five types of MSCs showed similar expres-
sion patterns of viral genes (Fig. 2A). The expression levels of all
genes peaked at day 2 postinfection and then slightly decreased,
but the genes continued to be expressed at high levels at day 4
postinfection (Fig. 2A).

We further analyzed the expression of KSHV latent protein
LANA and late lytic protein ORF65 by immunofluorescence assay
(IFA). LANA was detected in �80% of cells in all types of MSCs
and was maintained at similar levels by day 4 postinfection
(Fig. 2B and C), confirming successful KSHV infection in these
cells. High percentages of ORF65-positive cells, ranging from 49%
to 85%, were also detected in all types of KMSCs (Fig. 2B and C),
indicating active viral lytic replication. To titrate the production of
infectious virions in these cultures, we infected primary human
umbilical vein endothelial cells (HUVEC) with supernatants col-
lected from the KMSC cultures at day 4 postinfection. We ob-
served GFP-positive cells in the HUVEC cultures by day 1 postin-
fection, indicating infection by KSHV and hence the presence of
infectious virions in the supernatants of KMSC cultures (Fig. 2D).
Further quantification showed that as many as 13% to 27% of the
cells in the HUVEC cultures expressed GFP (Fig. 2E). Examina-
tion of encapsidated KSHV DNA in the same supernatants of the
KMSC cultures by qPCR showed that they contained 4.2 � 107 to
7.7 � 107 KSHV genomes/ml while supernatant from the
positive-control iSLK cells induced with sodium butyrate and
doxycycline for 4 days, which are known to produce high numbers
of KSHV infectious virions, contained 3.3 � 108 KSHV ge-
nomes/ml (Fig. 2F). Together, these results indicate that human
MSCs of diverse origins are highly susceptible to KSHV infection
and support productive KSHV replication programs.

Establishment of LTC of KMSCs. A large number of KMSCs
survived following KSHV primary infection. However, they con-
tinued to proliferate slowly. To increase the proliferation rates of
KMSCs, we cultured them in different media, including MSC me-
dium (MSCM), endothelial cell growth medium (EGM), and Dul-
becco’s modified Eagle’s medium (DMEM). The number of
KSHV-infected MSCa (KMSCa) increased only by 1.1- to 2.5-fold
in different media at day 4 postseeding (Fig. 3A), while the unin-
fected MSCa increased by 8- to 12-fold under the same conditions
(data not shown). Addition of 20% fetal bovine serum (FBS) sig-
nificantly increased the proliferation rates of KMSCa cultured in
MSCM and EGM but not in DMEM (Fig. 3A and B). Collagen
coating did not further stimulate the proliferation of KMSCa
(Fig. 3A). Therefore, we chose EGM with additional 20% FBS to
propagate KMSCs. We added hygromycin to eliminate cells that
had lost the KSHV genome. Using this method, we successfully
obtained long-term cultures (LTC) of KSHV-infected MSCa
(LTC-KMSCa), MSCbm (LTC-KMSCbm), and GMSC (LTC-
KGMSC). These LTC-KMSC cultures were maintained for over
2 months and continued to express GFP and LANA, indicating
establishment of long-term KSHV persistent infection. These cul-
tures were frozen for preservation and further experimental char-
acterizations.

Morphological characteristics of LTC-KMSCs. We observed
two distinguishable cell shapes in some LTC-KMSCs. Cultures of
LTC-KGMSC had two types of cells: type 1 cells were considerably
smaller and had millet-like shapes while type 2 cells were larger
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and had elongated shapes (Fig. 3C). Interestingly, type 1 but not
type 2 cells formed colonies over time (Fig. 3C and D). Thus, we
designated them colony-forming cells (type 1) and non-colony-
forming cells (type 2), respectively. Colony-forming cells prolif-
erated faster than non-colony-forming cells. After 2 months of
culture, over 90% of the cells were colony-forming cells, reflecting
their higher proliferation rate compared with the non-colony-
forming cells. Similar phenomena were also observed in LTC-

KMSCa and LTC-KMSCbm (data not shown). However, we did
not observe colony-forming cells in LTC-KDPSC and LTC-
KSHED (Fig. 3D and E). Under these culture conditions, LTC-
KDPSC and LTC-KSHED did not proliferate, and the numbers of
live cells decreased over time. Despite improved culture condi-
tions, the proliferation rates of KMSCs (KMSCa, KMSCbm, and
KGMSC) remained considerably lower than those of the mock-
infected MSCs. It is unclear whether these cultures were truly im-
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FIG 1 Human primary MSCs of different origins are permissive to KSHV infection. (A) Cellular morphology and GFP expression of MSCs following KSHV
acute infection at different days postinfection. MSCa, human adipose tissue-derived MSCs; MSCbm, human bone marrow-derived MSCs; GMSC, human
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after KSHV infection analyzed by RT-qPCR. (B) Expression of KSHV latent protein LANA and lytic protein ORF65 in MSCs at day 4 postinfection analyzed by IFA. (C)
Quantification of percentages of cells expressing LANA and ORF65 proteins using images taken as described for panel B. (D) Production of infectious virions in acutely
KSHV-infected MSCs. HUVEC were infected with supernatants from KSHV-infected MSCs at day 4 postinfection, and the infection was evaluated based on GFP
expression at 24 h postinfection. Nuclei were stained with 4=,6-diamidino-2-phenylindole. Magnification, �400. (E) Quantification of percentages of GFP-positive cells
using images taken as described for panel D. (F) Detection of encapsidated KSHV DNA in supernatants of acutely KSHV-infected MSCs. Culture supernatants were
collected at day 4 postinfection and concentrated by ultracentrifugation. The pellets were treated with DNase I followed by extraction of DNA. KSHV DNA was
quantified using KSHV ORF26 primers. Supernatant from iSLK cells induced with sodium butyrate and doxycycline for 4 days was used as a positive control.
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mortalized by KSHV. Under our culture conditions, the average
doubling times of uninfected MSCa and LTC-KMSCa were 20.9 h
and 39.5 h, respectively (Fig. 3F).

Expression patterns of viral and cellular genes in LTC-
KMSCs. We investigated viral gene expression programs in LTC-
KMSCs by RT-qPCR assays. MSCs infected by KSHV at day 4

postinfection were used as controls, as these cells had active viral
lytic replication programs (Fig. 2A). In LTC-KMSCa, almost all
lytic genes analyzed, including ORF-K8, ORF50, ORF58, ORF59,
ORF65, and ORF74, were not detectable (Fig. 4A). Latent gene
ORF73 was detected but at only a 20% level compared to KMSCs
at day 4 postinfection (Fig. 4A). In contrast, viral lytic genes were
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easily detected in both LTC-KMSCbm and LTC-KGMSC but also
at reduced levels, ranging from 10% to 90%, except for ORF65,
which was almost undetectable in LTC-KMSCbm and at a 25%
level in LTC-KGMSC compared to KMSCs at day 4 postinfection
(Fig. 4B and C). ORF73 had an expression level similar to that in
cells at day 4 postinfection in KMSCbm but was at a 20% level
compared to that at day 4 postinfection in KGMSC (Fig. 4B and
C). Examination of latent protein LANA by IFA showed that al-
most all cells were positive for LANA for all types of LTC-KMSCs
(Fig. 4D). However, we did not detect any ORF65-positive cells in
LTC-KMSCs. No infectious virion was detected in any of the cul-
tures. Together, these results indicate that KSHV has established
persistent latent infection in all types of LTC-KMSCs. These cells
had minimum lytic activities with sporadic expression of some
viral lytic genes without undergoing full lytic replication.

We further examined cell surface markers that are relevant to
those of KS tumors or MSCs by flow cytometry analysis (Fig. 5). As
expected, uninfected MSCs had high expression levels of precur-
sor cell marker CD90 and mesenchymal marker vimentin, both of
which were maintained at high expression levels in LTC-KMSCs.
Vascular endothelial cell marker von Willebrand factor (vWF)
was upregulated in LTC-KMSCa and LTC-KGMSC compared to
their controls, while it was expressed at low levels in both MSCbm
and LTC-KMSCbm. The lymphatic endothelial cell marker podo-
planin was expressed at a low level of 5.8% in MSCa but was
slightly upregulated to 11.7% in LTC-KMSCa. Both uninfected

and KSHV-infected MSCbm had low levels of podoplanin expres-
sion, at 16.4% and 14%, respectively. Interestingly, the expression
of podoplanin was significantly downregulated from 21.4% to
3.7% in GMSC following long-term KSHV infection. A similar
result was observed with another lymphatic endothelial cell
marker, LIVE-1, in MSCa, which was downregulated from 43.2%
in uninfected MSCa cells to 3.6% in LTC-KMSCa. However,
LIVE-1 was upregulated from 12.5% and 4.8% in MSCbm and
GMSC, respectively, to 22.6% and 51.4% in LTC-KMSCbm and
LTC-KGMSC, respectively. CD144 and CD31 were not detected
in any of the MSCs and KMSCs. Together, these results indicate
that the expression of cell surface markers in LTC-KMSCs was
differentially reprogrammed by KSHV. However, LTC-KMSCs
express mixtures of vascular endothelial, lymphatic endothelial,
and mesenchymal markers, which resemble the mixed expression
of cell surface markers of KS tumor cells.

LTC-KMSCs manifest distinct angiogenic, invasive, and
transforming phenotypes. Because the KS tumor is highly angio-
genic and invasive, we examined whether KSHV persistent infec-
tion could cause MSCs to acquire these features (2). We investi-
gated the angiogenic properties of LTC-KMSCs using an in vitro
tube formation assay. Robust tube-like structures were observed
with LTC-KMSCa and LTC-KMSCbm while minimal or no tube-
like structures were visible with uninfected MSCa and MSCbm
(Fig. 6A). In particular, LTC-KMSCa formed strong mesh-like
networks. While uninfected GMSC alone formed tube-like struc-
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tures, LTC-KGMSC did not have increased angiogenic activities
(Fig. 6A).

We then investigated the migration properties of LTC-KMSCs,
as they are often correlated with the invasive phenotypes. We ex-
amined the abilities of the cells to migrate through a porous mem-
brane in a Boyden chamber. MSCM containing 20% FBS was used
as a stimulus for chemoattraction. LTC-KMSCbm and LTC-
KMSCa had significantly more cells migrating through the mem-
brane than did the uninfected control cells (Fig. 6B). Similarly to
angiogenesis, uninfected GMSC had high numbers of cells migrat-
ing through the membrane; however, LTC-KGMSC did not have
increased migration activities (Fig. 6B).

To investigate the invasiveness of LTC-KMSCs, we examined
the invasion of these cells through a Matrigel-coated porous mem-
brane in a Boyden chamber. Again, MSCM containing 20% FBS
was used as a stimulus for chemoattraction. Interestingly, while
LTC-KMSCa had a 4-fold increase over uninfected control cells of

cells invading and crossing through the coated membrane, LTC-
KMSCbm had only a 1.2-fold increase (Fig. 6C). LTC-KGMSC
did not have any change compared to the uninfected control cells
(Fig. 6C).

Finally, we investigated the transforming properties of LTC-
KMSCs by examining their anchorage-independent colony for-
mation in a soft agar assay. We used uninfected MM and KSHV-
infected KMM as negative and positive controls of the assay (6).
Interestingly, MSCa alone formed some colonies under our exper-
imental condition (Fig. 6D). LTC-KMSCa produced colonies, but
their sizes were similar to those of uninfected cells. Both unin-
fected MSCbm and GMSC did not form any visible colonies
(Fig. 6D). However, LTC-KGMSC formed colonies. The average
size of KGMSC colonies was 153.3 � 83.4 �m in diameter, while
no colony of �50 �m was detected with the uninfected GMSC.

Together, these results indicate that human MSCs of different
origins have distinct angiogenic, invasive, and transforming prop-
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erties and that KSHV infection induces differential alterations of
these phenotypes.

KSHV miRNAs mediate KSHV-induced angiogenesis of
LTC-KMSCs by activating the AKT pathway. Since LTC-KMSCa
had the highest increase of angiogenic activity compared to the
uninfected control cells, we further investigated its underlying
mechanism. KSHV microRNAs (miRNAs) are highly expressed
during latency and regulate diverse cellular pathways (33). Results
of recent studies showed the association between in vitro angio-
genic activities and KSHV miRNAs (34, 35). To investigate
whether KSHV miRNAs might mediate KSHV-induced angio-

genesis in MSCa, we infected them with a mutant virus containing
a deletion of a cluster of 10 pre-miRNAs, including pre-miR-K1-9
and -K11 (�miR) (36) and established a long-term MSCa culture
infected with this mutant KSHV (LTC-�miRMSCa). Addition-
ally, we used a retrovirus expressing the KSHV miRNA cluster to
rescue the functions of the deleted miRNAs (37). Deletion of the
miRNA cluster (LTC-�miRMSCa) abolished KSHV-induced
tube formation in MSCa (Fig. 7A). However, retroviral expression
of the miRNA cluster rescued the angiogenic activities of LTC-
�miRMSCa (Fig. 7A). These results indicate that the miRNA clus-
ter is required for KSHV-induced angiogenesis in MSCa.
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To elucidate the signaling pathways that mediate the proangio-
genic function of KSHV miRNAs, we screened specific inhibitors
of proangiogenic pathways that could block KSHV-induced an-
giogenesis, including a phosphatidylinositol 3-kinase (PI3K) in-
hibitor (LY294002), a MEK inhibitor (U0126), a phospholipase C
inhibitor (U-73122), and a ROCK inhibitor (Y-27632). Among all
the inhibitors examined, only the PI3K inhibitor significantly sup-
pressed the tube formation activity of LTC-KMSCa (Fig. 7B). Ex-
amination of LTC-KMSCa showed that these cells indeed had a
significantly higher level of AKT phosphorylation at T308 than did
the uninfected control cells (Fig. 7C). KSHV infection did not
alter the level of AKT phosphorylation at S473 (Fig. 7C). Treat-
ment with the PI3K inhibitor significantly reduced the level of
AKT phosphorylation at T308 (Fig. 7D). Furthermore, deletion of
the miRNA cluster (LTC-�miRMSCa) abolished the increased
level of AKT phosphorylation at T308, while overexpression of the
KSHV miRNA cluster was sufficient to rescue the AKT phosphor-
ylation in LTC-�miRMSCa (Fig. 7E). Together, these results in-

dicate that viral miRNAs mediate KSHV-induced angiogenesis by
activating the AKT pathway.

DISCUSSION

Since the first description in bone marrow by Friedenstein et al. in
1966, MSCs have been identified in diverse tissues and organs
(38). Human MSCs have been isolated from adipose tissue, um-
bilical cord blood, peripheral blood, skin, oral gingiva, exfoliated
deciduous teeth, and dental pulp (25–29, 39–43). Under appro-
priate culture conditions, MSCs can be differentiated into differ-
ent cell lineages, including osteocytes, adipocytes, and chondro-
cytes (20). Differentiation of MSCs into endothelial cells, the cell
type that is infected by KSHV in KS tumors, under specific culture
conditions has also been reported previously (8, 10). Since human
MSCs are susceptible to KSHV infection and KSHV-infected cells
and MSCs are often found in the same tissues and locations in
vivo, MSCs are putative KSHV target cells and candidate origins of
KS tumor cells. Of particular interest is the frequent oral manifes-
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tation of KS and the successful isolation of a number of oral MSCs
(25–29). In this study, we have investigated KSHV infection of
MSCs from different origins, including three types of oral MSCs,
and characterized their viral and cellular properties. To our
knowledge, this is the first study that has demonstrated the distinct
biological properties of different human MSCs following KSHV
infection.

Besides their pluripotent potentials, MSCs can modulate the
immune response and the wound healing process (44, 45). Cancer
progression is known to closely resemble the wound healing pro-
cess, and both are involved with the growth of new blood vessels,
the rearrangement of molecular matrix around the cells, and the
changes in how cells attach to each other (46). Therefore, it is not
surprising that MSCs are involved with both cancer progression
and wound healing (47). In fact, recent studies have shown that
MSCs modulate the tumor microenvironment to stimulate tumor
growth (48–52). Thus, the study of KSHV infection of MSCs and
characterization of their functional properties could provide in-
sights into the mechanism of KS progression and the microenvi-
ronments associated with KS tumors.

Our results showed that human MSCs of different origins
manifested distinct phenotypes following KSHV infection. First,
all MSCs supported active viral lytic replication at the acute infec-
tion stage. Following acute infection, KSHV established persistent
latent infection in MSCa, MSCbm, and GMSC with minimal ex-
pression of viral lytic genes. However, we failed to establish long-
term cultures of persistently KSHV-infected DPSC and SHED.
Second, the three LTC-KMSCs showed obvious heterogeneity in
the expression of cellular markers. For example, the expression of
CD90 and vimentin was maintained at high levels in MSCa,
MSCbm, and GMSC following KSHV infection. However, the ex-
pression of vWF was upregulated in MSCa and GMSC while it was
maintained at the same level in MSCbm following KSHV infec-
tion. Of particular interest were the lymphatic markers. Podopla-
nin was upregulated in MSCa but downregulated in GMSC by
KSHV while it remained unchanged in MSCbm following KSHV
infection. On the other hand, LIVE-1 was downregulated in MSCa
and upregulated in MSCbm and GMSC by KSHV. Therefore,
while KSHV infection reprogrammed primary lymphatic endo-
thelial cells to acquire blood endothelial markers and primary
blood endothelial cells to acquire lymphatic endothelial markers
(53–55), we showed that human primary MSCs of different ori-
gins were reprogrammed into distinct phenotypes. Nevertheless,
all types of LTC-KMSCs maintained some signature markers of
KS tumor cells, including vascular endothelial, lymphatic endo-
thelial, and mesenchymal markers. Similarly, KSHV-transformed
rat mesenchymal stem cells (KMM) maintained a mixture of vas-
cular endothelial, lymphatic endothelial, mesenchymal, and he-
matopoietic precursor markers both in culture and in KS-like tu-
mors (6). Clearly, KSHV can reprogram human MSCs, but the
resulting phenotypes of MSCs of different origins may vary. It is
interesting that detection of some cell markers on KS tumor cells is
not always consistent, either in all the tumors or in all the tumor
cells (56–61). Whether these ambiguous phenotypes are due to the
different origins of the target cells or different stages of cell differ-
entiation and KSHV reprogramming remains to be determined.
Third, LTC-KMSCs manifested different degrees of KS-like phe-
notypes, including angiogenesis, invasion, and cellular transfor-
mation. KSHV infection enhanced tube formation and migration
of MSCa and MSCbm, the invasiveness of MSCa, and the cell-

transforming property of GMSC. These heterogeneities, to some
degree, also reflect the mixed phenotypes of KS tumor cells (61).

One of the pathological features of KS is the formation of ir-
regular vessels, even in the early stages of the disease (2). Indeed,
patch lesions, the earliest recognizable foci of KS, show abundant
neovascularization (2). Previous studies have reported that MSCs
have angiogenic potential, which can be enhanced in vitro and in
vivo by growth factors (62–66). In our study, we found that KSHV
infection increased the angiogenic property in MSCa. Examina-
tion of cellular signal pathways identified the PI3K/AKT pathway
that mediated KSHV-induced angiogenesis in MSCa. A previous
study has also shown that KSHV-induced angiogenesis in HUVEC
is mediated by the PI3K/AKT pathway and that PI3K inhibition
reduced the angiogenic activities of these KSHV-infected endo-
thelial cells (67). AKT has a key role in multiple cellular processes,
including apoptosis, cell proliferation, glucose metabolism, and
angiogenesis (68–70). Activation of AKT is frequently observed in
human cancers (71, 72). In KSHV, viral G-protein-coupled recep-
tor (vGPCR) stimulates the AKT/mTOR pathway (73, 74). Acti-
vation of AKT is mediated by PDK1 (3-phosphoinositide-
dependent protein kinase 1) (75). The PH (pleckstrin homology)
domains of PDK1 and AKT bind to PIP3 [phosphatidylinositol
(3,4,5)-trisphosphate], and this colocalization allows PDK1 to
phosphorylate AKT at the catalytic phosphorylation site T308.
The phosphorylation of T308 is important for AKT activities (75).
AKT phosphorylation at S473 is carried out by target of rapamycin
complex (TORC) 1 and 2 and DNA-activated protein kinase
(DNA-PK), which is required for stabilizing the kinase and further
increasing the enzymatic activity. However, phosphorylation at
S473 alone is insufficient to activate AKT (76). We observed AKT
phosphorylation at S473 in both uninfected and KSHV-infected
MSCa. However, AKT phosphorylation at T308 was induced by
KSHV infection, and inhibition of this phosphorylation with
LY294002 suppressed the tube formation activity in a dose-
dependent manner.

Twelve KSHV pre-microRNAs (pre-miRNAs) have been iden-
tified, and they produce up to 25 mature miRNAs. KSHV miRNAs
are located in the KSHV latency-associated region and are highly
expressed in KS tumors and in latently infected cells (33). Previous
studies have shown that KSHV miRNAs regulate angiogenesis,
apoptosis, the cell cycle, epigenetic modification, immune eva-
sion, and transcription (33, 77). By genetic analysis, we showed
that a cluster of 10 KSHV pre-miRNAs was required for KSHV-
induced angiogenesis and AKT phosphorylation at T308 in MSCa.
These results indicate that besides regulating cell cycle progression
and apoptosis to mediate cellular transformation (37), KSHV
miRNAs might also contribute to the angiogenic phenotype of KS
tumors. Our recent work has shown that miR-K3 activates the
AKT pathway to regulate cell migration and invasion (78). It is
highly possible that miR-K3 is also involved in the regulation of
angiogenesis.

In conclusion, MSCs derived from diverse origins support
KSHV acute and persistent infection and manifest distinct cellular
phenotypes, which include expression of cell surface markers, an-
giogenesis, loss of contact inhibition, and migration/invasion.
Mechanistically, KSHV miRNAs induce AKT phosphorylation at
T308 to stimulate the angiogenic activity in human MSCa. Further
analysis should provide a better understanding of the molecular
basis of the viral and cellular programs in KMSCs as well as the
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progression of KS tumors and the associated tumor microenvi-
ronments.

MATERIALS AND METHODS
Cell cultures and reagents. Human primary bone marrow- and adipose
tissue-derived MSCs (MSCbm and MSCa, respectively) were purchased
from ScienCell Research Laboratories (Carlsbad, CA) or Lifeline Cell
Technology (Frederick, MD). Human MSCs from gingiva (GMSC), den-
tal pulp (DPSC), and exfoliated deciduous teeth (SHED) were previously
described (25–29). All MSCs were cultured in MSC medium (MSCM;
ScienCell Research Laboratories). MSCM or endothelial cell growth me-
dium 2 BulletKit (EGM-2; Lonza, Walkersville, MD) containing 20% fetal
bovine serum (FBS; Gibco BRL, Grand Island, NY) was used for KMSCs.
Human umbilical vein endothelial cells (HUVEC) were purchased from
Lonza and cultured in endothelial cell growth medium 2 BulletKit (Lonza,
Walkersville, MD). For KSHV infection experiments, we used cells from 4
independent donors for MSCbm and MSCa, 2 independent donors for
GMSC, and 1 donor each for DPSC and SHED. We repeated the infection
experiments at least 3 to 5 times for every cell type from each donor.

LY294002 (PI3K inhibitor), U0126 (MEK inhibitor), U-73122 (phos-
pholipase C inhibitor), and Y-27632 (ROCK inhibitor) were purchased
from Calbiochem (San Diego, CA).

Virus preparation and infection. iSLK-BAC16 cells harboring re-
combinant KSHV BAC16 were used for virus preparation (32). iSLK-
�miR cells harboring recombinant BAC16 with a deletion of 10 KSHV
pre-miRNAs, including pre-miR-K1-K9 and -K11, were previously de-
scribed (36). Briefly, infectious viruses of the BAC16 or �miR strain were
induced from the respective iSLK cells by treatment with doxycycline and
sodium butyrate for 4 days. The culture supernatants were filtered
through a 0.45-�m filter and centrifuged at 25,000 rpm for 2 h. The pellet
was resuspended in phosphate-buffered saline (PBS), aliquoted, and
stored at �70°C as infectious KSHV preparations. Virus infection was
performed according to the method used in a previous study, with minor
modifications (79). MSCs were seeded at 2 � 105 cells per well in 6-well
culture plates. After a day of culture, the culture medium was then re-
moved and cells were washed once with PBS. The prepared KSHV inocula
and 5 �g/ml of Polybrene were mixed and added to the cultured cells.
After centrifugation at 2,000 � g for 60 min, the inoculum was removed
and 2 ml of culture medium was added to each well.

For titration of infectious virions, HUVEC seeded in 24 wells for 24 h
were infected with 100 �l of supernatants or virus preparations as de-
scribed above. At 24 h postinfection, the number of GFP-positive cells/
well was counted. Multiplicities of infection (MOIs) were determined by
calculating the number of GFP-positive cells produced by 1 ml of the
inoculum.

Detection of virion DNA. The supernatants of KSHV-infected MSCs
were harvested at day 4 postinfection and centrifuged at 25,000 rpm for
2 h. The pellet was resuspended in 1� DNase buffer and then treated by
RQ1 RNase-free DNase I (Promega, Madison, WI) at 37°C for 1 h. DNA
was extracted using the QIAamp DNA blood minikit (Qiagen, Hilden,
Germany) according to the manufacturer’s recommendations, and qPCR
analysis was carried out using the SYBR green real-time PCR master mix
(Toyobo Co.) with primers ORF26F (5=GGAGATTGCCACCGTTTA 3=)
and ORF26R (5= ACTGCATAATTTGGATGT 3=) targeting KSHV
ORF26 (Enzynomics, Daejun, South Korea). Reactions were performed
with 40 cycles of 30 s at 95°C, 40 s at 58°C, and 60 s at 72°C. The copy
number of the viral genome was calculated using purified DNA of a plas-
mid containing the KSHV ORF26 gene.

IFA and Western blotting. IFA and Western blotting were performed
as previously described (80). For Western blotting, rabbit monoclonal
anti-AKT antibody (Cell Signaling Technology, Danvers, MA), rabbit
monoclonal anti-pAKT T308 antibody (Cell Signaling Technology), rab-
bit monoclonal anti-pAKT S473 antibody (Cell Signaling Technology),
and mouse monoclonal anti-�-tubulin antibody (Sigma, St. Louis, MO)
were used as primary antibodies. A rat monoclonal antibody to LANA

(Abcam, Cambridge, MA) and a mouse monoclonal antibody to ORF65
(81) were used for IFA. Images were obtained using a Nikon Eclipse E400
fluorescence microscope equipped with a digital camera or a Nikon
Eclipse Ti confocal laser scanning microscope (Nikon Instruments Inc.,
Melville, NY). Nikon NIS Elements F or Ar microscope imaging software
was used for image analysis.

Flow cytometry. To detect the percentages of GFP-positive cells,
mock- or KSHV-infected MSCs were detached from the plate with 0.25%
trypsin at 24 h postinfection and washed once with PBS. GFP-positive
cells were quantified on a Guava easyCyte flow cytometer (Merck Milli-
pore, Bedford, MA). Data were analyzed using InCyte 3.1 software (Merck
Millipore).

To detect the expression of cell surface markers, cells detached from
the plate with 5 mM EDTA in Dulbecco’s phosphate-buffered saline
(PBS) were fixed with 4% paraformaldehyde in PBS for 20 min and incu-
bated with primary antibodies at a 1:100 dilution for 30 min at 4°C. Mouse
monoclonal antibodies to CD31 (Abcam), CD144 (eBioscience, San Di-
ego, CA), vimentin (Abcam), and CD90 (eBioscience) and rabbit poly-
clonal antibodies to vWF (Dako, Carpinteria, CA), podoplanin (Abcam),
and LIVE-1 (Abcam) were used. After being washed in PBS, cells were
incubated with allophycocyanin (APC)-conjugated goat anti-mouse or
-rabbit antibodies (R&D Systems, Minneapolis, MN). Flow cytometry
was performed as described above.

RT-qPCR. Total RNA from uninfected cells and KMSCs was isolated
using NucleoSpin RNA II as recommended by the manufacturer
(Macherey-Nagel Inc., Bethlehem, PA). Total RNA was reverse tran-
scribed to obtain the first-strand cDNA using the ReverTra Ace first-
strand cDNA synthesis system (Toyobo Co., Osaka, Japan). Real-time
PCR was performed using the SYBR green real-time PCR master mix
(Toyobo Co.). The cycling conditions were 95°C for 1 min and 40 cycles of
95°C for 15 s and 60°C for 60 s. The specificity of the PCR products was
analyzed by examining the melting curves. All of the samples were ana-
lyzed in triplicate for each primer pair together with a nontemplate con-
trol and internal �-actin amplification controls. The primers were made
and the analysis of data was carried out as previously described (82).

In vitro tube formation assay. The �-Slide angiogenesis kit (ibidi
GmbH, Germany) was used for the tube formation assay (BD Biosciences,
San Jose, CA). The slide was first coated with a Matrigel basement mem-
brane matrix. Ten microliters of cooled Matrigel was transferred to each
well, and the slide was incubated at 37°C for 30 min to solidify the Matri-
gel. Cells were seeded onto Matrigel-coated wells with 50 �l of DMEM.
Then, the slide was incubated at 37°C with 5% CO2 for 8 h, and images of
tube formation were captured using a Nikon Eclipse E400 fluorescence
microscope.

Soft agar assay. A base layer containing 0.5% agar in MSCM and 20%
FBS was poured into each well of a 6-well plate. After the agar solidified,
10,000 cells were mixed with 0.3% agarose in MSCM containing 20% FBS.
After being seeded, the plates were incubated at 37°C with 5% CO2 for 2 to
3 weeks, and cells were fed every 3 to 4 days. At the end of the assay,
colonies were photographed using a fluorescence microscope equipped
with a digital camera. Experiments were run in triplicate for each cell line,
and data were from two independent experiments.

Migration and invasion assay. The migration and invasion assay was
performed using a 24-well chamber system with a Matrigel-coated or
noncoated membrane according to the manufacturer’s instructions (BD
Biosciences). The cells were trypsinized and seeded in the upper chamber
at 2.5 � 104 cells/well in serum-free DMEM. MSCM containing 20% FBS,
which was used as a stimulus for chemoattraction, was placed in the bot-
tom well. Incubation was performed for 24 h at 37°C in humidified air
with a 5% CO2 atmosphere. The cells were allowed to migrate through a
porous, Matrigel-coated or noncoated membrane. After the incubation,
the chambers were removed, and the cells on the bottom side of the mem-
brane were stained with calcein AM. The images of invaded or migrated
cells were captured with the Nikon Eclipse E400 fluorescence microscope,
and their relative quantities were determined with a Synergy 2 multimode
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microplate reader (BioTek, Winooski, VT) using the 485-nm excitation
and 520-nm emission filters.

Statistical analysis. Results are shown as averages � standard devia-
tions (SDs) where appropriate. The one-tailed Student t test was used to
compare data between the different groups. Statistical significance as-
sumed at P values less than 0.05, 0.01, or 0.001 is represented in the figures
by single, double, or triple asterisks, respectively.
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