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Summary
Genetic correlation is an important parameter in efforts to understand the relationships among complex traits. Current methods that

analyze individual genotype data for estimating genetic correlation are challenging to scale to large datasets. Methods that analyze sum-

mary data, while being computationally efficient, tend to yield estimates of genetic correlation with reduced precision. We propose

SCORE (scalable genetic correlation estimator), a randomized method of moments estimator of genetic correlation that is both scalable

and accurate. SCORE obtains more precise estimates of genetic correlations relative to summary-statistic methods that can be applied at

scale; it achieves a 44% reduction in standard error relative to LD-score regression (LDSC) and a 20% reduction relative to high-definition

likelihood (HDL) (averaged over all simulations). The efficiency of SCORE enables computation of genetic correlations on the UK Bio-

bank dataset, consisting of z300 K individuals and z500 K SNPs, in a few h (orders of magnitude faster than methods that analyze

individual data, such as GCTA). Across 780 pairs of traits in 291; 273 unrelated white British individuals in the UK Biobank, SCORE iden-

tifies significant genetic correlation between 200 additional pairs of traits over LDSC (beyond the 245 pairs identified by both).
Introduction

Genetic correlation is an important parameter that quan-

tifies the genetic basis that is shared across two traits. Esti-

mates of genetic correlation can reveal pleiotropy, uncover

novel biological pathways underlying diseases, and

improve the accuracy of genetic prediction.1

While traditionally reliant on family studies, the avail-

ability of genome-wide genetic data has led to several ap-

proaches to estimate genetic correlation from these data-

sets.1 An important class of methods for estimating

genetic correlation relies on computing the restricted

maximum likelihood within a bi-variate linear mixed

model (LMM), termed genomic restricted maximum likeli-

hood (GREML).2–5 However, current GREML methods are

computationally expensive to be applied to large-scale da-

tasets such as the UK Biobank.6

WhileGREMLmethodsneed individual-level data, several

methods,7–12 such as linkage disequilibrium (LD)-score

regression (LDSC),7 have been proposed for estimating ge-

netic correlation with genome-wide association study

(GWAS) summary statistics. Although methods such as

LDSC often have substantially reduced computational re-

quirements relative to GREML, LDSC estimates tend to

have large standard errors that increase further when there

is a mismatch between the samples used to estimate sum-

mary statistics and the reference datasets that are used to es-

timate LD scores.13 High-definition likelihood (HDL),12 a
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more recent summary-statistic-based method, has been

shown to be more precise relative to LDSC. HDL, however,

requires computing a singular-value decomposition (SVD)

of theLDmatrix,which increases its runtime. Further, recent

studies14,15 have shown that the accuracy of genetic correla-

tion estimates can deteriorate when there is a mismatch be-

tween reference and sample data. Thus, it is critical to

develop methods for estimating genetic correlation that

can work directly with large individual-level datasets.

We propose, SCORE (scalable genetic correlation esti-

mator), a randomizedmethodofmoments (MoM)estimator

of genetic correlations among traits via individual genotypes

that can scale to the dataset sizes typical of the UK Biobank.

While SCORE can estimate the heritability of traits aswell as

the genetic correlation between pairs of traits, we focus on

the problem of estimating genetic correlation in this work.

SCORE achieves scalability by avoiding explicit computa-

tion of the genetic relationship matrix (GRM). Instead, we

show that the genetic correlation can be computed by using

a sketchof thegenotypematrix, i.e., bymultiplying thegeno-

type matrix with a small number of random vectors.

In simulations, we show that SCORE yields accurate esti-

mates of genetic correlation across a range of genetic archi-

tectures (with varying heritability, genetic correlation, and

polygenicity). Relative to summary-statistic methods that

canbeapplied tobiobank-scaledata, SCOREobtains a reduc-

tion in standard error of 44% relative to LDSC and 20% rela-

tive to HDL (averaged across all simulations). Further,
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SCORE can estimate genetic correlation onz500 K SNPs in

z300KunrelatedwhiteBritish individuals in a fewh,orders

of magnitude faster than methods that rely on individual

data (GCTA-GREML and GCTA-HE). Analyzing 780 pairs of

traits in 291; 273 unrelated white British individuals in the

UK Biobank, the estimates of genetic correlation at

454; 207 common SNPs obtained by SCORE are largely

concordant with those from LDSC (Pearson correlation r ¼
0:95). Although 245 pairs of traits are identified as having

significant genetic correlation bybothmethods (with a Bon-

ferroni correction for thenumberofpairs of traits tested), the

reduced standard error of estimates from SCORE leads to the

discovery of significant genetic correlations between an

additional 200pairs of traits relative toLDSC. Finally, SCORE

detects a significant positive correlationbetween serum liver

enzyme levels (alanine [ALT] andaspartate aminotransferase

[AST]) and coronary-artery-disease-related traits (angina and

heart attack), suggesting that coronary artery disease and

liver dysfunction harbor a shared genetic component.
Material and methods

Bi-variate linear mixed model
Wedescribe ourmodel in the general setting, where the traits are not

observed on the same set of individuals. AssumewehaveN1 individ-

uals for trait 1 and N2 individuals for trait 2 of which N individuals

ðN%N1;N%N2Þ contain measurements for both the traits. We

havedefinedX1;X2 tobetheN13M andN23Mmatricesof standard-

izedgenotypesobtainedby centering and scaling each columnof the

unstandardizedgenotypematricesG1 andG2 so that
P

nxt;n;m ¼0 for

allm˛f1;.;Mg;t˛f1;2g. Let y1; y2 denote the twovectors of pheno-

types with size N1 and N2, respectively. Additionally, we define an

N13N2 indicatormatrix,C, whereCi;j ¼ 1 when individual i among

samplesmeasured for the first phenotype and j in samplesmeasured

for the second phenotype refer to the same individual and 0 other-

wise. We define b1;b2 to be vectors of SNP effect sizes of lengthM.

We assume the following model relating a pair of traits y1;y2:

y1 ¼ X1b1 þ ε1

y2 ¼ X2b2 þ ε2:
(Equation 1)

For the SNP effects, we assume E½b1� ¼ 0;E½b2� ¼ 0 and

covðb1;b1Þ ¼
1

M
s2
g1IM

covðb2;b2Þ ¼
1

M
s2
g2IM

covðb1;b2Þ ¼
1

M
ggIM :

(Equation 2)

Here, IM is anM3M identitymatrix, s2gt denotes the genetic vari-

ance associated with trait t ðt ˛f1;2gÞ, and gg denotes the genetic

covariance. For the environmental effects, we assume E½ε1� ¼
0; E½ε2� ¼ 0 and

covðε1; ε1Þ ¼ s2
e1IN

covðε2; ε2Þ ¼ s2
e2IN

covðε1; ε2Þ ¼ geC:

(Equation 3)

The genetic correlation parameter rg is defined as rgh

gg=
ffiffiffiffiffiffiffi
s2g1

q ffiffiffiffiffiffiffi
s2g2

q
. Importantly, SCORE does not make additional as-
The Am
sumptions on the distribution of the genetic effect sizes or the

environmental noise.

Method of moments (MoM)
SCORE uses a method of moments (MoM) estimator to estimate

the parameters ðgg ;ge;s
2
g1;s

2
g2;s

2
e1;s

2
e2Þ.

Because the mean of y1 and y2 are zero, we focus on the covari-

ance. The population covariance of the concatenated phenotypes

yh½yT
1 ; y

T
2 �

T
is now

covðyÞ¼ E
�
yyT

�� E½y�E½y�T ¼
24s2

g1K1 ggKA

ggK
T
A s2

g2K2

35þ
"
s2
e1IN1

geC

geC
T

s2
e2IN2

#
:

(Equation 4)

Here, K1 ¼ ðX1X
T
1 =MÞ is the GRM for the samples observed for

the first trait, while K2 ¼ ðX2X
T
2 =MÞ is the GRM for the samples

for the second trait and KA ¼ ðX1X
T
2 =MÞ is the GRM for pairs of

samples across traits.

We obtain theMoM estimator byminimizing the sum of squared

differences between the population and empirical covariances:

�cgg ;cge ;
cs2
g1 ;
cs2
g2 ;
cs2
e1 ;
cs2
e2

�
¼ argmingg ;ge ;s

2
g1
;s2

g2
;s2

e1
;s2

e2
kyyT

�
0@24s2

g1K1 ggKA

ggK
T
A s2

g2K2

35þ
"
s2
e1IN1

geC

geC
T

s2
e2IN2

#1Ak
2

F

: (Equation 5)

The MoM estimator for the genetic covariance satisfies the

normal equations"
tr
�
KAK

T
A

�
trðKCÞ

trðKCÞ N

#"cggcge

#
¼
"
yT
1KAy2

yT
1Cy2

#
; (Equation 6)

where KC ¼ ðX1X
T
2C

T =MÞ. Given the coefficients of the normal

equations, we can solve analytically for cgg and cge .

GivenMoM estimates of the variance components, theMoM es-

timate of the genetic correlation is given by the plug-in estimate:

crg ¼ cggffiffiffiffiffiffiffics2
g1

q ffiffiffiffiffiffiffics2
g2

q : (Equation 7)

SCORE: Scalable genetic correlation estimator
Naive computation of the MoM estimate of genetic covariance re-

quires computing trðKAK
T
AÞ, which requires OðN1N2MÞ opera-

tions, where N1;N2 are the sample size of each of the traits.

To overcome this computational bottleneck, we replace

trðKAK
T
AÞ with an unbiased randomized estimate: dtrðKAK

T
AÞ.16

Given B random vectors, z1;.;zB, zb˛RN2 ; b˛1.B drawn inde-

pendently from a distribution with zero mean and identity covari-

ance, our estimator is given by:

LB ¼ dtr
�
KAK

T
A

�¼ 1

B

1

M2

X
b

kX1X
T
2zbk22:

We obtain the SCORE estimator ð ~gg ; ~geÞ by solving Equation 6 by

replacing trðKAK
T
AÞ with LB."
LB trðKCÞ
trðKCÞ N

#"
~gg

~ge

#
¼
"
yT
1KAy2

yT
1Cy2

#
:
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Here, trðKCÞdenotes the sumof the squaredgenotypes for individ-

ualsmeasuredonboth traits so that trðKCÞ canbe computed in time:

OðMNÞ. Computing LB requires multiplying the genotype matrices

X1 and X2 with B vectors resulting in a runtime of OðmaxðN1;

N2ÞMBÞ. Leveraging the fact that each element of the genotypema-

trix takes values in the set f0;1;2g, LB can be computed in time

OðmaxððN1 =maxðlog3N1; log3MÞÞ; ðN2 =maxðlog3N2; log3MÞÞÞMBÞ 17

(while the standardized genotypes are real-valued, SCORE computes

the equivalent quantities by operating on the unstandardized

genotype matrix to be able to leverage its discrete entries followed

by subtracting the product of themeanof a SNP and randomvectors

and scaling by minor allele frequency [MAF]). Combined with our

previous efficient estimators of the genetic variance compo-

nents,18,19 we obtain an efficient estimator of rg .

In the setting where the two traits are measured on the same set

of individuals, we can estimate the rg directly without the need for

separately estimating gg , s
2
g1, and s2g2. This estimator does not rely

on any randomized approximations and can be computed in time

OðNM =maxðlog3N; log3MÞÞ. We term this modification SCORE�
OVERLAP (supplemental material and methods).
Simulations to assess accuracy
We performed simulations on a subset of 5;000 unrelated white

British individuals from the UK Biobank so that all methods

compared could be run in a reasonable time. Our simulations

used 305;630 SNPs with MAF above 1% (we chose these SNPs

because these were also used for benchmarking the HDL12 method

and had reference eigenvectors available).

Given the genotypes, we simulated pairs of traits under vary-

ing genetic architectures. Our first set of architectures assume

an infinitesimal model (where all variants have a non-zero effect

on both traits). We varied genetic correlation rg across

f0;0:2;0:5;0:8g and the heritability of the pair of traits, ðh2
1;

h2
2Þ, across values of fð0:1;0:2Þ; ð0:2;0:6Þ; ð0:5;0:5Þ; ð0:6;0:8Þg cor-

responding to the situation where both traits have low heritabil-

ity, one trait has low while the other has moderate heritability,

both traits have moderate heritability, and both have high

heritability.

Our next set of non-infinitesimal architectures explore traits with

medium polygenicity and low polygenicity. For each SNP m, we

specify a causal status, cm, which is a 231 vector with entries taking

values in f0;1g according towhether SNPmhas a non-zero effect on

each of the two traits. Formediumpolygenicity, causal status at SNP

m is drawn independently according to the following distribution:

P

 
cm ¼

"
1
1

#!
¼ 0:1, P

 
cm ¼

"
0
1

#!
¼ P

 
cm ¼

"
1
0

#!
¼ 0:2,

and P

 
cm ¼

"
0
0

#!
¼ 0:5.

The effect size bm of SNP m on each trait is drawn from the

following distribution:

bmjcm ¼
"
1
1

#
� Nð0;

26664
s2
g1

0:3M
gg

gg

s2
g2

0:3M

37775;bmjcm ¼
"
1
0

#

� Nð0;

264 s2
g1

0:3M
0

0 0

375;bmjcm ¼
"
0
1

#
� Nð0;

2640 0

0
s2
g2

0:3M

375
26 The American Journal of Human Genetics 109, 24–32, January 6, 2
For low polygenicity, we set the probability P

 
cm ¼"

1
1

#!
¼ 0:01, P

 
cm ¼

"
0
1

#!
¼ P

 
cm ¼

"
1
0

#!
¼ 0:05,

and P

 
cm ¼

"
0
0

#!
¼ 0:89.

The effect size bm for genetic variant m on both traits are drawn

from the following distribution:

bmjcm ¼
"
1
1

#
� Nð0;

26664
s2
g1

0:06M
gg

gg

s2
g2

0:06M

37775;bmjcm ¼
"
1
0

#

� Nð0;

264 s2
g1

0:06M
0

0 0

375;bmjcm ¼
"
0
1

#

� Nð0;

2640 0

0
s2
g2

0:06M

375:
We vary gg across f0;0:2;0:5;0:8g. Under this model, the true to-

tal expected genome-wide genetic correlation for medium polyge-

nicity is f0;0:06;0:15;0:24g and f0;0:0024;0:03;0:048g for low

polygenicity. Unless specified otherwise, we assume complete

sample overlap and no environmental correlation, set the envi-

ronmental variance so that the trait variance is 1, and simulate a

total of 100 replicates for each architecture.

Simulations to assess the impact of sample overlap
We simulated traits under an infinitesimal architecture with

ðh2
1;h

2
2Þ ¼ ð0:2;0:6Þ and rg ¼ 0.5. For each trait, we fixed the sam-

ple size to 5,000 and varied the proportion of sample overlap

across f0;0:2;0:5;0:8;1g (ranging from no overlap to complete

overlap). Specifically, for overlap proportion equal to 0, we have

5,000 samples with observations on the first trait and a distinct

set of 5,000 samples with observations on the second trait. For

overlap proportion equal to 1, we have 5,000 samples with obser-

vations on both traits. We estimated genetic correlation with

SCORE, LDSC, and GCTA-GREML.

Simulations to assess accuracy for binary traits
Given 291;273 unrelated white British individuals in the UK

Biobank measured on 459;792 genetic variants, we simulated

pairs of traits under an infinitesimal architecture setting

ðh2
1;h

2
2Þ ¼ ð0:272;0:12Þ and rg ¼ �0:23 while varying the environ-

mental correlation across f0:04; � 0:04;0g.
To simulate binary traits, we converted the second trait to a bi-

nary trait by thresholding the underlying continuous trait such

that the prevalence varied across f0:01%;0:5%;1%g.

Data processing
LD scores were computed from 305;630 SNPs chosen for the sim-

ulations. The LD scores were computed from a random subset of

50;000 individuals in the UK Biobank (the individuals used

in our simulations were a subset of the 50;000 individuals

used for computation of LD score). For analysis of UK Biobank

data, LD scores were computed on 459;792 common SNPs (MAF

> 1%) present on the UK Biobank Axiom array. LD scores were

computed with flags �� l2 and � � ld� wind� kb2000:0.

Summary statistics input to LDSC were generated with PLINK.

We used linear regression to generate summary statistics for
022



continuous traits and categorical traits and logistic regression for

binary traits. In computing summary statistics for traits in the

UK Biobank, we include the following covariates: age, gender,

principal components 1–10, assessment center, and genotype

measurement batch. We used the same covariates as input to

SCORE.

We ran LDSC under default settings with an unconstrained

intercept. In addition to summary statistics, HDL requires eigen-

vectors of the LD matrix. We used the eigenvectors that preserve

90% of the variance of the LD blocks that were released by the

study authors. Computation of the eigenvectors used the same

set of genetic variants as our simulations and 336;000 samples

in the UK Biobank.12
Quality control of UK Biobank data
We restricted our analysis to SNPs genotyped on the UK Biobank

Axiom array, filtering out markers that had high missingness

rate ð> 1%Þ and lowMAF ð< 1%Þ, and we exclude the major histo-

compatibility complex (MHC) region. Moreover, SNPs that fail the

Hardy-Weinberg equilibrium (HWE) test at significance threshold

10�7 were removed. We also filter the samples that have a genetic

kinship with any other sample (samples having any relatives in

the dataset using the field 22021: ‘‘Genetic kinship to other partic-

ipants’’) and restricted the study to samples with self-reported

British white ancestry (field 21000 with coding 1001). After qual-

ity control, we obtained 291;273 individuals and 454;207 SNPs.

We performed similar quality control on the imputed genotypes

in the UK Biobank: filtering out markers with high missingness

rate ð> 1%Þ, low MAF ð< 1%Þ, and HWE p value < 1310�7 and

that fall within the MHC region. After quality control, we ob-

tained 4;824;392 SNPs.

We chose traits that have missingness < 30% and disease traits

with prevalence larger than 0:5%, resulting in a total of 40 pheno-

types consisting of 14 binary traits, three categorical traits, and 23

continuous traits. The 40 phenotypes could be classified into nine

groups: glucosemetabolism and diabetes, socioeconomic and gen-

eral medical information, environmental factor, coronary artery

disease related, autoimmune disorders, psychiatric disorders,

anthropometric, blood pressure and circulatory, and lipid meta-

bolism (Table S10).
Results

Accuracy and robustness of SCORE in simulations

We performed simulations to compare the accuracy of

SCORE to other estimators of genetic correlation under

different genetic architectures. Specifically, we compared

SCORE to methods that use individual data (bi-variate

GREML,2 bi-variate Haseman-Elston regression) and

methods that rely on summary statistics (LD-score regres-

sion [LDSC]7 andHDL12).Bi-variateGREML(GCTA-GREML)

and Haseman-Elston regression (GCTA-HE) are imple-

mented in theGCTAsoftware.LDSC is awidelyusedmethod

toestimategenetic correlationwhenonlysummary statistics

from GWASs on pairs of traits are available. HDL is a recent

summary-statistics-based method that has been shown to

obtain improved statistical efficiency relative to LDSC given

additional information about LD.We ran allmethods on the

same set of SNPs to ensure a fair comparison.
The Am
We performed simulations to assess the estimation accu-

racy of each method by using a subset of 5,000 unrelated

white British individuals in the UK Biobank so that all

the methods could be run in a reasonable time. Unless

otherwise specified, all our simulations used 305;630

SNPs with MAF above 1%. We simulated pairs of traits un-

der a total of 48 genetic architectures: varying heritability

of the pair of traits ðh2
1; h

2
2Þ, genetic correlation ðrgÞ, and

polygenicity (proportion of causal variants shared and

unique to each trait).

The simulations assume that the two traits are measured

on the same set of individuals so that both SCORE and

SCORE-OVERLAP can be applied in this setting. Because

SCORE is a randomized estimator, we first examined the

choice of the number of random vectors (B) on the esti-

mates of rg . First, we confirmed that SCORE (with B ¼ 10

and B ¼ 100 random vectors) and SCORE-OVERLAP yield

nearly identical results across the 48 architectures (Table

S1). Second, we ran SCORE with different choices of

B ¼ 10 random vectors on a single replicate that was simu-

lated under the infinitesimal architecture with trait herita-

bility ðh2
1;h

2
2Þ ¼ ð0:2;0:6Þ, and rg ¼ 0:5.We observe that the

standard deviation of rg estimates across choices of

random vectors is about 18% of the total standard error

(SE), indicating that the choice of B ¼ 10 makes a modest

contribution to variability in rg estimates. These results

lead us to use SCORE with B ¼ 10 as our default.

Across the 48 architectures that we examined, the SE of

SCORE ranges from 0.89 to 1.17 relative to the SE of

GCTA-GREML; the SE of SCORE is 2:5% higher than that

of GCTA-GREML on average (Figures 1). Interestingly,

GCTA-HE tends to have an SE that is 1.38 times that of

SCORE on average (range 1.2 to 1.6). Compared to

methods that rely on summary statistics, LDSC has 1.8

times the SE of SCORE on average (range 1.08 to 2.63),

while the SE of HDL relative to SCORE is 1.24 (range

1.05 to 1.65) (Figure 1, Table S2). The reduction in the SE

of SCORE relative to the summary-statistic-based methods

is equivalent to a 3.24-fold increase in sample size over

LDSC and a 1.56-fold increase in sample size over HDL

on average. We find that the accuracy of SCORE relative

to the other methods is consistent across infinitesimal

(Figure S1) and non-infinitesimal architectures (Figure S2

for medium and Figure S3 for low polygenicity; the bias,

SE, and mean squared error (MSE) of each of the methods

is listed in Tables S3, S4, and S5). We additionally investi-

gated the accuracy of each of the methods across a larger

sample size of 10;000 unrelated white British individuals

chosen so that it was computationally feasible to run all

methods, including GCTA-GREML and GCTA-HE. Under

a non-infinitesimal architecture with medium polygenic-

ity, rg ¼ 0:5 and ðh2
1;h

2
2Þ ¼ ð0:2;0:6Þ. In this larger sample

size, we observe that SEs of GCTA-GREML, GCTA-HE,

and LDSC are 0:97; 1:54, and 2.85 times that of SCORE,

respectively, consistent with our results on a N ¼ 5;000.

We performed additional simulations to investigate the

robustness of SCORE. First, we investigated the impact of
erican Journal of Human Genetics 109, 24–32, January 6, 2022 27



Figure 1. Comparison of the estimates of genetic correlation from SCORE with GCTA-GREML, GCTA-HE, LDSC, and HDL (N ¼ 5;000
unrelated individuals, M ¼ 305;630 SNPs)
(A–D) We simulated pairs of traits under 48 genetic architectures (with varying heritability, genetic correlation, and polygenicity). We
plot the standard error (SE) of each method relative to GCTA-GREML. (A), (B), and (C) display the standard error (SE) of each method
relative to GCTA-GREML as a function of heritability, genetic correlation, and polygenicity, while (D) summarizes the relative SE across
all architectures (see the simulations to assess accuracy section of material andmethods). We ran LDSCwith in-sample LD and HDL with
eigenvectors that preserve 90% variance (see the data processing section of material andmethods). We estimate the standard error of the
relative SE by using Jackknife (error bars denote 1 standard error).
sample overlap under an infinitesimal genetic architec-

ture with rg ¼ 0:5. The SE of SCORE relative to GCTA-

GREML and LDSC remains stable as a function of sample

overlap (Figure S4 and Table S6 for the bias, SE, and MSE

of SCORE, GCTA-GREML, and LDSC as a function of

sample overlap). Second, we verified that the Jackknife

standard error estimate used in SCORE is generally accu-

rate while being conservative for low trait heritability

(Table S7). Third, we verified the false positive rate of

SCORE is controlled in simulations where rg is zero. For

each of 100 replicates in a given genetic architecture,

we computed p values for the two-tailed test of the null

hypothesis that rg is zero. Averaging across all architec-

tures, we observe that the false positive rate (the fraction

of simulations for which the p value < 0:05) is 0.04 (Ta-
28 The American Journal of Human Genetics 109, 24–32, January 6, 2
ble S8). We additionally verified that the false positive

rate in a large-scale simulation ðN¼ 291;273Þ with

different prevalences if one of the traits is binary and

the situation where both traits are continuous. We

observe that the false positive rate is not affected by

the prevalence of binary trait (Table S8). Finally, we eval-

uated the accuracy of SCORE when applied to pairs of

traits where one of the traits is binary while the other

is continuous. We observe that the rg estimates of SCORE

are unbiased across the range of prevalence of the binary

trait (Table S9). Further, the estimates of rg obtained by

SCORE tend to have relatively low SE provided the prev-

alence of the trait is greater than 0:5% (Table S9) so that

we recommend applying SCORE to traits whose preva-

lence is no less than 0:5%.
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Figure 2. Comparison of the runtime of SCORE with GCTA-
GREML and GCTA-HE as a function of the number of samples
The samples were obtained as subsets of unrelated, white British
individuals in the UK Biobank. We plot the runtime of both
SCORE (that can handle any degree of sample overlap) and its
variant, SCORE-OVERLAP (designed for 100% sample overlap).
SCORE runs in a few h on the largest dataset of 291;273 individ-
uals and 454;207 SNPs.
Computational efficiency

We investigated the computational efficiency of SCORE

relative to GCTA-GREML and GCTA-HE. The runtime

and memory usage of summary statistic methods (LDSC

and HDL) depend on the time needed to compute LD

scores and summary statistics of each trait. In addition,

HDL also requires the computation of the singular value

decomposition (SVD) of LD matrices, which is a computa-

tionally expensive step. Thus, we do not include runtimes

for LDSC and HDL in these comparisons. We varied the

number of individuals, while the number of SNPs was fixed

at 454;207. Figure 2 shows that GCTA-GREML and GCTA-

HE could not scale beyond sample sizes greater than

100,000 because of the requirement of computing and

operating on a GRM (we extrapolate the runtime of

GCTA-GREML and GCTA-HE to be about 340 days and

44 days on the set of 291;273 unrelated white British indi-

viduals in the UK Biobank). On the other hand, SCORE ran

in about 1.5 h on the set of 291;273 individuals by using

partial overlap mode with B ¼ 10 random vectors, while

the SCORE-OVERLAP variant ran in about 1 h on the

same dataset.

Application of SCORE to UK Biobank

We applied SCORE to estimate rg for pairs of phenotypes in

the UK Biobank across 291;273 unrelated white British in-

dividuals and 454;207 SNPs (material and methods). We

compared the rg estimates obtained by LDSC versus

SCORE for a subset of 28 traits in which LDSC produced

valid estimates, i.e., traits for which none of the rg esti-

mates were N/A (Figure 3). While the point estimates of

rg from the two methods are highly concordant (Pearson

correlation r ¼ 0:95), the SE of LDSC is about 1.57 times

that of SCORE on average, which is equivalent to a 2.46-

fold increase in sample size via SCORE (see Figures S5

and S6). In total, 192 pairs of traits were detected to have

a significant non-zero rg by both SCORE and LDSC after

Bonferroni correction for all pairs across the original set

of 40 phenotypes ðp< 0:05 =780Þ. Consistent with its

reduced SE, SCORE found 58 pairs with significant rg after

Bonferroni correction that were not detected as significant

by LDSC (p < ð0:05 =780Þ; stars in Figure 3). We conclude

that SCORE obtains improved power to identify statisti-

cally significant genetic correlations relative to LDSC.

We obtain concordant results when analyzing all pairs in

our initial set of 40 traits. Although the point estimates of

SCORE and LDSC are highly correlated (Pearson correla-

tion r ¼ 0:96), the SE of LDSC is about 1.8 times that of

SCORE on average, equivalent to a 3.24-fold increase in

the sample size. In this setting, SCORE found 200 addi-

tional pairs of traits over LDSC (beyond the 245 pairs iden-

tified by both), while LDSC detected one pair as significant

that SCORE did not detect as significant (Figure S7). To un-

derstand the impact of random vectors, we repeated our

analysis with a different set of random vectors and

observed that the Pearson correlation of rg estimates

with the two sets is 0.999 (Figure S11).
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We also analyzed all pairs in our initial set of 40 traits

with HDL by using the set of 305;630 SNPs for which refer-

ence eigenvectors are available.12 The SE of HDL is about

2.53 times that of SCORE on average, which is equivalent

to a 6.4-fold increase in the sample size (HDL failed to

converge for 11% of the pairs where at least one of the

traits is binary). Among these pairs, SCORE found 171

additional pairs of traits over HDL (beyond the 239 pairs

identified by both), while HDL detected 14 pairs as signif-

icant that SCORE did not detect as significant. The sum-

mary of SE ratio of HDL and SCORE is shown in Figure S8.

To gain further insights into SCORE, we examined the SE

of rg estimates for pairs of traits according to whether the

traits were both binary, both quantitative, or had one

member of the pair that was binary while the other was

quantitative. The SE is largest when both traits are binary,

intermediate when one of the traits is binary, and lowest

when both traits are quantitative (average SE: 0.082,

0.035, and 0.02, respectively; Figure S9). We note that

the SE increases when the prevalence of the binary trait de-

creases: the mean SE is 0.017 when the binary trait has

prevalence > 25%, while the mean SE is 0.047 for pairs

in which the binary trait has prevalence< 5% (Figure S10).

We also applied SCORE to imputed genotypes in

291; 273 unrelated white British individuals and

4;824;392 SNPs (MAF > 1%). SCORE required about

19 h to analyze a single pair of traits for imputed SNPs

while requiring about 1.5 h on array SNPs (scaling linearly
erican Journal of Human Genetics 109, 24–32, January 6, 2022 29



Figure 3. Genetic correlation estimates in the UK Biobank
We plot the genetic correlation estimates from SCORE (bottom triangle) and LDSC (upper triangle) across pairs of 28 phenotypes. Larger
filled squares correspond to significant pairs after Bonferroni correction at a 5% significance level, while smaller squares correspond to
pairs that are significant at a 5% significance level but are not significant after accounting for multiple testing. Star indicates pairs that are
found to be significant by SCORE but not by LDSC.
with the number of variants). Because SCORE uses a

streaming approach that does not require all SNPs to be

stored in memory, it is memory efficient, requiring about

2.3 GB to analyze imputed data. The estimates of rg are

largely concordant across array and imputed SNPs (Pearson

correlation of the rg point estimates with two sets of SNPs

is 0.973). We found 423 trait pairs that have significant

non-zero rg estimates (after Bonferroni correction) across

both imputed and array genotypes, while 19 pairs are sig-

nificant only in the analysis of imputed genotypes and

22 pairs are significant in the analysis of array genotypes

(Figure S12).

To further illustrate its utility, we applied SCORE to esti-

mate genetic correlation between coronary-artery-disease-

related traits included in our set of 40 traits (angina and

heart attack) and serum biomarkers (alanine [ALT] and

aspartate aminotransferase [AST]). Serum liver enzyme

levels, including ALT and AST, are markers of liver health

and hepatic dysfunction, and they have been shown to

be associated with cardiovascular disease,20–22 although

the strength and consistency has varied among the

studies.20 We observed significant positive rg between
30 The American Journal of Human Genetics 109, 24–32, January 6, 2
ALT/AST and the two coronary-artery-disease-related traits

(0:25750:04 and 0:16950:032 for angina with ALT and

AST, respectively; 0:23950:053 and 0:14850:04 for heart

attack with ALT and AST, respectively). Our finding of sig-

nificant positive rg suggests that hepatic dysfunction

(higher serum levels of ALT and AST) and coronary artery

disease have a shared genetic component.
Discussion

We have described SCORE, a scalable and accurate esti-

mator of genetic correlation. We observe that the estimates

of genetic correlation obtained by SCORE have accuracy

comparable to GCTA-GREML13 while being scalable to bio-

bank-scale data. SCORE can estimate the genetic correla-

tion across pairs of traits when applied toz500K common

SNPs measured onz300K unrelated white British individ-

uals in the UK Biobank within a few h. In simulations, we

showed that, compared to summary-statistic methods,

SCORE obtains a reduction in the average standard error

of 44% relative to LDSC and 20% relative to HDL,
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equivalent to a 3.24-fold and 1.56-fold increase in sample

size. In application to 780 pairs of traits in the UK Biobank,

SCORE discovered 200 pairs of traits with significant ge-

netic correlation (after correcting for multiple testing)

that were not discovered by LDSC. In application to 780

pairs, SCORE discovered 171 pairs of traits with significant

genetic correlation (after correcting for multiple testing)

that were not discovered by HDL, while HDL discovered

14 significant pairs not discovered by SCORE. It is plausible

that the results of HDL might be altered by the computa-

tion of eigenvectors from the analyzed genotypes,

although such an analysis can be computationally

expensive

The statistical accuracy gain of SCORE relative to LDSC

and HDL can be attributed to several factors. LDSC does

not use all the available covariances among the summary

statistics choosing to only model the variance. The LD in-

formation as summarized by the LD scores involve a num-

ber of approximations. Typically, LD scores are computed

from an external reference panel. Even when in-sample

LD is used (as we have here), computational considerations

lead to the LD scores’ being computed from a subset of the

samples and restricted to SNPs that fall within a fixed-

length genomic window. While HDL models the

covariance structure among the summary statistics,

thereby utilizing additional information relative to LDSC,

HDL relies on approximate computations of LD scores

like LDSC. To enable computational efficiency, HDL also

uses a truncated SVD of the LD score matrix that can

potentially further reduce accuracy.

We discuss several limitations of SCORE. First, SCORE re-

quires access to individual genotype and trait data. Sum-

mary-statistic methods such as LDSC and HDL have the

advantage of being applicable in settings where access to

individual-level data can be challenging. While sum-

mary-statistic methods also have the advantage of being

relatively efficient, it is important to keep in mind that

the summary statistics are dependent on specific choices

of marker sets and covariates. Applying these methods to

different sets of covariates and marker sets requires regen-

erating the summary statistics (and auxiliary information

such as LD score matrices). Second, the model underlying

SCORE assumes a quantitative trait. We have shown

empirically that SCORE provides accurate estimates of ge-

netic correlation when applied to binary traits provided

the traits are not too rare (prevalence > 0:5%). It would

be of interest to extend SCORE to the setting of binary

traits along the lines of the PCGC method.11 Finally, while

SCORE estimates genome-wide genetic correlation, effi-

cient methods that can partition genetic correlation across

genomic annotations can provide additional insights into

the shared genetic basis of traits.
Supplemental information

Supplemental information can be found online at https://doi.org/
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GCTA-GREML and GCTA-HE, https://yanglab.westlake.edu.cn/

software/gcta/

HDL reference panel, https://github.com/zhenin/HDL/wiki/

Reference-panels

HDL software, https://github.com/zhenin/HDL

LDSC software, https://github.com/bulik/ldsc/

PLINK1.9, https://www.cog-genomics.org/plink/2.0

SCORE software, https://github.com/sriramlab/SCORE
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