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Abstract
Background: One of the important insights of quasi-species theory is an error-threshold. The
error-threshold is the error rate of replication above which the sudden onset of the population
delocalization from the fittest genotype occurs despite Darwinian selection; i.e., the break down
of evolutionary optimization. However, a recent article by Wilke in this journal, after reviewing
the previous studies on the error-threshold, concluded that the error-threshold does not exist
if lethal mutants are taken into account in a fitness landscape. Since lethal mutants obviously exist
in reality, this has a significant implication about biological evolution. However, the study of
Wagner and Krall on which Wilke's conclusion was based considered mutation-selection
dynamics in one-dimensional genotype space with the assumption that a genotype can mutate
only to an adjoining genotype in the genotype space. In this article, we study whether the above
conclusion holds in high-dimensional genotype space without the assumption of the adjacency of
mutations, where the consequences of mutation-selection dynamics can be qualitatively
different.

Results: To examine the effect of mutant lethality on the existence of the error-threshold, we
extend the quasi-species equation by taking the lethality of mutants into account, assuming that
lethal genotypes are uniformly distributed in the genotype space. First, with the simplification of
neglecting back mutations, we calculate the error-threshold as the maximum allowable mutation
rate for which the fittest genotype can survive. Second, with the full consideration of back
mutations, we study the equilibrium population distribution and the ancestor distribution in the
genotype space as a function of error rate with and without lethality in a multiplicative fitness
landscape. The results show that a high lethality of mutants actually introduces an error-
threshold in a multiplicative fitness landscape in sharp contrast to the conclusion of Wilke.
Furthermore, irrespective of the lethality of mutants, the delocalization of the population from
the fittest genotype occurs for an error rate much smaller than random replication. Finally, the
results are shown to extend to a system of finite populations.

Conclusion: High lethality of mutants introduces an error-threshold in a multiplicative fitness
landscape. Furthermore, irrespective of the lethality of mutants, the break down of evolutionary
optimization happens for an error rate much smaller than random replication.
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Background
One of the important insights of quasi-species theory is
the existence of an error-threshold [1-3]. The error-thresh-
old is the error rate of replication above which the sudden
onset of the population delocalization from the fittest
genotype occurs despite Darwinian selection; i.e., the
break down of evolutionary optimization. The error-
threshold hampers the evolutionary accumulation of
information through increasing the genome size of the
replicator because a longer genome receives mutations
more frequently for a given error rate [1,4].

A recent article of Wilke reviewed the quasi-species theory
in the context of population genetics [5]. While the use of
quasi-species theory in understanding of virus evolution
is often seen (e.g. [6]), some studies argue that quasi-spe-
cies theory contradicts population genetics, questioning
the pertinence of quasi-species theory in this context (e.g.
[7]). The article by Wilke resolved such misconceptions,
and pointed out the usefulness and the problems of the
current theory of virus evolution.

However, Wilke also argued that the existence of an error-
threshold is one of the "beliefs" about quasi-species the-
ory [5]. To quote: "Can the error threshold occur in a more
realistic fitness landscape that contains lethal genotypes? No.
Wagner and Krall have proven mathematically that the condi-
tion for the existence of an error threshold is precisely the com-
plete absence of lethal genotypes [8]". Since lethal mutants
obviously exist, the above statement has a significant
implication about the relevance of the error-threshold in
biological evolution: in particular, the accumulation of
information. However, the study of Wagner and Krall [8],
on which his conclusion was based, considered mutation-
selection dynamics in one-dimensional genotype space (a
chain of genotypes) with the assumption that a genotype
can mutate only to another genotype adjacent to the orig-
inal one in the genotype space. In contrast, quasi-species
theory explicitly considers high-dimensional genotype
space (i.e., sequence space) with the consideration of both
adjacent and non-adjacent mutations. Since the possibil-
ity of mutations can be considerably greater in the latter
setting, this can give rise to qualitative differences in the
mutation-selection dynamics.

Furthermore, high-dimensional sequence space is a more
realistic (and yet simple) representation of genotype space
than one-dimensional genotype chain in view of a
genome as sequences of DNA (or RNA in some cases).
Thus, the aim of this article is to examine the above state-
ment about the effect of lethality on the error-threshold
by considering high-dimensional genotype space with the
inclusion of non-adjacent mutations.

Results
Model

Before considering the lethality of mutants, let us intro-
duce the quasi-species equation by following [2]. Let a
genotype be a sequence of 0's and 1's (a bit sequence) of

a fixed length ν – then, all possible genotypes form a ν-
dimensional sequence space. Let a certain genotype 0

have the greatest reproduction rate. Let us assume that the
reproduction rate of mutants is a decreasing function of
the number of point mutations (i.e., substitutions) from

0. Let us denote the class of genotypes carrying d substi-

tutions by d, the reproduction rate of d by fd, the pop-

ulation fraction of d by yd and the probability of

mutation from d to e per replication by med. In the

case of e = d, med is reformulated as the probability of cor-

rect replication, plus the mutation probability from one
genotype in d to another genotype in d. Given a suffi-

ciently large population size and asexual reproduction,
the dynamics of yd follows

In the RHS of Eq. (1), the first term is the reproduction of

d, the second term is the mutation fluxes from all other

genotype classes; the last term keeps the total population
size constant. Let us calculate mde by considering only

point mutations. Assuming that the probability of correct
replication per character per replication – let us denote
this by q – is uniform along the sequence location and
constant among genotypes, the mutation probability mde

is

where c = {min(e + d, 2ν - e - d) - |e - d|}/2 (see [2]). Note
that a mutation in the current model can be composed of
multiple substitutions (non-adjacent mutation) because
the average number of substitutions per replication, (1 -
q)ν (commonly denoted by U in the population genetics
theory), can be greater than 1. Below, we introduce the
lethality of mutants in Eq. (1). A lethal mutant is here
defined as a mutant which dies no later than it is born. If
epistatic interactions between sites in a genome are com-
pletely absent in terms of the lethality, some sites can be
fixed as lethal sites, and the others as non-lethal sites. By
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excluding these lethal sites from the consideration, the
model can be treated as if there are no lethal mutants.
Models without lethal mutants have been already studied.
For example, it was shown in [9] that, for multiplicative
fitness landscape, the population is delocalized without
an error-threshold (without any sudden transition-like
behavior) as the mutation rate increases. Instead, we here
consider the case of fully epistatic interaction by assuming
that the non-lethal mutants are uniformly distributed in
the genotype space. Let κ denote the fraction of non-lethal
mutants in the genotype space. Then the lethality is
defined as 1 - κ, which takes a value between 0 and 1.
Then, Eq. (1) becomes

where d denotes , which is the

fraction of non-lethal mutants in d excluding one non-

lethal mutant (but d = 0 or ν = 0 by definition). The last

term of Eq. (2) keeps the population size constant, and Φ

is . This term

differs from the last term of Eq. (1) because lethal mutants
do not contribute to the population in Eq. (2). This com-
pletes the formulation of the model.

The mathematical definition (detection) of error-thresh-
old has been extensively discussed in literatures (e.g., see
[10]). In the current study, we first adopt the same crite-
rion as that employed in the study of Wagner and Krall
[8], on which the conclusion of Wilke [5] is based, for
comparison. In this criterion, by neglecting back muta-
tions, the error-threshold can be calculated as the maxi-
mum allowable error rate for which the fittest genotype
can survive [3,8,11,12]. Later, taking full consideration of
back mutations, we study the effect of lethality on the
error-threshold by examining the equilibrium population
distribution and the ancestor distribution in the genotype
space as a function of error rate.

Error-threshold in the model without back mutations

In this section, we study the effect of lethality on the error-
threshold by following the criterion of the error-threshold
employed in [8]. In this criterion, the error-threshold is
calculated as the error rate above which the fittest geno-
type cannot survive without back mutation. A back muta-
tion is defined as a mutation which increases the fitness of
a genotype as in [8]. For 0 to survive without back muta-

tions, 0 must be able to invade at least 1; i.e., the net

reproduction rate of 0 per individual must be greater

than that of 1. From Eq. (2), this condition reads f0qν >

f1qν + f1 1(m11 - qν), and hence,

f0qν > f1qν + f1 1(ν - 1)qν - 2(1 - q)2.  (3)

In Eq. (3), the second term of RHS represents the flux by
a mutation which simultaneously repairs the site carrying
deleterious bit and destroys another site carrying a correct
bit.

Eq. (3) is a necessary (but not sufficient) condition for the
survival of 0 without back mutations. However, since

our objective is to examine whether the lethality of
mutants nullifies the existence of an error-threshold, the
necessary condition suffices. From Eq. (3), one obtains

as the condition for the survival of 0. This sets the error-

threshold (1 - qmin).

The error-threshold derived as Eq. (4) disappears for qmin

< 1/2, where completely random replication suffices for
the survival of 0. The condition on lethality for qmin < 1/

2 is calculated as 1 < (f0/f1 - 1)/(ν - 1), and thus κ < (f0/

f1)/ν[note that when κ approaches to (f0/f1)/ν, the enu-

merator and denominator of the RHS of Eq. (4) both
approach to zero, and the RHS approaches to 1/2]. Due to

the division by ν, κ must be quite small; i.e., the lethality

(1 - κ) must be very high for this condition to hold. Fur-

thermore, when κ = (f0/f1)/ν, the number of non-lethal

genotypes in 1 is κν = (f0/f1). Since f0/f1 is most likely

close to 1 – in the population genetics terminology, s =
ln(f0/f1) where s is the selection coefficient – this means

that there is actually only one non-lethal genotype in 1,

which is a special case (in this case, the second term of the
RHS of Eq. (3) disappears). Thus, we conclude that the
error-threshold as defined above exists also with high
lethality of mutants.

The essential reason of the existence of an error-threshold

obviously comes from the term d(mdd - qν) in Eq. (2),

i.e., the mutation within the same genotype class. Due to
this term, the mutation rate of mutants is effectively lower
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than that of 0. The mutation within the same genotype

class is possible because more than one substitutions can
happen per replication. As is clear from this analysis, mul-
tiple substitutions can play a significant role close to the
error-threshold (see also [13]).

A significant aspect of error-threshold is that it hampers
the accumulation of information through increasing the
genome size of the replicator. This is the case if it becomes
harder to maintain 0, a genome with all sites carrying a

correct character, by Darwinian selection as the genome
size increases. In the next, we examine the effect of
lethality on the relationship between the error-threshold

and replicator genome size (ν). In Fig. 1(A), the error-
threshold derived as Eq. (4) is plotted against sequence

length ν for various values of  by assuming that f0/f1 is

constant for different values of ν. As shown in Fig. 1(A),

first, a decrease in  increases the error-threshold. Sec-
ond, however, the negative dependency of the error-

threshold on ν persists for each value of ; i.e., the con-

dition on q for 0's survival becomes harder as ν
increases. The first result is understood because the effect

of mutation between the same genotype class, 1(m11 -

qν), becomes smaller as  decreases. The second result is

explained as follows. As ν increases, the average number

of substitutions per sequence per replication, ν(1 - q),
increases. Thus, the contribution of mutation between the
same genotype class to the net reproduction rate,

f1 1(m11 - qν), becomes relatively greater compared to

that of perfect replication, f1qν. This results in the greater

advantage of mutants, and hence the error-threshold
becomes more severe.

For the result in the previous paragraph to hold, it must be
assumed that f0/f1 (intensity of selection) does not

increase as ν increases. However, this is fulfilled rather
easily: The constancy of f0/f1, in response to the increase of

ν, assumes that every addition of one correct character to

0 results in the multiplicative increase of 0's reproduc-

tion rate; however, this is hardly realistic, not to mention
the increase of f0/f1 (cf. [4,12]). In the next paragraph, this

point is further elaborated.

A consequence of constant f0/f1 relative to a change in ν
can be seen in Fig. 1(B), which shows that a longer
sequence can tolerate, actually, a greater genomic muta-
tion rate per replication, in contrast to the results of

[3,14]. This is illustrated from a different aspect by Fig.
1(C), as it shows that for a given genomic mutation rate
per replication, a longer genome can be maintained with
a smaller value of f0/f1 (see the explanation in the caption

too). These observations are due to the fact that, under the
assumption of constant f0/f1, the reproductive advantage

of 0 relative to the completely randomized non-lethal

genotypes  (in other words, relative to the consensus

sequence when 1 - q = 0.5) increases exponentially as ν
increases. If this relative advantage of 0 (i.e., f0/ ) is

kept constant, the results qualitatively differ as shown in
Fig. 1(B,D). In particular, the maximum tolerable

genomic mutation rate per replication [i.e., (1 - qmin)ν]

becomes independent of ν, as is the case in [3,14]. Back to
the results of the second-to-last paragraph, the fact that

the negative dependency of the error-threshold on ν holds

even in the case of constant f0/f1, while (1 - qmin)ν, how-

ever, increases as ν increases, emphasizes the generality of
this result.

Error-threshold in the model with back mutations
In this section, we will examine the effect of lethality on
the distribution of the population in the genotype space
with the full consideration of back mutations. It is
assumed in the following that the fitness landscape is
multiplicative; i.e., fd decreases exponentially with d (fd =
0.99d).

The stationary solution of Eq. (2) can be calculated as a
normalized eigen vector associated with the greatest eigen
value of the matrix representing the linear part of Eq. (2)
[15,16]. First, the stationary solution was calculated with-
out the lethality of mutants as depicted in Fig. 2 (the ana-
lytical solution is known [9]). As Fig. 2 shows, the
population fraction of every genotype rapidly and
smoothly converges to the same limiting value, which is
the population fraction for completely random replica-
tion (i.e., the population fraction when 1 - q = 0.5). [The
above observation does not differ qualitatively when the
fitness landscape is steeper (say fd = 0.9d), or when

sequence length is different – the convergence is faster
when sequence length is longer (see below)]. Thus, it can
be said that the population is delocalized from the fittest
genotype for error rates sufficiently high but yet much
smaller than that of completely random replication – evo-
lutionary optimization breaks down. Furthermore, the
population distribution does not show any discontinuous
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Relationship between the error-threshold and various parametersFigure 1
Relationship between the error-threshold and various parameters. Lines are calculated from Eq. (4) of the model without back muta-
tion. The notation and parameters are as follows (unless stated otherwise): The broken line is for 1 = 0.05; the solid line is for 1 = 0.5; the 

dotted line is for 1 = 1.0; f0/f1 = 0.99-1. Points (circles and plus signs) are calculated through the comparison of the first and second greatest 
eigen values of the model with back mutation [see "How high must lethality be to introduce an error-threshold" and Fig. 4(A) for details]. κ = 
0.05 (the same as in Fig. 3) and fd = 0.99d, unless stated otherwise. Note that Eq. (4) is the necessary condition of the error-threshold without 
back mutation, and thus, it overestimates 1 - qmin compared to the calculation through the comparison between the eigen values. (A) Relationship 
between the error-threshold and sequence length. The graph shows that the error-threshold becomes smaller as ν increases. Note the faster 
decrease shown by the circles compared to that by the dashed line. Although there is a scaling between ν and  for the lines, as seen from (ν 
- 1) term in Eq. (4), this is merely due to the fact that only 0 and 1 are considered in Eq. (4). (B) Relationship between the maximum toler-

able genomic mutation rate per replication [i.e., (1 - qmin)ν] and ν. The graph shows that (1 - qmin)ν increases as ν increases if f0/f1 is kept constant 

(the thick lines and the circles), but also shows that this does not hold if f0/  is kept constant (the thin lines and the plus signs). f0/  repre-

sents the relative reproductive advantage of the fittest genotype compared to the perfectly randomized genotype which is not lethal. The thin 
lines are obtained by setting f0/  to a constant value such that it coincides with the corresponding thick line at ν = 20; i.e., 

, and f0/f1 is calculated as  by assuming a multiplicative fitness landscape. The circles are for a constant f0/f1. The 

plus signs are obtained by setting f0/  to a constant value such that it coincides with the circles at ν = 20 [ ; thus, fd = 

0.99(20/ν)d]. (The lines for 1 = 0.5 are not shown for visibility.) (C) Relationship between (1 - qmin)ν and the intensity of selection f0/f1. The graph 
shows that for a given value of f0/f1, a longer sequence can tolerate a greater (1 - qmin)ν. In other words, for a given value of (1 - q)ν, a longer 
sequence can be maintained (i.e., 1 - q is below the error-threshold) for a smaller value of f0/f1. The thick lines and circles are for ν = 80. The thin 

lines and plus signs are for ν = 40. For all plots, fd = (f0/f1)-d. (The lines for 1 = 0.5 are not shown for visibility) (D) Relationship between (1 - 

qmin)ν and f0/ . The graph shows that for a given value of f0/ , (1 - qmin)ν does not differ between different sequence length (this is compara-

ble to the results of [3, 14], and note a parallelism between f0/  and the superiority parameter σ defined there). For κ = 0.05 (dashed lines), 

there is still a noticeable difference, but this is due to the fact that only 0 and 1 are considered to obtain them although (1 - qmin)ν is large. 

[compare this result with the circles and plus signs, which are obtained by considering all d (0 ≤ d ≤ ν) for almost the same value of κ]. For all 

plots, fd = (f0/ )(-2/ν)d. The notation and the rest of parameters are the same as those in (C). (the lines for ν = 40 and ν = 80 are almost on top 

of each other for 1 = 0.5 and 1.0.)
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transition, and thus there is no error "threshold" as
already stated in [9]. The next step of the study is to exam-
ine the effect of the lethality of mutants on the behavior
of Eq. (2). The stationary solutions of Eq. (2) were numer-
ically calculated with lethality. A typical result of calcula-

tion is depicted in Fig. 3 for high lethality [κ = 0.05;

however, note that Round  is used as the

actual value of κ for each d in Eq. (2), where Round(x)

is the closest integer of x. In the following this is true
unless otherwise indicated]. As Fig. 3 shows, the popula-
tion fraction of the fittest genotype shows a sharp transi-
tion at some critical error rate in contrast to the case
without lethality, and the population distribution sud-
denly converges to the same value around this transition.
[The above observations do not differ qualitatively when
the fitness landscape is steeper (say fd = 0.9d) or when

sequence length is different – the transition is sharper
when sequence length is longer (see below).] Therefore,
the lethality of mutants can actually introduce an error-
threshold in sharp contrast to the conclusion of [5,8], and
furthermore, even with high lethality of mutants the pop-
ulation can still be delocalized from the fittest genotype
although the error rate for this to happen is higher than
the case without lethality.

Below, we study the emergence of an error-threshold due
to the lethality of mutants and the delocalization of pop-
ulation in more detail.

How high must lethality be to introduce an error-threshold?
As seen above, high lethality of mutants can, in fact, intro-
duce an error-threshold. In the following, we elucidate the
relationship between lethality and the error-threshold by
extending the characterization of the error-threshold. The
method employed for this sake, which was introduced in
[17], is as follows. The difference between the greatest
eigen value and the second greatest eigen value of the lin-
ear part of Eq. (2) becomes minimum at the error-thresh-
old, and hence, this provides a convenient measure of the
error-threshold. As Fig. 4(A) shows, there is an error rate
for which the greatest eigen value becomes very close to
the second greatest eigen value for a sufficiently small
value of κ and this error rate is identified as the error-
threshold. However, for a greater κ, the difference
between the two eigen values does not become very small,
and this corresponds to the absence of the error-threshold
for a high value of κ. However, it is noteworthy that the
characteristic shape of the curves in Fig. 4(A) is present for
all κ < 1 shown in the figure, and therefore it is possible to

identify a distinctive error rate for which the difference
between the eigen values is minimum.

Effect of sequence length on the error-threshold

To examine the effect of sequence length on the error-
threshold, the error-threshold measured through the
above method is plotted for various sequence length in

Fig. 1(A) (filled circles) for high lethality of mutants (κ =
0.05). As is clear from this plot, the error-threshold

decreases as ν increases. Furthermore, as shown by Fig.
1(B) (circles), the maximum tolerable genomic mutation

rate [i.e., (1 - qmin)ν] increases as ν increases, which

strengthen the last result [see also Fig. 1(C) in terms of f0/

f1]. As discussed previously, the increase of (1 - qmin)ν is

due to the assumption of a constant f0/f1 with respect to ν,

under which f0/  increases exponentially as ν increases.

If f0/  is kept constant, (1 - qmin)ν actually decreases and

then saturates as ν increases as shown in Fig. 1(B), which
is comparable to the result of [3,14] [see also Fig. 1(D)].
Thus, these results are in concordance with the results
from Eq. (4). In conclusion, the error-threshold depends

negatively on ν even under the assumption of constant f0/

f1.

Effect of lethality on the ancestor distribution

Above, the effect of lethality on the mutation-selection
dynamics was studied in terms of the equilibrium popula-
tion distribution. From the evolutionary point of view,
however, it will add significant information to study this
in terms of the genealogical success of each genotype in an
evolutionary time scale. The "ancestor distribution" [18]
reveals which ancestral genotype (or genotype class) the
current population has originated from. By following
[18], the ancestor distribution is defined as

, where ad(τ, t) is the fraction

of the population at time t + τ (τ > 0) of which lineage is
traced back to the population of the genotype class d

present at time t. The calculation of ad(∞, ∞) is explained

in [18] in detail (see also [19,20] for the treatment of the
same concept by statistical mechanics).

The average Hamming distance of the ancestor distribu-

tion from the fittest genotype, , is plotted

for various values of κ as a function of error rate in Fig.
4(B) (solid lines). As shown in this plot, the average dis-
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tance of the ancestors is close to zero for a sufficiently
small error rate; that is, after a sufficiently long time
almost the entire population has originated from the fit-
test genotype – evolutionary optimization is effective.
However, as error rate increases, the average distance of
the ancestors rapidly approaches to a half of the sequence
length (50/2 in the current setting) irrespective of the

degree of lethality (1 - κ). This means that for a sufficiently
high error rate, the population has mostly originated from

near random sequences – evolutionary optimization
breaks down. In conclusion, the ancestor distribution
clearly illustrates the genealogical delocalization of the
population at a sufficiently high error rate irrespective of
the lethality of mutants, as is consistent with the results
from the equilibrium population distribution. Further-
more, as seen in the same plot [Fig. 4(B)], for high

lethality of mutants (a small value of κ), there is clearly a
sharp transition in the average distance of the ancestors,

Equilibrium population distribution without lethalityFigure 2
Equilibrium population distribution without lethality. The stationary solution of Eq. (2) without lethality. The figure 
shows the delocalization of the population from the fittest genotype for high error rates and the absence of the error-thresh-
old. (A) The population fraction of each genotype class (yd) is plotted against the error rate (1 - q). The black line is for y0. The 

gray lines are for yd (0 <d ≤ ν). A succession of the genotype class is observed as 1 - q increase ( 0 is maximum at 1 - q ≈ 0, 

then 1, 2, 3, � as 1 - q increases.) (B) The logarithm of the population fraction of each genotype, log(yd/( )), is 

plotted against 1 - q (instead of that of a genotype class). The black line is for d = 0. The gray lines are for 0 <d ≤ ν [from top 
to bottom, lines are for d = 0,1, 2, ...]. The graph depicts the convergence of the population fraction of every genotype to the 

limit , which is the population fraction of a genotype for q = 0.5. (C) dlog y0/d(1 - q) is plotted against 1 - q. 

For all graphs, the parameters are as follows, ν = 50. fd = 0.99d. κ = 1.
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which identifies the error-threshold. In conclusion, as is
consistent with the results from the equilibrium popula-
tion distribution, the ancestor distribution shows the
existence of an error-threshold for high lethality of
mutants in a multiplicative fitness landscape. In fact, the
error-threshold is sharper in the ancestor distribution
[20].

Effect of finite populations
To examine the above results without the assumption of
infinite population size, we study the role of lethality
(with back mutations) in relatively small finite popula-
tions by focusing on the the ancestors of the population
(see [17,21,22], for the study of the error-threshold in
finite populations in terms of the equilibrium population

distribution). However, in the system of a finite popula-
tion, the entire population will share a single last com-
mon ancestor after a sufficiently long time in contrast to
the system of infinite population. Thus, instead of the
ancestor distribution, here we study the distribution of the
common ancestors of the population (the last common
ancestor and its ancestors).

We constructed a finite population model which follows
mutation-selection dynamics described by Eq. (2), by
basically following the implementation described in [13].
In the current model, lethality was implemented as dis-
carding a new born individual which is determined as a
lethal mutant. For simplicity, determining a new born as
a lethal mutant was implemented as a chance event with

Equilibrium population distribution with high lethalityFigure 3
Equilibrium population distribution with high lethality. Similar plots as in Fig. 2, but with high lethality of mutants. The 
figure displays the existence of the error-threshold, and the delocalization of the population from the fittest genotype. The blue 
dashed line is placed in Fig. 3(A,B) at the error rate for which dlog y0/d(1 - q) is locally minimum as depicted in (C). For all 

graphs, the parameters are as follows. ν = 50. fd = 0.99d. κ = 0.05; however, for each d, Round  is used as 

the actual value of κ in Eq. (2), where Round(x) is the closest integer of x. (Thus, κ = 0 for ν, and then fν is set to zero to be 
consistent).
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the probability of 1 - κ; thus, genotypes were not explicitly
assigned as lethal genotypes. The population size was
approximately 105, and ν = 50 (thus, the population size
is far smaller than the number of possible sequences), and
fd = 0.9 × 0.99d (the probability of replication per time
step).

In the above model, the average Hamming distance
between the fittest genotype and the common ancestors
was calculated after sufficiently long simulation steps (5 ×
105 steps). In Fig. 4(B) (dots), a typical result of such a cal-
culation is plotted for high lethality of mutants (κ = 0.05)
as a function of error rate. As seen from this plot, the dis-
tance of the common ancestors matches very well with the
distance of the ancestor distribution from the infinite
population model [Fig. 4(B), the thick solid line] for small
and large error rates, exhibiting the genealogical delocali-
zation of the population for high error rates. Moreover, as
seen in the same plot, the distance of the ancestor distri-
bution suddenly increases at a critical error-rate, which
indicates the existence of a error-threshold. This error-

threshold is smaller than that of the infinite population as
expected [17,21,22]. We next take a closer look at the
finite population model for error rates between the error-
threshold of the infinite population model and that of the
finite population model. In Fig. 4(C), the distance of the
common ancestors obtained from the finite population
model is plotted against the time step at which the com-
mon ancestors were born [the error rate chosen for this
plot is indicated by the arrow in Fig. 4(B)]. As seen from
this plot, there are two meta-stable modes in the common
ancestor distribution. One mode corresponds to the
ancestor distribution of the infinite population model
below the error-threshold (ordered mode); the other cor-
responds to that above the error-threshold (disordered
mode). Apparently, due to the stochasticity and the prox-
imity of the two greatest eigen values [see Fig. 4(A)], the
common ancestor distribution randomly switches
between the two modes. [When the error rate is close to
the error-threshold of the infinite population model, the
system shows almost always the disordered mode.] The
above results show that the system of a finite population

Identification of the error-thresholdsFigure 4
Identification of the error-thresholds. (A) The difference between the greatest and the second greatest eigen value (Δλ) 
is plotted against the error rate (1 - q). The error rate for which Δλ is minimum can be identified as the error-threshold, ν = 
50 and fd = 0.99d. The value of κ is indicated in the graph. [The actual value of κ is determined in the same way as in Fig. 3, and 

this is true in this figure unless otherwise stated.] For κ = 1, the line is thicker. (B) The average Hamming distance of the 

ancestor distribution from the fittest genotype, , is plotted against 1 - q. The figure depicts the genealogical 

delocalization of the population from the fittest genotype for high error rates irrespective of the lethality of mutants, and the 
clear existence of the error-threshold for high lethality of mutants. The thick solid line is for κ = 0.05. The other solid lines are 
for κ = 1, 0.3, 0.2, respectively from left to right. The stars represent the average Hamming distance between the common 
ancestors and the fittest genotype obtained from the finite population model (see text). Note that the ancestors from the early 
simulation (< 10000) steps were discarded to consider the system only at an equilibrium. κ = 0.05. The arrow represents a 
simulation run which is depicted in (C). (C) The Hamming distance of the common ancestors is plotted against the time step 
at which the common ancestors were born. The meta-stability is observed as random switching between two modes. The plot 
was obtained from the simulation run indicated by the arrow in (B). 1 - q = 0.025.

add
∞ ∞( )=∑ ,

0
ν

Page 9 of 11
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:15 http://www.biomedcentral.com/1471-2148/7/15
also displays a transition-like behavior in the distribution
of the common ancestors although in a qualitatively dif-
ferent manner from that of the ancestor distribution of the
infinite population model. In conclusion, the error-
threshold exists for high lethality of mutants also in the
finite population model.

Discussion
In the current study, high-dimensional genotype space
and multiple substitutions per replication were taken into
consideration, in order to investigate the effect of mutant
lethality on mutation-selection dynamics. On one hand,
the model was analyzed by neglecting back mutations to
compare the results with [8]. The results showed the
extinction of the fittest genotype can happen even with
high lethality of mutants because of mutations within the
same genotype class. On the other hand, the model was
analyzed with the consideration of back mutations from
three aspects. The first aspect is the equilibrium popula-
tion distribution, which tells the state of the population at
one moment after a sufficiently long time. The second
aspect is the difference between the greatest and second
greatest eigen values, which represents the aspect of singu-
larity in the population distribution as a function of error
rate. The last aspect is the ancestor distribution. This tells
the genealogical description of the population in a long
time scale, which is significant information from the
point of view of evolution. The results showed that the
investigations from these three aspects give a consistent
picture about the error-threshold introduced by high
lethality of mutants and about the delocalization of the
population from the fittest genotype for a sufficiently high
error rate irrespective of the lethality of mutants. Further-
more, the effect of a finite population was studied, and
our results were shown to extend to the system of finite
populations.

Four additional points should be noted in the current
study. First, the biological implication of the error-thresh-
old is that it hampers the accumulation of information
through increasing the genome size of the replicators
[1,4]. In the case of low lethality of mutants, it was shown
that there is no error-threshold in a multiplicative fitness
landscape. However, this does not mean that the accumu-
lation of information is not hampered; on the contrary, it
is hampered by the delocalization of the population from
the fittest genotype. Second, the population size was
assumed to be constant as is often done. An artifact of this
simplification is, among others, the impossibility of pop-
ulation extinction. Third, the fitness was assumed to be a
function of the number of substitutions (d) so that the
grouping of genotypes by d is straightforward. For other
settings, one can consult [23], which estimates the error-
threshold in a fitness landscape where the fitness of a gen-
otype is determined from a probability distribution.

Forth, the error-threshold was considered only in terms of
the fittest replicator. However, the error-threshold can be
also considered for mutant classes (e.g. [22,24]). As
shown in [22] for "Royal Road fitness landscape", if the
error rate is beyond the error-threshold of the fittest, the
population can still be localized in sequence space albeit
at a lower fitness level, for which a new error-threshold
again exists.

Conclusion
• Irrespective of the lethality of mutants, the delocaliza-
tion of the population from the fittest genotype – the
break down of evolutionary optimization – happens for
an error rate much smaller than that of random replica-
tion.

• High lethality of mutants introduces an error-threshold
in a multiplicative fitness landscape.
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Quasispecies theory [25-27] is a deterministic theory of
mutation-selection balance for multi-site models, applica-
ble in particular but not exclusively to settings of high
mutation pressure, such as the evolution of RNA viruses.
The theory has often been perceived as an alternative to
and possibly even contradictory to classical population
genetics. In a recent review [28], I tried to clear up these
misconceptions, and demonstrated that the quasispecies
equations are equivalent to the equations used in popula-
tion genetics to describe the deterministic evolution of
asexual replicators. I also touched on the error threshold,
probably the most widely discussed and at the same time
most frequently misunderstood aspect of quasispecies
theory. I argued that the existence and location of the error
threshold are not universal, and that the error threshold is
not related to population extinction. Moreover, citing a
proof by Wagner and Krall [29], I claimed that an error
threshold cannot occur if a fitness landscape contains
lethal genotypes.

Takeuchi and Hogeweg [30] now present a counterexam-
ple to my claim, a fitness landscape on which an error
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threshold occurs even though lethal genotypes exist. This
finding does not invalidate Wagner and Krall's work, but
it demonstrates that we cannot generalize Wagner and
Krall's result – derived for a one-dimensional fitness land-
scape – to higher dimensions. Takeuchi and Hogeweg's
result is a welcome contribution to the quasispecies liter-
ature, and it reminds us that generalization from simpli-
fied mathematical models to more complex situations can
be dangerous. However, this result is of minor conse-
quence to my review. The main conclusions in my the sec-
tion on error thresholds remain valid: (i) Whether an
error threshold exists depends on the details of the fitness
landscape. For example, as Takeuchi and Hogeweg
acknowledge, the purely multiplicative fitness landscape
does not display an error threshold. (ii) If an error thresh-
old exists, its location depends on the details of the fitness
landscape as well. This fact is demonstrated for example in
Fig. 1 of Takeuchi and Hogeweg's article. (iii) Most impor-
tantly, the error threshold is not related to publication
extinction. Population extinction occurs when the abso-
lute population size N drops to zero. Models of the error
threshold, including the one by Takeuchi and Hogeweg,
generally operate on relative mutant frequencies while
holding the total population size N constant. If we gener-
alize the quasispecies equations to allow for variable N,
we find – in the deterministic limit, i.e., for large N – that
population extinction is not tied to the error threshold
[31,32]. In fact, under certain conditions, an error thresh-
old may delay or even prevent population extinction
brought about by an increase in the mutation rate [32].

To summarize, while Takeuchi and Hogeweg make a valid
and important contribution to our understanding of error
thresholds, their work does not affect my conclusions on
the relationship between quasispecies theory and popula-
tion genetics, nor does it invalidate in any substantive way
the statements I made about error thresholds.
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