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Abstract

Computational protein design is a reverse procedure of protein folding and structure prediction, where constructing
structures from evolutionarily related proteins has been demonstrated to be the most reliable method for protein 3-
dimensional structure prediction. Following this spirit, we developed a novel method to design new protein sequences
based on evolutionarily related protein families. For a given target structure, a set of proteins having similar fold are
identified from the PDB library by structural alignments. A structural profile is then constructed from the protein templates
and used to guide the conformational search of amino acid sequence space, where physicochemical packing is
accommodated by single-sequence based solvation, torsion angle, and secondary structure predictions. The method was
tested on a computational folding experiment based on a large set of 87 protein structures covering different fold classes,
which showed that the evolution-based design significantly enhances the foldability and biological functionality of the
designed sequences compared to the traditional physics-based force field methods. Without using homologous proteins,
the designed sequences can be folded with an average root-mean-square-deviation of 2.1 Å to the target. As a case study,
the method is extended to redesign all 243 structurally resolved proteins in the pathogenic bacteria Mycobacterium
tuberculosis, which is the second leading cause of death from infectious disease. On a smaller scale, five sequences were
randomly selected from the design pool and subjected to experimental validation. The results showed that all the designed
proteins are soluble with distinct secondary structure and three have well ordered tertiary structure, as demonstrated by
circular dichroism and NMR spectroscopy. Together, these results demonstrate a new avenue in computational protein
design that uses knowledge of evolutionary conservation from protein structural families to engineer new protein
molecules of improved fold stability and biological functionality.
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Introduction

Computational protein design aims to identify new amino acid

sequences that have desirable 3-dimensional (3D) structure and

biological function. This can be considered as a reversed

procedure of protein folding and protein structure prediction, in

that protein folding and protein structure prediction aim to deduce

the 3D structure from given amino acid sequences. In protein 3D

structure prediction, it has been well-established [1–2] that the

most reliable and accurate models are those constructed by

homology modeling which copies and refines structural frame-

works from evolutionarily related proteins for the template-based

modeling targets. The sequence profiles, which scale the evolu-

tionary conservation/mutation characteristics of protein families

in a form of a L620 matrix [3], play a central role in improving

the alignment accuracy of structural template identifications [4–5].

On the other hand, ab initio folding approaches, which try to fold

proteins using physics-based force fields, work well only occasion-

ally for small proteins (,100 residues) with low resolution

(RMSD.3–5 Å) [6–8]. The difficulty of the physics-based ab

initio approaches was generally considered to be due to the

inaccuracy of force field design and the limits of the conforma-

tional search [9–10]. Recently, a super-long time (.100 ms)

molecular dynamics simulation by Raval et al [11] demonstrated

that the conformational search is a factor of less impact to the

failure to protein folding and structure refinement compared to the

force field accuracy. Zhang et al [12] and Mirjalili et al [13]

further showed that the spatial restraints from structural templates

can help improve the energy funnel of the physics-based force field

and guide the molecular dynamics simulation for structure

refinements. However, these refinements are limited to fine-tuning

the local structure details and are far from topology-level

improvements.

Somewhat in paradox, the physics-based force field, which has

been exploited in most of current approaches [14–21], seems to

work well on protein designs. A number of newly designed
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proteins with improved structural stability and/or biological

functionality have been reported [14,22–25]. One of the reasons

for the success is probably due to the iterative searching

simulations, which reinforce the match of the designed sequence

with the target structure that can result in a simplified energy

landscape of the design sequence. As a result, the folding accuracy

of structural models on the designed sequences can be significantly

increased compared to that encountered in structure prediction of

natural proteins [18,26]. To further improve the biological

specificity of designed sequences, Floudas and co-workers recently

introduced constraints from sequence homology search, including

charge, amino acid content and residue frequency, to guide the

physics-based sequence designs [25,27–29]. Nevertheless, many of

the physics-based designs are structurally and thermodynamically

less well-defined than natural proteins [14,30]. Similar to the

protein folding problem, one major difficulty stems from the

inaccuracy of the force field to balance the subtle atomic

interactions and to distinguish the unique structures from

alternatives, especially for the medium-to-large size proteins. In

addition, the exponential increase in sequence phase space with

protein size L (,20L) is prohibitive for direct design enumerations.

To address these issues, we propose an evolution-based protein

design method, whereby sequence space search is constrained by

the sequence and structural profiles collected from protein analog

families, with local side-chain packing accommodated by neural-

network based solvation and secondary structure predictions. The

principle of the approach follows the critical lessons that we learnt

from threading-based protein structure prediction methods, i.e. to

use the reliable ‘‘finger print’’ of nature in the form of structural

profile information to guide the simulation to the fold of the target

scaffold structure.

To examine the generality of the approach, we compared a

combined evolutionary and physics based method (EBM) against a

stand-alone physics-based design method [19], termed PBM, on a

large set of proteins using computational protein structure

prediction methods to test the foldability and physicochemical

compatibilities of the designed sequences. As a case study of large-

scale applications, the EBM method was extended to redesign all

proteins from the pathogenic bacteria Mycobacterium tuberculosis

(MTb), which is the second leading cause of death from infectious

diseases [31]. Finally, a handful of designed domains were

expressed, purified and biophysically characterized by circular

dichroism (CD) and NMR spectroscopy experiments for various

folding feature validations.

Results

The outline of our protein design procedure is shown in

Figure 1, which consists of structural profile construction and the

profile-guided Monte Carlo sequence space searching simulation.

The final designed sequence of the lowest free-energy is identified

by sequence-based clustering (see Materials and methods). The test

set contains 87 proteins randomly collected from the PISCES

server [32] with cutoffs of resolution #1.6 Å and sequence identity

#30%. Visual inspection was further performed to retain proteins

with globular folds since many proteins of irregular shape are

unstable on their own. The length of the proteins varies from 52 to

197 residues. As per SCOP, this set includes 17 alpha proteins (a),

22 beta proteins (b), 14 alpha/beta proteins (a/b), 32 alpha and

beta proteins (a+b), and two small proteins with little secondary

structure.

Rational of folding simulations for protein design
verifications

To evaluate the likelihood of the designed sequences to fold into

stable and desired structures (or the foldability), we exploited the I-

TASSER pipeline [33–34] to generate structural models for each

of the designed sequences and then examine the structural

similarity to the target scaffold, where all homologous templates

to the scaffold sequence were excluded from the threading

structure library. Here, one reason for the choice of the

computational folding approach for validation is that experimental

validations are generally too expensive for large-scale protein

design experiments.

Second, the current ab initio folding methods have limited ability

to fold protein structures beyond 100 residues. In contrast, the I-

TASSER pipeline has a high success rate (,3/4) to construct

correct folds for medium-to-large sized proteins by structurally

reassembling the fragments excised from threading template

structures without using homologous templates, as demonstrated

by the recent community-wide CASP experiments [35–38]. In a

most recent study of the I-TASSER based design validation [19], it

was shown that none of the randomized sequences, even with

sequence identity to the target higher than the well-designed

sequences and having the same secondary structure propensities as

the targets (i.e. obtained by integrating segments cut from other

PDB structures that had the same secondary structure), could be

folded by I-TASSER to a model below 6 Å to the target structures,

with the average RMSD to target being 13.4 Å. For the well-

designed sequences with optimized tertiary atomic interactions,

however, 77% of cases can be folded by I-TASSER to the models

below 2 Å. These data demonstrated that the I-TASSER

algorithm is indeed selective to native-like sequences, satisfying

the minimum requirement for validating the foldability of protein

design by computational structure prediction. The data also

confirmed that mere coupling of native sequence identity and

secondary-structure propensity does not constitute a native-like

foldable sequence.

For a more realistic test-bed, we collected a set of 45 sequences

from previous protein design experiments [18,39–51], which

include 16 successful designs with the solved structure deposited in

Author Summary

The goal of computational protein design is to create new
protein sequences of desirable structure and biological
function. Most protein design methods are developed to
search for sequences with the lowest free-energy based on
physics-based force fields following Anfinsen’s thermody-
namic hypothesis. A major obstacle of such approaches is
the inaccuracy of the force-field design, which cannot
accurately describe atomic interactions or correctly recog-
nize protein folds. We propose a novel method which uses
evolutionary information, in the form of sequence profiles
from structure families, to guide the sequence design.
Since sequence profiles are generally more accurate than
physics-based potentials in protein fold recognition, a
unique advantage lies on that it targets the design
procedure to a family of protein sequence profiles to
enhance the robustness of designed sequences. The
method was tested on 87 proteins and the designed
sequences can be folded by I-TASSER to models with an
average RMSD 2.1 Å. As a case study of large-scale
application, the method is extended to redesign all
structurally resolved proteins in the human pathogenic
bacteria, Mycobacterium tuberculosis. Five sequences vary-
ing in fold and sizes were characterized by circular
dichroism and NMR spectroscopy experiments and three
were shown to have ordered tertiary structure.

Evolution-Based De Novo Protein Design
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the PDB (folded set) and 29 unsuccessful sequences (unfolded set)

defined as ‘‘not soluble’’, ‘‘not folded-CD’’, ‘‘not folded NMR’’, or

‘‘natively unfolded’’. The unfolded set also includes two of our

recent failed designs by EBM on the mouse double minute 2

homolog protein (MDM2) which were experimentally validated as

‘‘not folded-CD’’, but conceived using a different version of the

computational method presented here (Shultis et al, unpublished

results). The folded and unfolded sets have a similar average length

(98.1 vs. 97.8), with details of the proteins in each set listed in

Table S1 of Supplementary Information. Since these proteins have

passed various computational feature tests in their designs, these

sequences are much closer to real proteins than random

sequences. In Figures 2A and 2B, we first ran I-TASSER on the

16 successfully designed proteins and calculated the confidence

score (C-score) of each model based on the combination of the

threading Z-scores and the convergence of the I-TASSER

assembly simulations [52]. For each I-TASSER model, we then

estimated TM-scores and RMSD values from the C-score using

known correlation equations obtained from large-scale benchmark

tests [52]. The data in Figures 2A and 2B show that the estimated

TM-score and RMSD of the I-TASSER predictions for the

designed proteins are highly correlated with the actual TM-score

and RMSD, with a correlation coefficient of 0.91 and 0.80,

respectively. The data therefore confirms that the C-score and the

estimated TM-score and RMSD values reflect the actual quality of

the predicted models, with the actual TM-score and RMSD

mostly within the error bars of the estimated values.

In Figure 2E, we applied I-TASSER to both sets of folded and

non-folded proteins, where all homologous templates with a

sequence identity .25% to the target or detectable by PSI-

BLAST were excluded. From Figure 2E, it can be seen that there

is an obviously higher percentage of high C-score sequences in the

folded design set than that in the non-folded set. The average C-

scores are 20.003 and 21.4 for the folded and non-folded

sequences respectively (see the vertical lines marked in the Figure).

In Figures 2C and 2D, we present the histogram distribution of the

estimated TM-score and RMSD calculated on the C-score values

for the two sets of sequences. Again, there is a large gap between

folded and non-folded sequences, where the average TM-scores

(RMSDs) are 0.718 (3.9 Å) and 0.551 (6.8 Å), respectively. In

Figure 1. An overview of the evolution-based protein design method (EBM). The procedure consists of profile construction, Monte Carlo
search, and design selection.
doi:10.1371/journal.pcbi.1003298.g001

Evolution-Based De Novo Protein Design

PLOS Computational Biology | www.ploscompbiol.org 3 October 2013 | Volume 9 | Issue 10 | e1003298



Figure 2. Results of I-TASSER folding on 45 sequences from previous protein design experiments [18,39–51]. (A, B) Estimated TM-score
and RMSD of the I-TASSER predicted models versus the actual TM-score and RMSD of the models to the experimental structure for the 16 folded
designs. The estimation is calculated based on C-score with an error bar obtained from large-scale benchmark data [52]. (C, D, E) Histogram
distributions of estimated TM-score and RMSD, and C-score of the I-TASSER predictions for 16 folded sequences (open circles and solid lines) and 29
unfolded sequences (stars and dashed lines). The vertical lines mark the average values for the folded and unfolded sequences respectively.
doi:10.1371/journal.pcbi.1003298.g002

Evolution-Based De Novo Protein Design
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particular, there are much more proteins in the high-quality

modeling regions, e.g. with TM-score.0.8 or RMSD,2.5 Å, for

the folded sequences than for the non-folded sequences. This data

again shows that there is a greater probability of the I-TASSER

simulations generating high confidence models close to the target

structures for successfully designed sequences than for unsuccess-

fully designed sequences.

I-TASSER based 3D structure prediction of designed
sequences

In Table 1 (second and third columns), we present a summary of

the I-TASSER structural models for the sequences created by both

PBM and EBM in comparison with the target structure, where all

homologous templates detectable by PSI-BLAST search were

excluded from the I-TASSER template library. The average

RMSD and TM-score between the I-TASSER models and the

scaffold structures are 4.14 Å and 0.74, respectively, for the PBM

sequences, while the RMSD and TM-score for the EBM designed

sequences are 2.12 Å and 0.87, respectively, which demonstrated

an improved foldability by EBM. Here, the average TM-scores are

higher than the estimated TM-scores obtained for the sequences

taken from the previous design experiments. The major reason is

due to the different template filters used in the I-TASSER

modeling, since an additional stringent sequence identity cutoff

(.25%) was used in the last section. We have confirmed that

similar high TM-score values can be obtained when omitting the

second homology filter in sequence identity cutoff during the

template search. Moreover, as shown in Figure 2A, the estimated

TM-score is on average slightly lower than the actual TM-score.

A detailed analysis on the EBM designed sequences indicates

that 80% of the predicted structures have an RMSD of ,2.0 Å to

the target scaffold, and 42.5% are highly accurate with a

RMSD,1.0 Å. For the PBM category, only 54% of the predicted

structures have an RMSD,2.0 Å, and 31% have an

RMSD,1.0 Å. Having in mind that both the structural profiles

and the FoldX potential [53], which were used to design the EBM

sequences, are independent from the I-TASSER folding force

field, such a high structural similarity between the I-TASSER

models and the target structures indicates that the design

algorithm should have captured the features essential to the global

fold of the target scaffolds.

In Tables S2 and S4, we list the detailed results of the I-

TASSER models for each of the testing protein targets by EBM

and PBM, respectively. Compared to the EBM designs, the

distribution of TM-scores of the PBM designed sequences is more

divergent, i.e. the TM-scores are either very high (.0.85) or very

low (,0.35), demonstrating that the purely physics-based design is

less reliable than the combined physics and evolutionary based

EBM approach in designing protein folds. For all 14 cases where

the PBM sequences have a low TM-score (,0.3), the combined

physics and evolutionary based EBM method drastically improved

the TM-scores to .0.75 except in 2ZXY_A (with TM-score from

0.20 to 0.69). This data highlights the efficiency and robustness of

the evolutionary profiles in the design of protein folds, which is

consistent with observations from protein structure predictions

where profile-based threading approaches have been shown to be

much more accurate and reliable than physics-based force fields in

recognizing protein folds [1,8].

In Column 4 and 5 of Table S2, we also show the TM-scores of

the I-TASSER models to the structural analogs in the profiles and

to the scaffold, respectively. On average, the TM-score of the

EBM design to the scaffold is 22.5% higher than the TM-score to

the structural analogs in the profile. The higher similarity of the I-

TASSER models to the scaffold than the structural analogs is

probably due to the fact that the scaffold is normally located at the

center of the structural analog family, since it was used as the

probe for the profile construction. Thus, the consensus effect from

the profiles tends to drive the design simulations toward the center

structure rather than individual analogs, although all the analog

sequences contribute to the consensus effect.

Noteworthily, the average sequence identities between EBM

designs and the target scaffold is 28%, which is higher by seven

percentage points than the average sequence identity between the

PBM designs and the scaffold (21%). This data may raise a

question on whether the improved folding accuracy from I-

TASSER is just due to the increase in the sequence identity. In our

previous study [19], we have demonstrated that the mere coupling

of high sequence similarity and secondary structure from random

sequences cannot constitute a reasonable rate of I-TASSER

folding. Here, we conduct a similar experiment on this set of 87

proteins which randomly generates artificial sequences for each

target but with the identity of the artificial sequences to the target

being the same to the designed sequences by EBM and PBM,

respectively. When we submit the two sets of artificial sequences to

the I-TASSER pipelines, both generate non-foldable models of the

similarly high RMSD (,9.7 Å) to the scaffold, which is 4.6 times

higher than that of the EBM design sequences.

We have further examined the artificial sequences with a set of

more stringent constraints, i.e. with the conserved residues copied

from the designed sequences and with the non-conserved residues

Table 1. Evaluation of designed sequences.

Methods TM-scorea RMSDb Normalized relative error (NRE) Sequence Identity

SSc W Y SAd All Core

PBMe 0.74 4.14 Å 2.40 0.43 1.01 0.41 21% 35%

EvBMf 0.82 2.82 Å 0.48 0.26 0.30 0.04 27% 35%

EBMg 0.87 2.12 Å 0.33 0.14 0.22 0.02 28% 41%

Data is averaged over 87 test proteins. The details on each protein can be found at Table S2, S3, S4.
aTM-score between the first I-TASSER model and the target scaffold.
bRMSD between the first I-TASSER model and the target scaffold.
cSS: Secondary structure.
dSA: Solvent accessibility.
ePBM: Physics-based method using FoldX.
fEvBM: Evolution-based method using only evolutionary terms in Eq. (1).
gEBM: Evolutionary based method using both evolutionary and physics-based terms in Eq. (3).
doi:10.1371/journal.pcbi.1003298.t001
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randomly generated but having a similar residue type (non-polar,

polar-uncharged, and charged) as the target sequence (see below

for the definition of conserved residues). The secondary structures

of the artificial sequences from PSSpred predictions [54] are

confirmed to be similar to the target with a Q3 score .70%, i.e. at

least 70% of residues having the same secondary structure type

(helix, strand or coil) to the target. By including such constraints,

the I-TASSER models of the artificial sequences show much closer

similarity to the target, with the average RMSD equal to

5.6562.1 Å for the sequences with the same sequence identity

as the EBM proteins and to 5.7262.2 Å for the sequences having

the same sequence identity as the PBM proteins. Nevertheless, the

RMSD values of both sets are still significantly higher than the

RMSD values of the designed EBM sequences. Despite the

difference in sequence identity, the difference in RMSD of the I-

TASSER models between the two sets of artificial sequences is

negligible compared to the standard deviation. This data again

shows that higher sequence similarity in the absence of protein

design does not guarantee the significantly more accurate

foldability by prediction simulations, or that the drastic improve-

ment in the folding accuracy of EBM sequences (2.12 Å vs.

4.14 Å) should not be attributed to the increase in sequence

identity with the EBM method.

Secondary structure assignment
To examine the secondary structure (SS) distribution of the

designed sequences, we developed a new SS prediction method,

PSSpred, which combines 7 neural network predictors trained on

different PSI-BLAST profiles [54]. In a large-scale test on 3,128

proteins, PSSpred achieves a Q3 accuracy of 84.5%, which is 3%

higher than the widely-used PSIpred program [55]. The fourth

column of Table 1 shows the SS assignment results of the designed

sequences by PSSpred, in comparison to the DSSP assignment on

the target structures [56]. To count for the inherent inaccuracy of

PSSpred predictions, we calculate the normalized relative error:

NRE = (EDS2ETS)/ETS, where EDS is the PSSpred prediction

error to DSSP on the designed sequence and ETS is that on the

target sequence. The NRE of designed sequence by the EBM is

0.33, which is seven times lower than that by the PBM method

(column 4, Table 1).

In Figure 3, we showed an example of the designs from the

soluble human CD59 protein [PDB ID: 2J8B]. The crystal

structure of CD59 possesses five beta-strands and one helix

packed in a sandwich fold following the DSSP analysis. All the

secondary structure elements are present in PSSpred predictions

on the target sequence and the EBM based designed sequences

(Figure 3D). However, in the sequence designed by the physics-

based force field, three strands are completely missed and

instead one more long-helix has appeared in the PSSpred

prediction on the PBM sequence. Overall, the Q3 accuracy of

the PSSpred predictions is 96% for both the EBM sequence and

the target sequence, but the Q3 accuracy of the PBM sequence

is only 53%, relative to the DSSP assignment of the crystal

structure. As a result, I-TASSER folds the EBM sequence to a

structural model of RMSD = 1.16 Å to the target (Figure 3B),

where the I-TASSER model on the PBM sequence is 9.2 Å

away from the target (Figure 3C).

The reduction in the secondary structure error for the EBM

method is mainly due to the smoothening effects introduced by the

structural profiles and the single-sequence based SS energy terms,

which significantly increase the short-range residue cooperation

that are usually missed in the physics-based force fields. These

effects thus improve the cooperation of secondary structure

propensity and the overall foldability of the designed sequences.

Backbone torsion angle and solvation assignments
To examine the torsion angle and solvation distributions of the

residues in the designed sequences, we submitted the designed

sequences to sophisticated neural-network predictors [57–58]. As

shown in Columns 5–7 of Table 1, the normalized relative errors

on W, Y and solvent accessibility (SA) of the EBM designed

sequences, relative to the DSSP assignments on the target

structures, are 3.1, 4.6 and 20.5 times lower than the correspond-

ing errors for the PBM sequences. Using the same example of the

soluble human CD59 in Figure 3, the SA assignments on all the

residues are highly consistent with the assignments by DSSP on

the target structure, with a Pearson correlation coefficient = 0.74.

If we turn off the structural profile restraints, the Pearson

correlation coefficient of the designed sequences rapidly reduces

to 0.42. Accordingly, for this example the NRE on torsion angle

(W/Y) of the designed sequence increases from 0.04/0.15 to 0.49/

0.73. Most of the W/Y errors are found to occur in the loop

regions but many also occur in the regular secondary structural

regions, which influences the folding stability of the designed

sequences as demonstrated by the high RMSD of the I-TASSER

simulations.

Target sequence recapitulation
In general, a reasonably designed sequence should recapitulate

most of the target sequence amino acid identities. However, a high

recapitulation rate is not always necessary to guarantee the correct

fold and desire function, since a similar fold can be adopted by a

variety of protein sequences and families (e.g. the Tim beta/alpha-

barrel fold is taken by 33 superfamilies of variant sequences in the

SCOP database). In our test set, when using the physics-based

FoldX potential, the sequence identity of the designed sequence to

native is 21% (35% in the core regions) (Columns 8–9 of Table 1).

When the structural profiles are considered, the sequence

recapitulation increases only slightly by 6–7%, i.e. 28% in the

whole sequence and 41% in the core region. Considering the

identity over whole protein sequence, our EBM designs are

comparable with Kuhlman et al (27% sequence identity) [59] but

lower than Saunders et al (37%) [60]. In the core regions,

however, the native repetition for these methods consistently

increased to 51% and 57% respectively, which are significantly

higher than our designs.

Despite the low sequence recapitulation, the high similarity of

the I-TASSER models of the designed sequences to the scaffold

structures as reported in Table 1 is striking. To have a better

understanding of the implications, we examined the distribution of

the recapitulated residues, especially on the evolutionally con-

served residues which are often critical to gauge the global fold

[61]. For this purpose, we define conserved positions based on the

PSI-BLAST sequence family search, i.e. a residue is named as

‘‘conserved’’ if the entropy of the residue (
P

i pi ln pi) in the

multiple sequence alignment of PSI-BLAST search is low

(,20.3). Based on the experimental data in the PDB library,

56% of these conserved residues are located in, or spatially close

(,6 Å) to, the functional sites and/or the ligand-binding pockets,

which further confirmed the biologically importance of the

residues.

We found that 32% of residues in the conserved positions in the

EBM sequences are identical to that in the target and 44% of

residues in the conserved regions are highly homologous (with a

BLOSUM62 mutation score.0.5) to the corresponding residues

in the target. In contrast, these percentages are significantly lower

(23% and 29%, respectively) for the PBM sequences. These data

show that the structural profiles generated in the EBM pipeline

help recognize the highly conserved residues in the evolutionary

Evolution-Based De Novo Protein Design
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protein families, which are essential for retaining the protein global

fold and biological functionalities. As demonstrated in the I-

TASSER folding results, these additional conserved residues

facilitate the identification of the better quality of structural

fragments and frameworks, which are essential to the correct

modeling of the global fold of the proteins (Table 1).

Amino acid composition
Despite the relatively low sequence identity, we found that the

amino acid composition and solvation propensity are similar to the

target protein. Figure 4 presents the average difference in the

fraction of amino acid composition between the designed and

target sequences. Here, a positive value indicates a preference for a

particular amino acid in the designed sequences over the target

sequence, and vice versa for a negative value. Amino acids are

plotted from left to right in order of decreasing hydrophobicity. To

have more insight into the distribution of amino acid on the 3D

structure, residues are further divided into the core and surface

regions based on solvent accessibility, i.e. an amino acid is

considered to be at the core region if the relative accessible surface

area is ,0.16; otherwise it is on the surface.

The EBM derived sequences show a relatively even distribution

of amino acids irrespective of their hydropathy scale (Figure 4A).

The overall absolute composition difference from the target

proteins is 1.1%. In comparison, the composition difference with

the PBM sequences is ,3 times larger with an average deviation

3.4%. An obvious trend in the PBM sequences is the preference of

hydrophobic amino acids over hydrophilic, which were also

observed in previous physics-based designs [19,24]; this is mainly

due to the biasness of physics-based potential (e.g. FoldX function

[53]) towards hydrophobic residues for the stability of protein. In

particular, the PBM mode leads to consistent over-enrichment of

Methionine and Proline. This feature may disrupt regular

secondary structure elements due to the exceptional conforma-

tional rigidity of the amino acids [19].

Number of structures needed for structural profile
construction

The structural folds in the PDB library are highly uneven and

therefore not all target structures have a sufficient number of

analogs. An important issue to the EBM design is to examine how

the performance of designed sequences depends on the number of

available structural analogs.

In our EBM design pipeline, we set a default cutoff of TM-

score.0.7 to construct the structural profile. Out of the 87 test

proteins, 41 have more than 10 structural analogs with TM-

score.0.7. The average number of analogs is 51 for these

proteins. In the remaining 46 cases, we gradually reduced the TM-

score cutoff so that each target protein has at least 10 analogs to

construct the structural profiles. As a result, 24 targets have the

TM-score cutoff = 0.6 and 22 have TM-score cutoff = 0.5. In

Figure 5, we present the I-TASSER folding results on the three

groups of designed sequences, which indeed shows a difference in

RMSD to the target structure. In general, when a higher number

of closely analogous proteins are available, a better quality of

structural profile can be constructed to closely characterize the

conserved/mutation positions along the designed sequences. In

our case, the average RMSD of the I-TASSER models for the first

group of 46 proteins is 1.46 Å, which is lower than the two other

groups based on the lower TM-score cutoffs (2.57 Å and 2.84 Å).

On the contrary, the folding accuracy on the PBM sequences

shows a reversed tendency, i.e. the RMSD of the third group with

a TM-score cutoff .0.5 is lower than that of the first group with a

TM-score cutoff .0.7; this is probably because of the slightly

shorter chain length of the third group which is relatively easier to

fold by I-TASSER.

Figure 3. Illustration of protein design on the soluble human CD59. (A) X-ray structure of the target protein. (B) I-TASSER model on the EBM
designed sequence. (C) I-TASSER model of the PBM designed sequence. (D) Secondary structure of the target assigned by DSSP, in comparison to
that predicted by PSSpred on the target (PSSPred_WT), the EBM (PSSPred_EBM), and the PBM designed sequences (PSSPred_PBM). ‘E’ stands for
sheet, ‘H’ for helix and ‘C’ for coil.
doi:10.1371/journal.pcbi.1003298.g003
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Figure 4. Average fractional difference in amino acid composition between the target and designed sequences. (A) EBM; (B) PBM.
doi:10.1371/journal.pcbi.1003298.g004

Figure 5. Average RMSD between the scaffold structures and I-TASSER models on the proteins designed by PBM and EBM. The
dataset is divided by the TM-score cutoff of the template proteins that were used for constructing the sequence profiles.
doi:10.1371/journal.pcbi.1003298.g005
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In Figures S4 and S5, we also show the performance of torsion

angles, secondary structure, solvation and sequence recapitulation

on the different TM-score cutoffs. A similar dependence is

observed on the torsion angles and secondary structures. But the

TM-score cutoffs have no obvious influences on the solvation and

sequence identities to the target scaffold.

These data may raise a concern with the design method for

novel proteins which are supposed to have no close structural

analogs in the PDB library. In reality, recent studies have

demonstrated that the current PDB library is approaching to

completeness and almost all the proteins, including random

homopolypeptides, can have protein analogs with similar folds

(TM-score.0.5) in the PDB [62–64]. To quantitatively examine

this issue, we re-ran our design programs but excluded all

analogous proteins with a TM-score.0.5 to the target. As a result,

the average RMSD of the I-TASSER models indeed becomes

relatively higher (increasing from 2.12 Å to 2.66 Å for the 87 test

proteins) and the NRE for secondary structure, W/Y angles

becomes larger (2.11, 0.6, 0.99, respectively). However, these are

still much lower than the purely physics-based design methods,

demonstrating that the structural profiles, even collected from

distantly analogous proteins, are helpful for guiding the design

procedures to construct better protein folds.

Protein design based on the evolution terms only
Although the EBM design, combining both evolution and

physics-based energy terms, demonstrated clear advantage over

the PBM design that uses only the physics-based potentials, it is of

interest to examine how the method works if the force field only

includes the evolution-based terms (termed EvBM). In the third

row of Table 1, we summarize the results when dropping off the

FoldX terms from the EBM design, where the detailed data for

each of the targets are listed in Table S3.

Overall, the EvBM results are largely comparable with the EBM

method, but clearly outperform that by PBM, in terms of both the

structural similarity of the I-TASSER models to the scaffolds and

the quality of the local structural feature predictions. In summary,

the TM-score of the I-TASSER models on the EvBM design is

11% higher than those created by PBM, and the normalized

relative errors of SS, W, Y and SA by EvBM are 5-, 1.6-, 3.4- and

10-folds lower than that by PBM, respectively. The average

sequence identity between design and scaffold along the entire

chain by EvBM is comparable with that by EBM (27% vs. 28%),

while that in the core region is the same as that by PBM (35%).

These data demonstrate again that the evolution-based energy

terms, including the profiles and the knowledge-based structure

feature predictions, are the major driving force for the designs

conducted by the EBM pipeline.

A case study on M. tuberculosis proteins
Since the EBM design procedure is fully-automated, it has the

potential for large-scale protein design applications. Here, as an

illustration we apply the pipeline to redesign all solved proteins in

M. tuberculosis (MTb) genome which contains various pathogens

known to cause serious diseases in mammals, including tubercu-

losis and leprosy.

MTb proteins are encoded by 4,062 genes where 243 distinct

proteins with length up to 296 residues have had their protein

structure solved in the PDB library [65]. Table S5 summarizes the

redesign results on all the 243 MTb proteins. Overall, the

performance data is consistent with the results on the test proteins

shown in Table 1. As shown in Table S5, the average NRE is 0.29,

0.14/0.18, and 0.09 for SS, W/Y, and SA, respectively. The

average RMSD of the I-TASSER models is, however, relatively

higher ( = 3.28 Å); this is mainly due to the difficulty of I-TASSER

in folding large proteins since all homologous templates have been

excluded from the template library. If we exclude the proteins of

length .200 residues, the average RMSD of the I-TASSER

models is reduced to 2.57 Å; but as expected, other qualities of

local structural features (SS, W/Y, and SA) do not change much

with the different length cutoffs.

In order to assess the diversity of the structural analogs used for

profiling the MTb proteins, the number of the analogous

structures and the average sequence identity of the analogs to

the scaffolds are listed, respectively, in Columns 4 and 5 of Table

S5. If we divide the results into different classes based on the

number of structures needed for profile construction, then the

trends follow the test set result as shown in Figure 5 and Figures

S4, S5 (data not shown).

To partly examine the biological functionalities of the designed

MTb proteins, we exploit a well-established structure-based

ligand-binding prediction algorithm, COFACTOR [66–67], to

search through the comprehensive ligand-protein interaction

database, BioLiP [68], based on both local and global comparisons

of I-TASSER models with template proteins. The analysis

indicates that 62% of the EBM designed proteins have binding

partners with a high confidence score, of which 51.3% are

enzyme. When using the target scaffold structure as probe,

COFACTOR detects slightly less (59%) binding partners, of

which 50% are enzyme. Meanwhile, the EBM designed sequences

have on average more binding sites (6.2 per protein) than the

target proteins (5.5 per protein), although the number of binding

residues per site are the same (7.2). In 88 out of the 117 cases

(75%) where both designed and target sequences have the binding

partner prediction with high confidence by COFACTOR on the

same binding site, the binding affinity as assessed by the

COFACTOR free-energy calculations is higher in the EBM

proteins than in the target.

In Figures 6A–C, we show an illustrative example from the

MTb thioredoxin C protein [PDB ID: 2I1U] where COFACTOR

identifies a binding pocket with high confidence on the EBM

protein, but no binding pocket is identified on the target. The

designed sequence is 38% identical to the target protein where I-

TASSER folds the sequence with an RMSD 2.52 Å of the first

model to the target structure (Figure 6A). Interestingly, although

no natural binding pocket exists in the target, mutations of T35S,

G38P, and S79G on the designed sequence change the local

binding pocket conformation and therefore facilitate the formation

of four hydrogen bonds with the sulfate ion (dashed line in

Figure 6B) that was identified by COFACTOR as the binding

ligand. The binding affinity of this ion ligand is also favored by an

independent binding scoring function, X-score [69], with an

affinity score 3.45 pKd. As shown in Figure 6C, the ion-binding

interaction vanishes in the target protein due to the dominant

steric clashes of the side-chain atoms with the putative ligand.

In Figures 6D–F, we presented another example from the

PZAase of Pyrococcus Horikoshii (PH999) which is known to bind

with zinc [PDB ID: 1IM5]. The EBM design on PH999 shows a

sequence identity 39% to the target and the I-TASSER model has

an almost identical structure to the target (RMSD = 0.28 Å)

(Figure 6D). Although we did not include the metal ion binding

and active site information in the design procedure, the designed

protein shows remarkable conservation within these regions. For

instance, the triad consisting of C133, K94 and D10 (color green

in Figure 6E), which occurs at the bottom of the cavity, and the

residues (D52, H54, and H71) responsible for positioning zinc ion

(Zn2+), are well preserved in the designed protein but the

configuration of H71 is flipped in the model (red in Figure 6E).
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The cis-peptide bond observed in the target between V128 and

A129 at the cavity of PH999 is also retained in the design. Among

the 18 residues whose side-chains are involved at the active site,

five have been mutated in the EBM design (V23I, A95G, E101L,

A102R, and Y132I). All the mutations are spatially clustered

together with other active site residues, except for Y132I where

one aromatic hydrophilic residue is exchanged for a hydrophobic

residue (yellow in Figure 6F). To examine the impact of the

mutations and the aromatic exchange on overall ligand binding,

we ran COFACTOR based on the I-TASSER model of the

designed protein and the target structures, which identified one

isochorismic acid binding site (Figure 6F; space filled atoms)

including Residue-132 for both proteins with a binding affinity 5.1

pKd as calculated by X-Score. In addition, the COFACTOR

predictions reveal one more sulfate ion binding site with a

comparable binding affinity to the target protein (blue in

Figure 6F). Apparently, the binding of isochorismic acid is highly

competitive with that of sulfate ion in the target, both of which

locate at nearly the same site. In the designed protein, the latter

was completely eliminated, mainly due to the aromatic exchange

at Y132I.

Despite the plausible analyses using state of the art computa-

tional docking scoring calculations, none of the binding data on

the M. Tuberculosis proteins were experimentally validated, which is

essential for the eventual confirmation of the biological insights.

To facilitate further experimental studies, all designed sequences,

the I-TASSER models, and the computational ligand-binding

scoring analyses on M. Tuberculosis proteins are made available at:

http://zhanglab.ccmb.med.umich.edu/MTb.

Experimental validation of five EBM designed proteins
To experimentally validate the EBM designed sequences, we

randomly selected five proteins: four from our benchmark set

[heterogeneous nuclear ribonucleoprotein K domain (hnRNPK,

PDBID: 1ZZK), thioredoxin domain (1R26), cytokine-indepen-

dent survival kinase phox homology domain (CISK-PX, 1XTE),

Figure 6. Illustrative examples of the EBM design on M. tuberculosis proteins. (A) Superposition of I-TASSER model of the EBM sequence
(green) on the target structure from the thioredoxin C (red) with a RMSD 2.52 Å. (B) Sulfate ion binding with the designed protein where ion-protein
hydrogen bonds are highlighted by dashed lines. (C) The EBM binding site analogous position on the target indicates that it cannot accommodate
the sulfate ion (dotted sphere) due to steric overlaps. (D) Superposition of the PZAase protein (red) and the I-TASSER model on the EBM sequence
(green) with a RMSD 0.28 Å. (E) Active site residues of PZAase as represented in sticks. Triad (green) and Zn2+ binding sites (red) are retained in the
designed protein. Gray color indicates mutations at the active site. (F) Binding pockets identified by COFACTOR with red spacefill indicating an
isochorismic acid binding site and blue the sulfate ion binding site. Y132I mutation in EBM design is designated by yellow. The figure was generated
using Pymol and Adobe Photoshop software.
doi:10.1371/journal.pcbi.1003298.g006
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and light oxygen voltage domain (Lov2, 2V0U)], and one from the

MTb genome [Translation Initiation Factor 1 (TIF1, 3I4O)].

These proteins contain different fold types (4 ab- and 1 b-proteins)

with length ranging from 68 to 146 residues. The RMSD of the I-

TASSER models are in a typical range from 1.33 to 2.99 Å, with

an average RMSD of 2.16 Å, close to the average RMSD of the

overall benchmark test (2.12 Å). A list of the proteins is shown in

Table 2.

For the designed sequences, constructs were first cloned into

MSCG over-expression vectors with an N-terminal Mocr domain

[70], expressed in a Rosetta 2 cell line (Millipore), purified to

greater than 95% homogeneity, and then biophysicially charac-

terized by circular dichroism and NMR spectroscopy. As seen in

Table 2, all the designed domains successfully expressed and were

soluble after the N-terminal Mocr tag was removed following

purification.

The domains were first biophysically characterized by circular

dichroism to ascertain the presence of secondary structure. Again,

all the designs had a negative ellipticity, as shown in the spectra

from Figure 7 (Left Panel), indicating that these sequences possess

distinct secondary structural elements. The hnRNPK and CISK-

PX designs fit well to the typical a-helix/b-strand secondary

structure folds with negative mean residue ellipticity troughs at 208

and 222 nm wavelength and clear exciton splitting. The Lov2

spectra have a major minimum at 208 nm plus a slop dip at

222 nm which also indicates a mixed a-helix/b-strand structure.

The thioredoxin spectra have an unusual broad minimum at

222 nm, similar to the native E. coli thioredoxin spectra, suggests

again a mixed helix/strand structure according to the analysis in

[71]. In contrast, the TIF1 domain has almost no 222 nm signal

and is dominated by b-strand spectra at 205 nm. In the last two

columns of Table 2, we listed a quantitative comparison of

fractions of a-helical/b-strand residues between the designed and

the scaffold proteins, where the data on the designed proteins were

calculated from an average of the estimations by three CD analysis

programs (CONTINLL [72], CDSSTR [73], and SELCON [74])

on the CD spectra in Figure 7 and the secondary structures of the

scaffolds were calculated by STRIDE [75]. The data showed that

the secondary structure fractions in the designed sequences are

largely consistent with those in the corresponding scaffold

structures.

Following the CD experiments, the designed domains were

analyzed by 1H 1D NMR spectroscopy. Specifically, we used

NMR to probe the existence of a well-folded, stable, protein core,

which is detectable by a shift of the side-chain resonances upfield

(more negative) and by the dispersion and resolution of the amide

protons. As shown in the Right Panel of Figure 7, the hnRNPK

and Lov2 designs lacked upfield methyl chemical shifts (21.0-

0.5 ppm) and had sparse features in the protein amide range (5.5–

10.0 ppm) (Figures 7F and 7I), which suggest that they do not

possess a stable fold. By contrast, the designs for the thioredoxin,

CISK-PX and TIF1 domains showed strongly shielded methyl

shifts between 0.5 and 21.0 ppm and had well-resolved peaks in

the amide region, features that are indicative of proteins possessing

stable folds.

Free energies of folding for the thioredoxin and CISK-PX

designs were further determined by CD using urea as a chemical

denaturant (we did not conduct the unfolding experiment on the

TIF1 domain because it was observed to lack significant negative

ellipticity at 222 nm). As shown in Figure 8, the designed

thioredoxin domain started to unfold at ,7.5 M urea and

complete unfolding of the protein was not achieved with 9.5 M

urea. In contrast, CISK-PX was completely unfolded by 8.5 M

urea. Free energies of folding for the thioredoxin and CISK-PX

domains were calculated by linear regression from the data points

available and determined to be 216.1 and 229.6 kJ/mol,

respectively [76]. Despite unfolding at a higher concentration of

urea, the thioredoxin domain had a slower transition to an

unfolded state and is thus less stable than the CISK-PX domain.

Discussion

Deducing structure models from evolutionarily related proteins

has been established to be the most reliable method for protein 3D

structure prediction. Following a similar spirit, we introduce the

idea of structure profile to protein design, a reverse procedure of

protein folding and protein structure prediction. The key step of

the approach is to construct an evolutionary profile from a family

of proteins that have similar fold to the target structure. Such a

profile matrix helps to identify the conserved/variable positions

along the sequence, which are important in protein evolution and

critical for maintaining the global structural fold and functional-

ities. Technically, since the foldable sequence space of a specific

protein target is extremely narrow (few sequences can fold to the

structure), targeting the design to an envelope of proteins of similar

folds can increase the breadth of free-energy landscape and

meanwhile enhance the robustness of the designed sequences upon

structural variations.

One technical issue is that the profile-based design may simply

converge to the consensus of the multiple sequence alignments,

which can have discrete physiochemical feature distributions along

the sequences. To alleviate the problem, we developed a set of

Table 2. Summary of experimental validation results for the five designed sequencesa.

Target PDBID Length Type RMSDb Epc Soc SSd 3De a-helix%f strand%f

hnRNPK 1ZZK 80 ab 2.99 Å + + + 2 32 (36) 16 (25)

thioredoxin 1R26 105 ab 1.33 Å + + + + 36 (43) 21 (21)

CISK-PX 1XTE 116 ab 2.06 Å + + + + 27 (39) 28 (28)

LOV2 2V0U 146 ab 2.74 Å + + + 2 31 (29) 24 (24)

TIF1 3I4O 68 b 1.67 Å + + + + 9 (9) 37 (54)

aThe sign of ‘‘+’’ and ‘‘2’’ indicates positive and negative experimental results respectively.
bRMSD between the first I-TASSER model and the target scaffold.
cProtein expression and solubility determined by visual identification via comassie stain gels.
dPresence of secondary structural elements defined by circular dichroism.
ePossession of a stable tertiary fold determined by the presence of secondary structural elements (CD) and NMR spectroscopy.
fPercentage of a-helix residues decided by the CD spectra (the values in parentheses are the number in the scaffold structure.
doi:10.1371/journal.pcbi.1003298.t002
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single-sequence based predictors to regulate the secondary

structure, torsion angles and solvent accessibilities. These predic-

tors are fast and based only on a single sequence but the accuracy

is comparable with the more sophisticatedly trained predictors

using multiple sequence alignment searches (see Text S1 and

Figures S1, S2, S3 for details). To accommodate the steric and

physiochemical interactions of residues, a physics-based atomic

potential (FoldX) is introduced on the top of the profile-based

energy terms.

The method is tested on the design experiment of 87 non-

homologous single-domain proteins covering different fold classes.

Compared to the sequences designed only on the physics-based

energy terms (PBM), significant improvement has been observed

on the general features of the designed sequences, where the

normalized relative errors are reduced by 7 times for secondary

structure, 3 (5) times for W (Y) angles, and 21 times for solvent

accessibilities. These improvements are partly attributed to the

smoothening effect of the structural profile weighting and the

restraints from the knowledge-based feature predictions. When

submitting the sequences to the I-TASSER structure assembly

pipeline, an average RMSD of 2.12 Å is achieved to the target

structures although all homologous templates detectable by PSI-

BLAST were excluded from our predictions (Table 1). Since the

force field and phase space searching used by protein design and I-

TASSER folding are independent from each other, such a high

consistency between the I-TASSER models of the designed

sequence and the target scaffold indicates that the design

procedure using the structural profiling should have captured

the features that are essential to generate the overall fold of the

proteins.

Figure 7. Circular dichroism and 1H 1D NMR spectrum of designed proteins. (A, F) hnRNPK; (B, G) thioredoxin; (C, H) CISK-PX; (D, I) Lov2; (E,
J) TIF1 domains. The first column represents CD data, with X-axis representing the wavelength of circular polarized light (nm) and Y-axis the mean
residue ellipticity measured in degree cm2 dmol21. The second column consists of 1H 1D NMR spectra, with chemical shifts given in ppm on the X-
axis. The arrows indicate key methyl chemical shifts indicated of a stable protein fold.
doi:10.1371/journal.pcbi.1003298.g007
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The identity of the designed sequences to the target is relatively

low (28%); but the identity of residues in the evolutionarily

conserved regions is much higher (i.e. 44%; in comparison, only

23% residues are conserved in these regions in the PBM designed

sequences). This data shows the effect of structural profiles in

recapitulation of evolutionarily conserved positions. Meanwhile,

the amino acid composition is closely similar to that of the target

sequences. Compared to sequences generated by PBM, the

absolute composition difference from the native sequence is

reduced by more than three times (from 3.4% to 1.1%), and the

bias of designed sequence to Proline is completely eliminated in

EBM. The inclinations of hydrophobic residues over the

hydrophilic and charged residues in PBM are also reduced

greatly. These improvements facilitate the designed sequences in

retaining the balance of the amino acid distributions along the

sequence.

Because the design procedure is fully-automated, it has the

potential for large-scale protein design applications. As an

illustration, we applied the EBM method to redesign all 243

solved proteins from M. tuberculosis. The designed sequences can be

folded by I-TASSER to the structures of average RMSD 3.28 Å

without using homologous templates (or 2.57 Å for the proteins

below 200 residues). In 75% of the cases where there is a confident

binding partner on the same binding site, the binding affinity is

higher in the EBM proteins than in the target, as shown by the

binding free-energy calculated by COFACTOR [66] and X-score

[69]. Two typical examples were shown in Figure 6: for

thioredoxin, a new binding pocket was formed by the mutation

of three key residues in the active site, which improved the binding

pocket shape and hydrogen-bonding network with the ligand; for

PZAase, although the overall sequence identity is only 39%, the

triad, cis-peptide and metal ion binding residues at the active site

Figure 8. Free energy of folding was determined by circular dichroism. (A) thioredoxin; (B) CISK-PX domains. The figure plots free energy
(kJ/mol) versus the concentration [M] of chemical denaturant urea. The unfolding assay was conducted in 25 mM NaPO4, 150 mM NaF, pH 7.5 with
2–3 uM protein concentration and 0–9.5 M urea concentrations at 298 K. The free energies of folding are equal to the intercept through linear
regression [76].
doi:10.1371/journal.pcbi.1003298.g008
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are well conserved on the designed sequence. Nevertheless, one of

the two competing binding sites (the one with sulfate ion) was

eliminated by the mutation of Y132I in which one aromatic

hydrophilic residue is replaced by a hydrophobic residue.

Although these calculations were based only on computational

docking analysis without stringent experimental screening, the

converging data from different analysis methods show the

possibility of varying substrate scope and binding affinity via the

redesign of the active site residues to alter the catalytic activity of

enzymes.

A handful of sequences were randomly selected from the EBM

designed sequences for experimental validation. These sequences

have a length ranging from 68 to 146 residues and cover different

fold types. All the designed sequences were found to be soluble and

possess distinct secondary structures as witnessed by the negative

ellipticity in the circular dichroism experiment. Three out of the

five sequences (thioredoxin, CISK-PX, and TIF1) were revealed to

possessed stable tertiary structures by 1H 1D NMR spectra.

Further, urea denaturation experiments combined with linear

regression showed that the domains of thioredoxin and CISK-PX

are stable with the free energies of folding below 216 kJ/mol.

These experiments, although incomplete for all designed targets,

demonstrated the EBM represents is a robust protein design tool

capable of making novel sequences that adopt stable tertiary folds,

with a quite reasonable success rate (,3/5).

It should be mentioned that many methods in the literature

have been developed to design proteins with either improved

functions or completely novel folds through the mutation of

natural sequences or de novo design calculations. One motivation

for the development of EBM is to provide a reliable platform that

can design any protein with improved foldability using the

restraints from evolutionary profiles of similar fold families. With

this platform, the functional characteristics, including enhanced

and/or alternative ligand bindings for instance, can be further

introduced. In a recent achievement (Brender et al, in prepara-

tion), we have demonstrated that the introduction of specific

interface potentials to the current EBM platform be used to create

altered binding affinity of natural or drug ligands on the designed

proteins, as shown by computational scoring calculations as well as

preliminary experimental data.

Overall, our study demonstrates the potential of using

evolutionary based information in conjunction with the physics-

based force field for de novo protein design. This opens up a new

avenue in computational protein design to improve the biological

and structural properties of the designed protein sequences. It also

provides an exciting possibility to extend the existing template

libraries for protein 3D structure predictions, which is under

exploration in our lab.

Materials and Methods

The evolution-based design procedure (EBM) consists of three

steps: structural profile construction, Monte Carlo sequence space

search, and final sequence selection (Figure 1).

Structural profile construction
The first step of EBM is to construct a structure profile which

will be used to guide the sequence design simulation and selection.

For a given target protein structure (or scaffold), the profile is

constructed from a family of structural analogs that are collected

from a non-redundant set of the PDB library by the structural

alignment program, TM-align [77], using the scaffold as the

probe. For each structure alignment, the TM-align returns a TM-

score to assesses the structural similarity of the PDB protein to the

scaffold protein [78]. In general, the TM-score ranges from 0 to 1

with a higher value indicating a higher structural similarity, and a

TM-score value.0.5 roughly corresponds to the similarity seen for

proteins within the same SCOP/CATH family according to the

database analyses [79]. In our design procedure, all PDB proteins

with a TM-score.0.7 are considered to be a structure analog and

added to the structural profile pool. If less than ten structural

analogs are detected from the PDB with a TM-score.0.7, we

gradually reduce the TM-score cutoff until the number of analogs

is above ten to ensure a sufficient number of proteins for the

followed-up profile construction.

To specify the conservation/variation residues in the analogy

protein family, we construct a profile matrix following the idea of

Gribskov et al [3], which was designed to extract the position-

specific scoring table from the multiple sequence alignment (MSA).

Here, the MSA is collected from the pair-wise TM-align structural

alignments between the PDB protein and the scaffold but with the

gaps/insertions eliminated according to the residues appearing

along the scaffold sequence. The structural profile is specified by

an L620 matrix, where L is the length of the scaffold sequence

(and the MSA) and 20 is the number of different amino acid types.

The elements of the matrix for amino acid a at position p is given

by M(p,a)~
P20

x~1 w(p,x)|B(a,x). Here B(a, x) is the BLO-

SUM62 substitution matrix with x varying for 20 amino acids, and

w(p, x) is the frequency of the amino acid x appearing at the pth

position in the TM-align MSA. To account for the potential bias

to specific protein families due to the uneven distribution of the

PDB structures in the sequence space, we reweighted each residue

in the MSA by a Henikoff-Henikoff scale H(p, x), i.e.

w(p,x)~
P

H(p,x).

Here, we note that the evolutionary profiles have often been

defined from sequence-based homologous search, e.g. through

hidden-Markov model [80] or PSI-BLAST [81] searches. The

reason for us to choose structure analogs is due to the

consideration that the profiles from structural analogs should be

more sensitive to the desired folds of the scaffold, since numerous

data analyses have shown that structure is more robust than

sequence against the evolutionary variations and sequences of high

residue identity may adopt completely different folds and functions

[82]. Indeed, we have tried to use the sequence homologies instead

of structural analogs or use the sequence homologies on top of the

structural analogs for the profile construction, but found that the

inclusion of sequence homologies increases the sequence diversity

of the simulations, as well as increase the normalized relative

errors and the RMSD of the I-TASSER predictions on the

designed sequences.

Monte Carlo sequence space search
Starting from a randomly generated sequence, Metropolis

Monte Carlo simulations are conducted to search through the

amino acid sequence space for the sequences that best match with

the target structural profile. At each step of movement, a set of

randomly selected residues will be mutated randomly.

The energy function of the MC search consists of two parts. The

first part counts for the alignment match of the sequence decoy

with the target structural profile:

Eevolution~
X

max
M(p,a)zw1DSS(p)zw2DSA(p)zw3(DW(p)zDY(p))½ �

ð1Þ

where the first term is the structural profile defined above; the

second, third and fourth terms in Eq. 1 are the difference of the
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decoy and target sequences in secondary structure, solvent

accessibility and torsion angles, respectively. Because the predic-

tions of these structural features are needed for each step of the

MC movements, a quick neural-network predictor is developed

based on single sequence for the decoy sequence which is much

faster (takes %1 s) than the normal PSI-BLAST based predictors

but with comparable prediction accuracy (see Text S1 and Figures

S1, S2, S3 for details). The SS, SA and W/Y features for target

structure is assigned by the DSSP program [56]. The optimal

alignment path between the decoy and target structure is obtained

by the Needleman-Wunsch dynamic programming with the

maximum score assigned as Eevolution in Eq. 1.

The second part of the energy function contains a physics-based

force field from FoldX V3.0b5 [53], designed to further enhance

the stability and local structure packing of designed sequence. It

consists of 9 empirical terms [53,83]:

EfoldX~f1Evdwzf2EsolvHzf3EsolvPzf4Ewbzf5Ehb

zf6Eelzf7Emczf8Esczf9Eclash

ð2Þ

where Evdw is the sum of the van der Waals contribution of all

atoms; EsolvH and EsolvP count for the solvation energy for apolar

and polar groups, respectively; Ewb is the water bridge hydrogen

bonding between water and protein; Ehb is the intra-molecule

hydrogen-bonding; Eel counts for the electrostatic contribution of

interactions between charged groups; Emc and Esc are entropy costs

for fixing main-chain and side-chain atoms in a particular

conformation, respectively; and Eclash counts for the penalty from

atomic steric overlaps. The parameters f1–9 were trained by

maximizing the correlation between the calculated and experi-

mental free-energy changes on a set of experimental residue

mutants. The detail of FoldX potential design and parameteriza-

tion can be found in Refs [53,83]. We used the default parameters

for the FoldX calculation, except for the van der Waal weight f1
which was increased to 0.33 to eliminate the extra steric clashes

observed in our simulations. Since FoldX potential is full-atomic,

we use SCWRL V4.0 [84] to construct the side-chain conforma-

tions after each MC movement.

To balance the two parts energy terms which are derived from

different resources, we renormalized the energy terms based on

their deviations:

EMC~w4
Eevolution{SEevolutionT

dEevolution

zw5
EFoldX{SEFoldXT

dEFoldX
ð3Þ

where SET and dE are average and standard deviation of the

energy scores calculated from previous steps of simulations.

The weight parameters in Eqs 1 and 2 (w1–5) were

determined on a set of 625 non-redundant training proteins

that are non-homologous to the test set and case study proteins

(see http://zhanglab.ccmb.med.umich.edu/EvoDesign/list625.

txt). For w1–3 in Eq. 1, the weights are decided by the relative

accuracy of the individual feature predictions, i.e. w1 = C*ASS,

w2 = C*ASA, w3 = C*ATA, where ASS, ASA and ATA are the

number of correctly predicted residues on secondary structure

(SS), solvent accessibility (SA) and torsion angles (TA),

respectively, divided by the total number of residues on the

training proteins. C is the parameter to balance the average

magnitude of feature predictions with that of the profile term.

The final weights for Eq. (1) are: w1 = 1.58, w2 = 2.45, w3 = 1.

For Eq. (2), the weights were adjusted so that the average

contribution from the evolution terms and the physics based

terms are comparable based on the designing simulation of the

625 training proteins. The final decided weights are w4 = 20.5,

w5 = 1.22.

Following each of the random mutation trials, the movement is

accepted or rejected by the Metropolis criterion, i.e. with the

acceptance rate ,e{b(Enew{Eold ), where b is the Boltzmann

temperature factor and Enew and Eold are the energy calculated

for the sequences after and before the mutation, respectively,

based on Eq. (3).

We have conducted two control studies to the EBM design. In

the first, the protein design by physics-based force field (PBM) was

conducted following a procedure similar to the EBM simulation

but the MC energy score contains only the FoldX function. i.e., we

set w4 = 0 and w5 = 1 in Eq. (3). In the second, we consider only the

evolution based energy potential, termed EvBM, i.e. we set

w4 = 21.0, w5 = 0.0 in Eq. (3).

Sequence clustering and designed sequence selection
For each target, ten independent Monte Carlo runs, each

starting from a different random sequence, are performed. The

final designed sequence is selected by clustering all the sequence

decoys generated in Monte Carlo simulations. The clustering

procedure is implemented by an algorithm similar to SPICKER

with the distance matrix between sequence decoys defined by

BLOSUM62 substitution scores, following the procedure by

Bazzoli et al [19]. Initially, the distance threshold is set as zero

but increases gradually until the size of the largest cluster reach to

40% of the total number of sequences. Upon termination, the

sequence corresponding to the highest number of neighbors is

considered a designed sequence.

In the Metropolis Monte Carlo simulations, the number of

decoys at each sequence cluster nc is proportional to the partition

function (Zc) of the conformational search, i.e. nc
~ZcZc~

Ð
e{bEdE,

where the logarithm of the cluster size is thus related to the free-

energy of the simulation by F~{kBT log Z~llog(nc). Thus, the

design sequences with the largest cluster size in EBM should

correspond to the state of the lowest free-energy in our

simulations.

Computation time of current method and possible
improvement on kinetics

Our sequence design simulations contain the calculation of two

parts of energy terms, Eqs. (1) and (2). Since the structure feature

prediction is single-sequence dependent, the calculation of the

evolutionary terms is fast and takes only fraction of seconds per

sequence per Monte Carlo step. The calculation of the second

term from FoldX is however much more expensive (up to minutes

per sequence) which is mainly due to the side-chain conformation

calculation by the SCWRL program. In our test on the 87

proteins, the average simulation time of our method without using

FoldX is 3.8 hours, while including FoldX increases the time for

the program to 16.5 hours.

Another important factor impacting the time cost and the

quality of designed sequences is the dynamics of the Monte Carlo

simulations. The current EBM programs implemented 10

independent Metropolis MC runs, each running 30,000 mutation

movements. Due to the inherent limit of the Metropolis algorithm

whereby the acceptance rate of movements is proportional to the

inversed exponential of the height of energy barriers (see above),

the individual MC simulations can be easily trapped at local

minimum. In our test, the pair-wise sequence identity between the

lowest energy sequences of ten different runs is low (28% on

average), which demonstrated the divergence of the Metropolis

simulations and some simulations might have trapped at local
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minimum. Accordingly, the average RMSD of the I-TASSER

models on the ten lowest energy sequences from the ten MC runs

is 3.7 Å, 1.5 Å higher than that obtained for sequences selected

from clustering (see Table 1), which demonstrates the necessity of

multiple MC runs and the usefulness of sequence clustering.

We also tested the simulations starting from one of the

sequences used in the profile or from the consensus of the MSA.

The average results are similar to that of the simulations starting

from random sequences, including the average RMSD of the I-

TASSER models of the designed sequences and the pair-wise

sequence identity between the lowest energy sequences of different

runs. The average identity between final sequence and the starting

seeds is also low (,30%), which indicates that the simulations did

not stick to the seeds when starting from the sequences in the

profile. The similar average results were also obtained if we start

the 10 independent simulations from the same sequence but with

different random numbers. Nevertheless, we choose to have the

EBM simulations started from different random sequences in our

designs, which should help avoid the possible bias as introduced by

specific starting sequences.

Finally, we have tested running more than 10 MC simulations,

but the assessment results are not improved compared to the 10

runs, in terms of average sequence identity, normalized relative

error and the RMSD of the final I-TASSER models to scaffold.

The data implies that 10 simulation runs are probably sufficient

for obtaining converged results. Nevertheless, 10 runs might still

be too expensive, especially for large-scale design applications. We

are testing the use of more advanced MC techniques, including

replica-exchange sampling [85] and simulated annealing [86],

with the aim to improving the speed and kinetics of the EBM

simulations. The results will be reported elsewhere.

Expression constructs
Five proteins were randomly selected from the EBM based

design for experimental validation. The DNA and protein

sequences of the proteins are listed in Text S1. The DNA

sequences for the designed domains were cloned into a mOCR

domain over-expression vector via ligation independent cloning

[70]. The expression construct contains a N-terminal solubility tag

consisting of 66His tag, a Mocr solubility domain, and a rTEV

protease site. The following N-terminal artificial cloning residues,

‘‘SNA’’, remain after rTEV protease cleavage during purification.

Protein expression and purification
Design constructs were transformed into a Rosetta 2 E. coli

expression cell strain (EMDmillipore). Cells were grown in LB

media with ampicillin at 0.1 g/L at 310 K until mid-log phase. At

a cell density of 0.6–1.0 OD (600 nm wavelength) protein

expression was induced by the addition of 0.2 mm IPTG for

5 hours at 305 K. All temperatures were at 277 K during

purification and biophysical characterization unless declared

otherwise. Cells were harvested by centrifugation and resuspended

in 50 mM Tris pH 7.5, 150 mM NaCl, 5 mM imidazole, and

then lysed by sonication (Fisher model 705 series). Samples were

subsequently centrifuged [30,000 g630 min Beckman J26-XP

(JA25.50 rotor)] to pellet cell debris. The supernatant was

incubated with Ni-NTA resin (Qiagen) and washed with 50 bed

volumes of resuspension buffer. The protein was subsequently

eluted with resuspension buffer plus 200 mM imidazole. After

being dialyzed overnight in resuspension buffer and rTEV

protease, the cleaved N-terminal tag containing the mOCR

domain was removed via substractive Ni-NTA and anion

exchange Acro-sep Q (Pall) purification. The eluate was subse-

quently concentrated using 3–10 K MWCO concentrators (Pall).

A final purification polishing step by size-exclusion gel filtration

using a (GE) AKTA chromatographic work station and an S-100

column was conducted.

Biophysical characterization
Circular dichroism spectroscopy was conducted to determine

if the designed domains had secondary structure. An Aviv 202

CD spectropolarimeter was used for all experiments. Wave-

length scans from 190–250 nm were conducted with 2 sec

averaging and 1.5 nm slit width. Experimental conditions were

20 mM NaPO4 pH 7.5, 50 mM NaCl at 288 K. Protein

concentration was 2–4 mM. Measurements were in millidegrees

ellipticity, which was then converted to mean residue ellipticity

(MRE) for analysis. Data was collected in triplicate, and

averaged. To analyze protein stability, unfolding experiments

were conducted in 25 mM NaPO4 pH 7.5, 150 mM NaF at

298 K with increasing concentrations of urea as a denaturant

(up to 9.5 M). Ellipticity values at 222 nm were recorded for

each sample.

NMR spectroscopy was conducted to determine if the designed

domains possessed stable tertiary folds. 1H 1D NMR spectra were

recorded using a Bruker 600 MHZ spectrometer with cryoprobe

at 20 mM NaPO4 pH 7.5, 150 mM NaCl, and 298 K with

protein concentrations ranging from 70–100 mM.

Supporting Information

Figure S1 Illustration of amino acid frequency counting within a

window size of 6three residues.

(TIF)

Figure S2 Illustration of fingerprint assignments from neural

network SS training where SS propensity score, amino acid

composition score, and BLOSUM62 substitution matrix are listed

side-by-side with a separation of a noise (black filled cell).

(TIF)

Figure S3 Illustration of fingerprint assignments from SA neural

network training where SA propensity score, secondary structure

prediction, amino acid composition score, and BLOSUM62

substitution score are listed side-by-side with a separation of a

noise (black filled cell).

(TIF)

Figure S4 The average normalized relative error (NRE) of the

structural features of the designed sequence relative to the DSSP

assignments. (A) Backbone torsion angles (W/Y); (B) Secondary

structure (SS); (C) Solvent accessibility (SA). Along the X-axis, the

dataset is divided based on the TM-score cutoff on the templates

that were used for constructing sequence profiles.

(TIF)

Figure S5 Average sequence identity of the designed sequences

to the target sequences. ‘All’ indicates overall sequence identity

and ‘core’ indicates the identity at the core of the proteins. Along

with X-axis, the dataset is divided based on TM-score cutoff on

the template proteins that are used for constructing the sequence

profiles.

(TIF)

Table S1 List of designed proteins from previous experiments.

(PDF)

Table S2 Summary of EBM design on the 87 test proteins.

(PDF)

Table S3 Summary of EvBM design on the 87 test proteins.

(PDF)
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Table S4 Summary of PBM design on the 87 test proteins.

(PDF)

Table S5 Summary of EBM based protein design on the M.

tuberculosis genome. The data has been sorted by the normalized

relative error (NRE) on secondary structure.

(PDF)

Text S1 Structure feature predictions and DNA/protein sequences.

(PDF)
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