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Abstract

Drug-drug interactions (DDIs) constitute an important problem in postmarketing pharmacovigilance and in the
development of new drugs. The effectiveness or toxicity of a medication could be affected by the co-administration of
other drugs that share pharmacokinetic or pharmacodynamic pathways. For this reason, a great effort is being made to
develop new methodologies to detect and assess DDIs. In this article, we present a novel method based on drug interaction
profile fingerprints (IPFs) with successful application to DDI detection. IPFs were generated based on the DrugBank
database, which provided 9,454 well-established DDIs as a primary source of interaction data. The model uses IPFs to
measure the similarity of pairs of drugs and generates new putative DDIs from the non-intersecting interactions of a pair.
We described as part of our analysis the pharmacological and biological effects associated with the putative interactions; for
example, the interaction between haloperidol and dicyclomine can cause increased risk of psychosis and tardive dyskinesia.
First, we evaluated the method through hold-out validation and then by using four independent test sets that did not
overlap with DrugBank. Precision for the test sets ranged from 0.4–0.5 with more than two fold enrichment factor
enhancement. In conclusion, we demonstrated the usefulness of the method in pharmacovigilance as a DDI predictor, and
created a dataset of potential DDIs, highlighting the etiology or pharmacological effect of the DDI, and providing an
exploratory tool to facilitate decision support in DDI detection and patient safety.
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Introduction

Drug-drug interactions (DDIs) are a major cause of morbidity

worldwide and a leading source of treatment inefficacy. For this

reason, DDIs cause great concern in patient safety and pharma-

covigilance. Adverse drug events (ADEs) may occur when drug

combinations target shared metabolical and pharmacological

pathways altering the efficacy and safety profile of the drugs.

Potential DDIs are evaluated for experimental drugs pre-clinically

during development and then monitored by drug safety surveil-

lance programs after they enter the marketplace. The develop-

ment of predictive tools to help study possible DDIs is of great

interest to pharmaceutical companies and regulatory authorities,

such as the United States Food and Drug Administration (FDA)

[1]. These organizations are interested in better methods to detect

and assess drug interactions [2].

Depending on the seriousness of the DDI, different measures

are carried out ranging from the introduction of warnings in drug

labels to the withdrawal of drugs from the market. As an example,

in August 2008 the FDA [1] issued a warning about the possibility

of developing rhabdomyolysis, a condition related to severe muscle

injury, through combination treatment with simvastatin and

amiodarone. In contrast, mibefradil, a calcium channel blocker

approved by the FDA [1] in June 1997, was withdrawn from the

market shortly after due to potential harmful interactions with

drugs that prolong the QT interval [3].

In previous work, we proposed a method that used the DDI

DrugBank database along with molecular similarity for detecting

DDIs [4]. Medicinal chemistry researchers have exploited the

concept of molecular similarity for years [5–12], where the basic

idea is that ‘structurally similar molecules are likely to have

similar biological properties’. Molecular fingerprints, digital

representation of chemical features, are useful representations

for comparing the structural similarity between compounds [10–

13]. The basic idea in the development of a molecular

fingerprint is to represent molecules through a vector that

codifies in different positions the presence/absence of structural

features. However, fingerprints could be designed to codify not

only molecular structure information but also different biological

properties.

Following the concept of predictive models based on adverse

drug event profiles [14–15] and comparing drug pairs through

molecular fingerprints [12], we developed a model to predict

DDIs based on the comparison of, what we call, an interaction

profile fingerprint (IPF). The IPF codifies the known interaction

partners of a given drug as a binary vector of 19s and 09s. Two

different interaction fingerprints can be compared using the

Tanimoto coefficient (TC), a general method for comparing the

similarity of two sets [16]. Our motivating hypothesis is as

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e58321



follows: if drug i and drug j are similar according to their

interaction fingerprints, then drug i will interact with the same

drugs as drug j with a probability related to the similarity of

their fingerprints and vice versa. Figure 1 shows how the

interactions of two drugs, oxybutynin and dicyclomine, are

transformed into vectors, which are fingerprints, and then

compared using the TC. The drugs associated with the non-

intersecting interactions are predicted to participate in interac-

tions with a probability proportional to the TC score (see

Figure 1). For example, we predict carbamazepine interactions

with dicyclomine with a probability proportional to 0.78

(Figure 1).

The model we developed combines the interaction profile

similarity information using the DDIs specified in DrugBank to

obtain new DDIs, but data from other sources could also be used.

The model results were validated using Drugs.com [17] and

Drugdex [18] databases as reference standards. We provided in

the Table S1 of the Supporting Information a database with

17,230 DDI candidates predicted by the model along with the

possible biological effects.

Methods

Generation of the Established Drug-drug Interaction
(DDI) Database (Matrix M1)

We collected the database from DrugBank [19] in a previous

publication [4]. Only small approved drugs, not including proteins

and peptides, were introduced in the previous model resulting in

DDI information for 928 drugs and a set of 9,454 unique DDIs.

Although we used the same dataset in the current article,

improvements through future updates in the DrugBank database

or the use of other important sources of DDIs, such as Drugs.com

database, could be beneficial. This step would require an overall

recalculation of the interaction profiles.

We transformed the set of collected DDIs into a 9286928

binary matrix M1 with value of 1 representing an interaction

between two drugs and value of 0 representing no interaction. The

model included information about the pharmacological effect of

the interaction associated with pairs of drugs as part of the process

(e.g, the entry in DrugBank for the DDI between oxybutynin and

triprolidine is: two anticholinergics may cause additive anticho-

linergic effects and enhance their adverse/toxic effects).

Figure 1. Examples of interaction profile fingerprints (IPFs) calculated for the drugs oxybutynin and dicyclomine. The similarity of
both fingerprints is measured through the TC coefficient. The drugs corresponding to the non-intersecting interactions for the pair are assigned the
TC score and form part of the prediction of the model. The effect associated by the interaction is the same as the original interaction source that
generated the prediction.
doi:10.1371/journal.pone.0058321.g001
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Generation of the Interaction Profile Similarity Matrix M2

The interaction profile similarity matrix M2 is calculated in

three steps:

Interaction profile fingerprints (IPFs) calculation. We

represented all the drugs included in the study by IPFs. The

concept of IPFs is similar to molecular structure fingerprints

[16,20]. The basic idea in IPFs is to represent the drug interactions

for a particular drug as a vector codifying the presence of

interactions in specific positions. As an example, in Figure 1 the

interactions between oxybutynin and all other drugs are codified

as different vector positions (33, 46, 103, 202, 223, 414, 645, 725).

Only the positions whose value is 1 are stored in vector-position

notations. This is a very efficient way to represent a sparse binary

matrix. The same process is carried out for the drug dicyclomine

that shares 7 out of 9 unique interactions with oxybutynin (46,

103, 150, 202, 223, 414, 645, 725). The transformation of the

molecules into IPFs facilitates comparison.

Computation of similarity between fingerprints. We

used the Tanimoto coefficient [16], also known as the Jaccard

index, to compute similarities between all the IPFs. The TC

between two fingerprints A and B is defined as the ratio between

the number of features/interactions in the intersection to the

union of both fingerprints:

TC(A,B)~DA\BD=DA|BD

Construction of the matrix M2. We created a matrix so

that the rows and columns represent drugs and each cell represents

the interaction profile similarity based on the TC between the

corresponding pair of drugs. We computed this matrix using the

MOE software [21].

Prediction of New DDIs (Matrix M3)
To calculate the matrix M3 with new predicted interactions, we

multiplied the matrix M1 (Established DDI database matrix) by

the matrix M2 (Interaction profile similarity matrix) (see Figure 2).

It is worth noting that the values in the diagonal of the matrices

M2 and M3 are 0 since the interaction of a drug with itself is not

taken into account. Although the model could generate multiple

scores for the same interaction based on similarities from different

pairs, we only considered the predicted interaction with the

highest TC value. For this reason, in each cell of the product of the

matrices, only the highest value in the array-multiplication is

retained (see Figure 2). We transformed the resulting matrix into

the symmetric matrix M3 considering the highest value (TC) for

each pair of drugs. A set of new predicted DDIs are then generated

from M3, and the biological effect provided by the initial DDI

source in M1 is captured and associated to the new DDIs. As an

example, Figure 1 shows how we used a known interaction

between haloperidol and dicyclomine to predict an interaction

between haloperidol and oxybutynin. In addition, we assigned the

biological effect of the known interaction ‘‘Increased risk of

psychosis and tardive dyskinesia’’ to the predicted interaction.

Evaluation
Hold-out validation. We divided the database randomly in

two sets: training and test sets. We performed two evaluations by

moving 15% and 30% of the initial interactions to the test set, and

by constructing the model with the remaining interactions in the

new matrices M1 and M2. To evaluate the performance in the

training and test sets, we plotted the Receiver Operating

Characteristic (ROC) curves and used the area under this curve

(AUROC) as a summary statistic.

Test evaluation. For the assessment of the performance of

the model we used four different independent test sets, which do

not contain any interactions from the initial DDI database M1: A)

the top 100 DDIs generated by the model according to the TC

value, B) a random set of 100 drug interactions with a TC$0.7, C)

a random set of 100 drug interactions with a TC$0.4, and D) the

interactions generated by the model with a TC$0.4 for the 50

most frequently sold drugs in 2010 [22]. We used the Interaction

Checker from Drugs.com [17] and Drugdex (Micromedex)

database [18] as a reference standard to determine the number

of interactions that were correctly predicted. The level of

documentation in the reference standard ranges from ‘interactions

clearly established through controlled studies’ to ‘limited studies

but the interactions are recognized through pharmacological

knowledge’. We calculated precision and enrichment factor

compared to random selection (see formulas in Table 1) for the

four sets as measurements of the performance. In addition, in

order to provide more information, we plotted a Receiver

Operating Characteristic (ROC) curve for test set D. The

predicted biological/pharmacological effect associated with the

DDIs was also assessed based on the Drugs.com and Drugdex

databases.

Random results evaluation. The results obtained by the

model were compared to random expectations. We created a

random system taking into account the list of 50 most frequently

sold drugs in 2010. The top 50 list included 50 generic drug names

but we only included 41 generic names in the system. Nine of these

drugs are not represented in the DrugBank DDI database. We

cannot generate interaction predictions for these drugs so we

removed them from consideration. These drugs were mometa-

sone, ezetimibe, ferrous fumarate, naloxone, sitagliptin, latano-

prost, insulin glargine, insulin aspart, and omega-3-acid ethyl

esters.

The number of possible interactions for 41 drugs in a matrix of

928 drugs is 37,187 (927 factorial 41 times). We estimated the

number of positive cases as 7,068 interactions found in Drugs.com

and/or Drugdex and used a one-sided Fisher’s exact test to

calculate significance (p-value).

Results

We combined similarity information by means of interaction

profile fingerprint-based modeling with the initial database

containing 928 drugs and 9,454 DDIs, as described in the

Methods section. The final model generated a matrix of 430,128

DDI scores. Among these interactions are the initial 9,454

DrugBank DDIs used to develop the model. We evaluated the

performance of the model through hold-out validation and

external test series.

Hold-out Validation Model Performance
We performed two different evaluations by dividing the initial

database into training and testing subsets. In the first we moved

15% of the interactions from the training to the testing set and in

the second we moved 30%. Using DrugBank DDIs as true

positives we plotted ROC curves and computed the area under the

curve (AUROC). We found an AUROC = 0.967 for the 15%

hold-out and AUROC = 0.963 for the 30% hold-out (Figure 3).

The stability of the model is barely affected even when we

removed twice as many interactions. However, high performance

in these sets is expected since the similarity matrix was generated

using drug interaction profile information where the drugs and

Drug-Drug Interactions Using Interaction Profile
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Figure 2. The model generates interactions through the multiplication of the matrix M1 (Established DDI matrix) by the matrix M2

(Interaction profile similarity matrix. Note that each cell shows the TC between drugs A, B and C but interactions with more drugs are
considered to calculate the TC value). The values in the diagonal of the matrices are set 0 since drug interactions with themselves are not taken into
account. In the final matrix M3 only the maximum value in the multiplication-array in each cell is preserved and a symmetry-based transformation is

Drug-Drug Interactions Using Interaction Profile
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interactions in DrugBank have been specified and form a closed

system. As an example, the interactions retrieved for two drugs

that share all the interactions in the initial database have the

maximum score (TC = 1). For this reason, further evaluation of the

model using independent test sets with no interactions previously

collected in the initial DDI database is a necessary step to prove

the prediction power.

Test Set Model Performance
Test set A. The TOP 100 drug interactions predicted by

the model (TC_threshold = 0.92). We found 50 out of 100

interactions in Drugs.com and/or Drugdex (Micromedex) data-

bases. The precision of this external set is 0.50. Random

expectations (see Methods section) selecting 100 interactions in a

set of 37,187 possible interactions where there are 7,068 positive

cases, would detect 19 positive cases (random precision = 0.19).

The performance of the model showed a 2.6 fold (p,0.001)

enrichment factor (see Table 1 and Table S2).

Test set B. Random set of predicted 100 drug interactions

with a TC$0.7. We found similar results for the second

independent test where 43 out of 100 random interactions with a

TC$0.7 were in the reference standard. The precision in the

second test set is 0.43 and the enrichment factor 2.3 (p,0.001) (see

Table 1 and Table S3).

Test set C. Random set of predicted 100 drug interactions

with a TC$0.4. In the evaluation of the third test, we detected

in our reference standard 45 out of 100 random interactions with a

TC$0.4 (see Table 1 and Table S4 for more details).

Test set D. Interactions predicted for the 50 most

frequently sold drugs in 2010. 46% of the generated

interactions with TC$0.4 were confirmed in the reference

standard. The model presents an enrichment factor of 2.4

(p,0.001) (see Table 1 and Table S5 for a detailed description

of the evaluation). In addition, we plotted the ROC curve taking

into account as true positives all the interactions in the set

confirmed in drugs.com/drugdex (see Figure 4a). The area under

the curve is 0.69. Figure 5 shows the enrichment factor and

precision achieved by the model for each drug. Out of the 50

drugs, we included 41 in the evaluation. Nine drugs were not taken

into account because they were not included in our initial

DrugBank DDI database and the model could not predict any

interaction.

Our method outperforms other commonly used approaches. A

method recently published by our research group based on

molecular structure similarity [4] showed less predictive capacity

(AUROC = 0.668) compared to our model (AUROC = 0.687)

when applied to the test set D (see Figure 4). In addition we tested

if our model could predict pharmacodynamic interactions as well

as pharmacokinetic. Using DrugBank annotations, we identified

and removed any interactions between drugs with shared

metabolism by a cytochrome p450 (CYP) metabolizing enzyme

(1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5 and 3A7) [19].

14,242 interactions in the test set D included in the CYP list were

removed. We found that our approach performed nearly as well

(AUROC = 0.674), but that the performance of the molecular

structure based approach performed was reduced by 3%

(AUROC = 0.636) (Figure 4).

Pharmacological Effect Prediction
A pharmacology expert manually reviewed and compared the

pharmacological effect described in the predicted interactions for

the test sets to the effect found in Drugs.com and Drugdex

databases. The interactions predicted by the model belong to two

categories: some are generated comparing interaction profiles of

pairs of drugs in the same pharmacological class, whereas the

origin of other interactions resides in the comparison of the profile

fingerprints of pairs of drugs that are not in the same class.

For the test set A with the top 100 interactions, 43 out of 50 true

interactions (86%) were confirmed to have the same effect as the

described in our reference standard (see Table S2). We found a

similar result for the test set B (100 interactions with TC$0.7)

where the effect in 36 out of 43 confirmed interactions (84%) was

considered correct (see Table S3 for a detailed description). For

these test sets, the model generated the majority of the reviewed

interactions through the comparison of pairs of drugs catalogued

in the same or similar pharmacological class (48 out of 50 and 38

out of 43 for test A and B respectively). As the TC values decrease

so does our confidence in the predicted effect as these predictions

result from comparing pairs of drugs with different pharmacolog-

ical profiles. In test set C with TC$0.4, the pharmacological effect

was correct for the 66.7% of the interactions, i.e. 30 out of the 45

interactions found in the reference standard (see Table S4). For the

last test set D, we carried out a more challenging evaluation and

only the effect of the interactions generated through the

comparison of pairs of drugs belonging to different pharmacolog-

ical classes was evaluated. Out of the 640 correct DDIs predicted

by the model for test set D, 215 were from comparing drugs

belonging to different pharmacological classes. We reviewed the

pharmacological effect for this set of 215 predicted interactions

carried out retaining the highest TC value. In the example, the initial interactions A–B and A–C (red color) have a TC score of 0.9 in the matrix M3. The
system generated a new predicted interaction between B and C with a TC score of 0.8 (green color).
doi:10.1371/journal.pone.0058321.g002

Table 1. Model performance in the four independent test
sets A, B, C and D along with random results.

Test set model performance

Set A: TOP 100 predicted interactions according to TC value

TP FP Precision EF p-value

50 50 0.50 2.63 ,.001

Set B: 100 predicted interactions randomly selected with TC$0.7

TP FP Precision EF p-value

43 57 0.43 2.26 ,.001

Set C: 100 predicted interactions randomly selected with TC$0.4

TP FP Precision EF p-value

45 55 0.45 2.37 ,.001

Set D: Predicted interactions with TC$0.4 for the TOP 50 drugs sold in 2010

TP FP Precision EF p-value

640 744 0.46 2.43 ,.001

Random system calculated for the TOP 50 drugs sold in 2010

TP FP Precision – –

19 81 0.19

TP = True positives, FP = False positives, Precision = TP/(TP+FP),

EF (Enrichment factor)~
N correct interactions in test set

N interactions in test set

=
N correct interactions in random set

N interactions in random set
doi:10.1371/journal.pone.0058321.t001
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showing a percentage of correct classification of 59% (the effect

was correct in 126 out of 215 cases).

Table 2 describes some example predictions from the test

dataset D (detailed description is provided in Table S6) for which

the model correctly detected interactions comparing drugs of

different pharmacological classes as well as the effect produced by

these interactions. For instance, the model detected that amoxa-

pine, a tetracyclic antidepressant of the dibenzoxazepine family,

has some similarity with the interaction profile of the antibiotic

linezolid (TC = 0.40), and for this reason the model predicted the

interaction escitalopram-amoxapine with a possible serotoninergic

syndrome.

The model also predicted that levofloxacin could interact with

propafenone, fluconazole, ibutilide, ranolazine, saquinavir and

telithromycin with risk of cardiotoxicity and arrhythmias (see

Table 2 and S6). The interactions were corroborated in

Drugs.com database with a similar effect. We predicted other

combinations, such as atazanavir-salmeterol, to cause cardiotox-

icity and arrhythmias.

The model predicted possible hypertensive crisis with the

combination methylphenidate and linezolid. The system generated

the interaction because linezolid has a similar interaction profile as

the monoamine oxidase inhibitor rasagiline (TC = 0.52) and the

interaction methylphenidate-rasagiline was included in the initial

database.

Among other examples, we also detected that the antidiabetic

pioglitazone could interact with the macrolide antibiotic clarith-

romycin, and with the anti-HIV drugs indinavir and nelfinavir

producing and increased effect of pioglitazone (see Table 2 and

S6).

Although all the new DDIs generated by the model have

corresponding predicted biological effects, it is important to take

into account that as the TC value associated with the new

interaction decreases so does the certainty of the associated effect.

Discussion

The desirable and undesirable drug effects in patients are highly

dependent on pharmacokinetic properties, such as absorption,

distribution, metabolism and excretion (ADME), and pharmaco-

Figure 3. ROC curves in the hold-out validation process: a) training set with the 85% of the DrugBank interactions; b) test set with
the 15% of the extracted DrugBank interactions; c) training set with the 70% of the DrugBank interactions; d) test set with the 30%
of the extracted DrugBank interactions.
doi:10.1371/journal.pone.0058321.g003
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dynamic properties, such as interaction with pharmacological

targets. These important processes can be altered by the co-

administration of different drugs at the same time. For this reason,

drug interactions are an important problem in the surveillance of

approved drugs and in the evaluation and development of new

drug candidates. The FDA has shown its concerns to address this

issue, and provides guidance to perform in vitro and in vivo drug

interactions studies during the developmental stage of new drugs

[2,23–24].

A great effort has been made to develop in silico approaches,

focused on the integration of in vitro data, to predict in vivo drug

interactions [23,25]. These models principally focused on meta-

bolic interactions related to CYP enzymes. Other types of

computational models to predict affinity for CYP enzymes based

on molecular descriptors have also been developed [26]. Although

many interactions are produced by the inhibition of metabolizing

enzymes, there are also other possible mechanisms, such as

interactions with transporters or pharmacological targets. Systems

to further analyze pharmacodynamics interactions in vivo have

been also described [27]. Other approaches to predict different

types of DDIs have been recently published [28–29]; some of them

take into account algorithms to detect interactions in adverse event

reports [30], or text mining methods [31]. Our group has also

recently described a large-scale DDI predictor based on molecular

structure similarity to drug pairs [4]. Gottlieb et al. [32] have

recently published a similar interesting large-scale approach to

predict pharmacokinetic and pharmacodynamic DDIs. The

authors used the concept of similarity to drug pairs, including

different measurements, such as chemical structure, drug targets

and side effect similarities, to infer new DDIs in a complex system

with excellent results.

In this article, we developed a novel drug fingerprint based on

drug interactions profile with successful application to DDI

prediction and pharmacovigilance. Through the inclusion of

interaction profile fingerprint-based similarity to the initial well-

established DDI database, we constructed a large-scale drug

Figure 4. ROC curves for test set D: a) ROC curve generated by the IPF model for test set D. Interactions for the top 50 drugs (41 generic
names) confirmed in drugs.com/drugdex were considered as true positives within all the possible interactions in a matrix of 416928 drugs.
Interactions already in the initial DrugBank DDI database (matrix M1) were not included in the analysis; b) ROC showed by a model applied to test D
using MACCS fingerprints; c) ROC curve calculated by the IPF model for test set D but excluding CYP interactions; d) ROC showed by the MACCS
fingerprints model applied to the test D without CYP interactions.
doi:10.1371/journal.pone.0058321.g004

Drug-Drug Interactions Using Interaction Profile

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e58321



Figure 5. Enrichment factor (a) and precision (b) achieved by the model regarding random results for top drugs sold in 2010 (test
set D). The test set of drugs are sorted according to the enrichment factor.
doi:10.1371/journal.pone.0058321.g005
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interaction predictor taking into account different pharmacolog-

ical effects caused by pharmacokinetic and pharmacodynamic

characteristics of the drugs implicated in the interaction. The

model generated some predicted interactions comparing the

interaction profiles of pairs of drugs in the same pharmacological

class, whereas a more challenging task is carried out when the

interactions are generated comparing drugs belonging to different

classes. The dataset of DDI candidates is available in the Table S1

of the Supporting Information for further study.

The aim of the model is to detect interactions when two drugs

are implicated and does not account for co-DDIs or secondary

interactions due to primary interactions. The development of a

more complex and challenging model would be necessary to

address this issue. Information about concentration of the drugs

and environmental variables are not included in the model either.

However, implicit bioavailability information has been incorpo-

rated since our initial DDI database contains examples where two

drugs share the same metabolizing enzymes causing a higher

bioavailable doses for one of the drugs implicated in the

interaction.

Targets and drug promiscuity data was not directly introduced

although implicit target information is taken into account since

pharmacodynamic interactions were included in the system. As an

example, Figure 4c has shown that model performance was not

affected after eliminating possible CYP-related DDIs. Neverthe-

less, enhancement in our DDI system could also be achieved

through the integration of metabolizing, transporters and phar-

macological targets information provided by chemical databases

such as PubChem [33]. Pharmacovigilance databases, such as the

FDA’s Adverse Event Reporting System (AERS) [34], or the use of

clinical data in Electronic Health Records (EHR) [35] could be

also combined to further study possible DDI candidates.

Other types of models introducing 2D or 3D molecular

structure data could be integrated in our system. The information

provided by molecular structure can be different or complemen-

tary to IPF fingerprint data. We computed the correlation

coefficient between the TC for all the pairs of drugs in the study

Table 2. Some examples of correct interactions predicted for the 50 most frequently sold drugs in 2010 in which the model
generated interactions through the comparison of drugs belonging to different pharmacological classes.

Similar drug to A1 Predicted interaction DrugA-DrugB Similar drug to B1 TC Predicted effect

Aripiprazole-Nelfinavir Itraconazole 0.55 Increased effect of aripiprazole

Aripiprazole-Atazanavir Ketoconazole 0.45 Increased effect of aripiprazole

Alprazolam Atorvastatin-Digoxin 0.40 Increased effect of digoxin

Midazolam Atorvastatin-Omeprazole 0.51 Increased effect of atorvastatin

Atorvastatin-Miconazole Imatinib 0.43 Increased effect and toxicity of atorvastatin

Buprenorphine-Trospium Triprolidine 0.43 Possible increase adverse/toxic effects due to additivity

Buprenorphine-Trimethobenzamide Triprolidine 0.40 Possible increase adverse/toxic effects due to additivity

Felodipine Conjugated_Estrogens-Oxcarbazepine 0.51 Decreased levels of estrogens

Gefitinib Conjugated_Estrogens-Clarithromycin 0.47 Increased levels/toxicity of estrogens

Nifedipine Conjugated_Estrogens-Cimetidine 0.40 Increased the effect of estrogens

Duloxetine-Tolterodine Tamsulosin 0.59 Possible decreased metabolism and clearance of Tolterodine.
Changes in therapeutic/adverse effects of Tolterodine

Duloxetine-Trimethobenzamide Triprolidine 0.40 Possible increase adverse/toxic effects due to additivity

Duloxetine-Sibutramine Zolmitriptan 0.53 Increased risk of serotonin syndrome

Escitalopram-Amoxapine Linezolid 0.40 Possible serotoninergic syndrome

Eszopiclone-Trimethobenzamide Triprolidine 0.40 Possible increased adverse/toxic effects due to additivity

Ethinyl_Estradiol-Trimipramine Tacrolimus 0.43 Possible increased blood concentration of Trimipramine

Cisapride Levofloxacin-Propafenone 0.44 Increased risk of cardiotoxicity and arrhytmias

Methylphenidate-Linezolid Rasagiline 0.52 Possible hypertensive crisis with this combination

Gefitinib Norethindrone-Voriconazole 0.48 Possible increased serum concentration of norethindrone.
Changes in the therapeutic and adverse effects

Oxycodone-Trospium Triprolidine 0.43 Possible increased adverse/toxic effects due to additivity

Pioglitazone-Nelfinavir Ketoconazole 0.51 Increased the effect of pioglitazone

Dihydro
ergotoxine

Salmeterol-Delavirdine 0.48 Increase salmeterol toxicity

Lidocaine Salmeterol-Atazanavir 0.56 Increased risk of cardiotoxicity and arrhythmias

Sildenafil-Clonidine Terazosin 0.47 Increased risk of hypotension

Simvastatin-Conivaptan Imatinib 0.43 Increased effect and toxicity of statin

Bromazepam Tadalafil-Rifabutin 0.50 Possible decreased serum concentration of Tadalafil. Changes
in the therapeutic and adverse effects

Tadalafil Zolpidem-Doxazosin 0.55 Risk of significant hypotension with this association

TC is the Tanimoto coefficient.
1The similarity between drugs is based on the drug-drug interaction profile.
doi:10.1371/journal.pone.0058321.t002
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using IPF and MACCS fingerprints. The results showed a low

correlation coefficient of 0.167 (see Figure 6). However, it is

noteworthy that there actually is a relationship between molecular

structure similarity and interaction profile information in that if

two drugs share similar interactions it is likely that they have some

structural similarity. It is interesting to note that in the matrix of

9286928 drugs, 2,334 unique pairs were computed with a

TC.0.70 using the structural fingerprints MACCS [36]. Using

our IPFs, 3,332 pairs of drugs were established to have a TC.0.4.

The comparison of both subsets showed 694 pairs of drugs in

common whereas a random measurement would have yielded 18

common cases ( = 333262334/430128). When the structure of

two molecules is compared through classical structural molecular

fingerprints, the TC values are in the range of 0.85 for similar

molecules. However, the TC range for establishing whether two

molecules are similar is highly dependent on the molecular

property information included in the fingerprint. In this article,

TC values of 0.4 still indicate some level of similarity between two

drugs related to interactions, as we show through the evaluation of

the test sets C and D.

The model used only the DDIs described in DrugBank to

generate new predictions. However, we evaluated the model using

a larger set of interactions, such as those in Drugs.com and

Drugdex, which contain many DDIs not described in our initial

DDI database. The limitation in the data used to construct the

model is likely to have influenced the results when using large DDI

databases as a reference standard because DrugBank is a more

limited resource of interactions. This could be an important reason

why there are many cases where the model does not detect the

DDIs described in the reference standard, resulting in false

negative results. For instance, in the evaluation of test D, the

model generated 71 possible interactions with a TC$0.4 for the

three HMG-CoA reductase inhibitors: atorvastatin, rosuvastatin

and simvastatin. However, we found a total of 345 interactions

containing these three drugs in Drugs.com/Drugdex databases

that involved drugs included in our initial DrugBank database.

This fact shows that there are many interactions undetected by our

model when using a TC cutoff of 0.4. Lowering the TC cutoff will

increase the sensitivity of the model but at the same time the false

positive rate will be increased. Improvements in the system could

be made by supplementing the DDIs and drugs in DrugBank with

other sources of drugs and DDI information.

In our evaluation, false positives were deemed to be those that

were not present in the reference standard. However, it is possible

that some of these interactions have not yet been discovered or

that some were not in the reference standard but could have been

found if we used other sources of interactions as a reference

standard. Furthermore, we further studied the false positive DDIs

detected by our method in test set A using the INDI predictor [32]

that provides a large scale state of the art method to predict

pharmacokinetic and pharmacodynamic DDIs. 17 out of 49 DDIs

were also candidates predicted by INDI suggesting agreement

between both systems.

Conclusion
In this article, we have designed a novel molecular fingerprint

based on DDI profiles and developed a useful in silico model to

predict new drug interactions and to specify their possible effects.

The methodology, which can be applied on a large scale, was

systematically validated through the evaluation of independent

and external test sets and showed precision values ranging from

0.4–0.5 with more than two fold enrichment factor enhancement

compared to random expectations. Through this DDI predictor, a

database with 17,230 drug-drug interaction candidates along with

the possible pharmacological effects is provided in the Supporting

Information. This database can be combined with other explor-

atory tools, such as pharmacovigilance data analysis, to facilitate

decision support in DDI detection.

Figure 6. Comparison between the TC for all the pairs of drugs in a matrix of 9286928 using MACCS and IPF fingerprints. The
correlation coefficient (r) calculated through linear regression is 0.167 and p,.0001.
doi:10.1371/journal.pone.0058321.g006
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Supporting Information

Table S1 Predicted interactions (not included in the DrugBank

DDI dataset) with a Tanimoto coefficient (TC) score $ 0.4

generated by the model.

(XLSX)

Table S2 Evaluation of the top 100 interactions (test set A).

(XLSX)

Table S3 Evaluation of a random set of 100 interactions with

TC $ 0.7 (test set B).

(XLSX)

Table S4 Evaluation of a random set of 100 interactions with

TC $ 0.4 (test set C).

(XLSX)

Table S5 Interactions predicted by the model with TC $ 0.4

and corroborated in Drugdex and/or Drugs.com databases for the

50 most frequently drugs sold in 2010 (test set D).

(XLSX)

Table S6 Evaluation of the pharmacological effect predicted by

the model for the interactions generated with Tanimoto coefficient

$0.4 for the 50 most frequently sold drugs by unit in 2010.

(XLSX)
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