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Abstract: A novel graphene-based phosphorus/silicon-containing flame retardant (GO-DOPO-V)
was obtained via one-step reduction of graphene oxide (GO) with phosphorus/silicon-containing
compound (DOPO-V). The Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron
spectrometer (XPS), Atomic force microscope (AFM) and Thermogravimetric analysis (TGA) mea-
surements were used to confirm the structure and morphology. After incorporation of 2 wt%
GO-DOPO-V, the maximum decreases of 28.8% in peak heat release rate and 15.6% in total heat
release are achieved compared to that of pure epoxy resin (EP). Furthermore, TGA and Scanning
electron microscopy (SEM) measurement showed that GO-DOPO-V significantly enhanced the
thermal stability and residual char strength of EP. Thus, attributed to the barrier effect of GO and
phosphorus/silicon layer formation by DOPO-V, GO-DOPO-V was a high-efficient flame retardant
to improve the combustion behavior of EP nanocomposite.

Keywords: graphene oxide; functionalization; P/Si flame retardant; epoxy resin

1. Introduction

Because of its excellent chemical resistance, mechanical properties and low shrinkage
on cure, epoxy resin (EP) has been widely used in painting, adhesives and composite
applications [1–4]. However, the flame retardancy of pure EP is always not good enough
to fulfill the requirement in some applications, such as semiconductor encapsulants and
printed circuit boards. In recent years, many approaches have been developed to obtain
halogen-free flame-retardant EP [5–10].

Phosphorus-containing compounds are one of the most promising halogen-free flame
retardants, among which 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)
is a kind of environmentally-friendly flame retardant that has high thermal stability, and
good oxidation and water resistance [11–13]. In recent years, a novel liquid compound
(DOPO-V) containing DOPO and silicon was synthesized by allowing DOPO to react
with vinyltrimethoxysilane (VTMS), and exhibited good compatibility with the epoxy
matrix. However, a relatively high loading (10 wt%) was usually needed to achieve a good
flame-retardant effect [14–17].

Graphene, as a unique two-dimensional carbon-based material, has attracted a tremen-
dous amount of attention in various application fields [18–23]. It also could have been used
as a flame retardant in the previous reports. As a barrier in polymer during combustion,
graphene could slow down the heat release and block combustible fragments going into
the flame area. Moreover, graphene oxide (GO) by the acid oxidation of graphite powder
contains a lot of oxygen-containing groups (e.g., -OH, -COOH, epoxy) on the surface
and edge, allowing the functionalization of graphene sheets via various solution reac-
tions [24–33]. Dai et al. [34] synthesized a functional graphene (GO-MD-MP) containing
POSS and DOPO groups, and added it to epoxy resin as a flame retardant. The test results
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show that the flame retardancy, thermal stability and mechanical properties of epoxy resin
have been greatly improved. Our research group [35] has prepared a novel modified
graphene (GO-PMDA) by the grafting of polysilicone to the surface of graphene oxide. The
results indicate that GO-PMDA can improve the dispersion of graphene in epoxy resin.
Moreover, compared with the addition of GO, the flame retardancy of epoxy resin added
with GO-PMDA is better.

In this work, a novel graphene-based phosphorus/silicon-containing flame retardant
(GO-DOPO-V) was synthesized via one-step reduction of GO with DOPO-V. The structure
and morphology was characterized and proved by the FTIR, XPS, AFM and TGA mea-
surements. The novel flame retardant combined flame-retardant elements phosphorus
and silicone together, with which the EP incorporated not only remarkably enhanced
the amount of residual char but also obtained high flame retardancy at low loading of
GO-DOPO-V. Therefore, it is necessary to functionalize the graphene with DOPO-V to
improve the flame retardant efficiency.

2. Materials and Methods
2.1. Materials

Graphite powders (spectrum pure), concentrated sulphuric acid (98%), phosphoric
acid (85%), potassium permanganate, hydrogen peroxide (30%), 2,2′-azobisisobutyronitrile
(AIBN), N,N′-dicyclohexylcarbodiimide (DCC) and tetrahydrofuran (THF) were all pur-
chased from Alfa Aesar Chemical Reagent Co. Ltd. (Tewksbury, MA, USA). 9,10-dihydro-
9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) was purchased from TCI Development
Co., Ltd. (Tokyo, Japan). Vinyltrimethoxysilane (VTMS), benzene (reagent grade) and ethyl
alcohol (EtOH, 95%) were purchased from Sigma-Aldrich Reagent Co. Ltd. (St. Louis, MO,
USA). Chloroform (CHCl3) and hydrochloric acid was supplied by Fisher Scientific Chemi-
cal Co. (Waltham, MA, USA). EPON 826 with an epoxy equivalent weight of 178–186 g was
supplied by Hexion Specialty Chemicals Inc. (Columbus, OH, USA) and used as received.
The hardener, Jeffamine D230, with an amine equivalent weight of 60 g, was supplied by
Huntsman Corp. (Woodlands, TX, USA) and also used as received.

2.2. Synthesis of DOPO-V

DOPO (21.6 g, 0.1 mol), VTMS (14.8 g, 0.1 mol) and benzene (100 mL) were added into
a three-necked flask with a mechanical stirrer, flux condenser, dropping funnel and nitrogen
inlet. After the mixture was saturated with nitrogen atmosphere under vigorous mechanical
stirring, the temperature was warmed to 80 ◦C. After the DOPO was dissolved completely,
0.1 g of AIBN, which was predissolved in 50 mL of benzene, was slowly dropped into
the above reaction vessel within 2 h at 80 ◦C and then kept at that temperature for 24 h.
After that, the products were purified by filtering. Then, benzene was removed by a rotary
evaporator, yielding a colorless liquid product named DOPO-V [14].

2.3. Functionalization of Graphene Oxide (GO)

GO was prepared from graphite by a modified Hummers’ method [36]. As is well
known, GO contains hydroxyl functional groups on their basal planes and edges, which
could cause the active sites to react with silane. Briefly, the as-prepared GO (0.2 g) was
first suspended in THF (200 mL) in a 500 mL three-neck flask under ultrasonication for
90 min. Subsequently, the DOPO-V (0.8 g) and DCC (0.1 g, as cat.) were introduced into the
above flask, followed by ultrasonication for 30 min. With stirring, the mixture was heated
to 66 ◦C and refluxed for 20 h under nitrogen atmosphere. Afterwards, the mixture was
centrifuged and thoroughly washed with anhydrous THF to remove the residual DOPO-V.
Then, the product, DOPO-V-functionalized graphene sheets (GO-DOPO-V), was dried in a
vacuum at room temperature for 12 h to remove the solvent (Scheme 1).
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2.4. Preparation of Epoxy Composite

Briefly, the EP/GO-DOPO-V composites were prepared as follows: The GO-DOPO-V
(2 g) was dispersed in acetone and sonicated for 60 min to form a uniform black suspension.
Then, EPON 826 (73.5 g) was added into mixture and dispersed by a mechanical stirrer
for 30 min. The mixture was heated in a vacuum oven at 50 ◦C for 10 h to remove the
solvent. After that, D230 (24.5 g) was added into mixture and stirred for 30 min. After
being degassed in vacuum for 10 min to remove any trapped air, the samples were cured
at 80 ◦C for 2 h and post cured at 135 ◦C for 2 h. For comparison, pure epoxy (EP), 2 wt%
DOPO-V/epoxy (EP/DOPO-V) and 2 wt% GO/epoxy (EP/GO) composites were also
prepared at same processing condition.

2.5. Characterization and Measurement

The Fourier transform infrared (FTIR) spectroscopy was tested using a Digilab Scimitar
FTS-2000 IR spectrometer (Digilab Inc., Hopkinton, MA, USA) at a resolution of 2 cm−1

with 20 scans. The samples were mixed with potassium bromide and pressed to a disc,
which was used to measure. X-ray photoelectron spectroscopy (XPS) was carried out in
a Thermo Scientific ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA) equipped with a mono-chromatic Al Kα X-ray source
(1486.6 eV). AFM observation was performed on the Bruker Dimension Icon atomic force
microscope (Bruker Corp., Karlsruhe, Germany) in tapping mode. The aqueous GO
suspension and DMF suspension of GO-DOPO-V were spin-coated onto freshly cleared
silica surfaces. Thermogravimetric analysis (TGA) measurement was carried out on a
TA instrument Q5000 thermogravimetric analyzer (TA Instrument Corp., New Castle,
DE, USA). The sample (about 10 mg) was heated from 50 ◦C to 600 ◦C (or 700 ◦C) at a
10 ◦C/min heating ramp rate in nitrogen atmosphere. Cone calorimeter measurement
was performed on an FTT cone calorimeter (Fire Testing Technology Ltd., East Grinstead,
West Sussex, UK) according to ASTM E1354 using a cone shaped heater with an incident
flex set at 50 Kw/m2. The dimensions of each specimen was 100 × 100 × 3 mm3. All the
measurements were repeated three times and the results were averaged. The samples were
coated with a conductive gold layer and examined by scanning electron microscopy (SEM)
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using an FEI Quanta 200 environmental scanning electron microscope (FEI Co., Hillsboro,
OR, USA).

3. Results and Discussion
3.1. Characterization of GO-DOPO-V

Due to the carboxylic, epoxy, carbonyl, and hydroxide groups on its surface and edge,
GO can produce stable dispersions in water with a color of light yellow after a suitable
ultrasonic treatment [37,38]. As shown in Figure 1, the covalent bonding of DOPO-V onto
graphene is evident by a phase transfer of the GO starting material from the water phase
into the CHCl3 phase upon the formation of GO-DOPO-V.
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The chemical structure of GO, DOPO-V and GO-DOPO-V was characterized by FTIR
spectra (Figure 1). The FTIR spectra of DOPO-V showed that the characteristic peak at
around 1200–1000 cm−1 belonged to Si-O-C and Si-O-Si structures [31,39]. The absorption
peaks at 902 cm−1, 1274 cm−1 and 1595 cm−1 correspond to the stretching vibrations of
P-O-Ph, Ph=O and P-Ph bonds, respectively. These findings verify that the DOPO-V has
been successfully prepared [14]. The FTIR spectra of GO shows significant contribution
from -OH and C=O chemical groups, consistent with infrared spectra of GO presented
elsewhere. The strong absorption bands at about 3406 cm−1 originating from the stretching
mode of -OH groups, indicated the existence of H2O and -COH within GO [40,41]. For
the FTIR spectra of GO-DOPO-V, the majority of the absorption peaks that appeared in
both GO and DOPO-V were observed and the peak intensities of the -OH and C=O groups
decreased, which indicates that GO is grafted by DOPO-V.

The XPS spectra was used to investigate the chemical components of GO and GO-
DOPO-V. As shown in Figure 2, XPS survey spectra of GO displays the presence of C1s
and O1s peaks, and no peaks corresponding to other elements are detected. Thus, the
appearance of the Si2p (102 eV), P2p (133 eV), Si2s (154 eV) and P2s (191 eV) peaks in the
XPS survey spectra of GO-DOPO-V indicates the successfulness of the covalent bonding of
DOPO-V onto GO.
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Figure 2. XPS survey spectra of GO and GO-DOPO-V.

The high-resolution XPS spectra of C1s is shown in Figure 3. The asymmetric shape
of the C1s spectrum recorded from the unmodified GO in Figure 3a is very typical for
carboneous substances consisting of graphite-like bonded carbon atoms, such as GO [42].
It exhibits the presence of four kinds of carbon in GO and GO-DOPO-V: C-C (285.0 eV),
C-O (287.0 eV), C=O (287.9 eV) and COO (289.0 eV). In comparison with GO, the peaks
of C-O, C=O and COO in the C1s scan of GO-DOPO-V (Figure 3b) obviously decreased,
which further confirmed that GO was modified by the DOPO-V.
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Figure 4 shows the tapping mode AFM images of GO and GO-DOPO-V with the height
profile. After surface functionalization of GO, a layer of bright substances is observed on
the graphene sheet in Figure 4b, which can be attributed to the incorporation of DOPO-V
on both sides of the graphene sheet. In the appearance of graphene, as we can see, the
height profile changes [33]. The grafted DOPO-V onto the surface of the GO sheet heightens
its thickness to 2~4 nm in Figure 4b, compared to the thickness of GO at about 1 nm in
Figure 4a. Moreover, the 3D view of GO-DOPO-V (Figure 5) reveals that the surface of
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GO-DOPO-V is uneven, which is probably caused by the trimethoxy groups from DOPO-V
molecular. The condensation reaction between DOPO-V molecular via methoxy groups can
form the building blocks of polysilicone [43,44] and, subsequently, leads to the non-uniform
morphology of the surface of the GO-DOPO-V sheet.
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The TGA curves of GO, DOPO-V and GO-DOPO-V under nitrogen atmosphere are
shown in Figure 6. The temperature of 5 wt% weight loss (T5wt%) for GO is at 78.5 ◦C,
with the maximum weight loss rate occurring at 193.1 ◦C. Compared with these, the
temperatures of 5 wt% weight loss and maximum weight loss rate for GO-DOPO-V are
178.7 ◦C and 230.8 ◦C, respectively. It was found that reduced GO was thermally stable and
subject to minor mass loss in a nitrogen atmosphere because most of the oxygen-containing
groups on the surface of GO were removed in the reduction process [45]. More importantly,
the amount of residue char at 600 ◦C also dramatically increased from GO (16.5 wt%) to
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GO-DOPO-V (54.6 wt%). This could be attributed to the presence of DOPO-V, which has
a high gas-phase activity and condensed-phase activity (through char formation) [14,46].
Thus, GO-DOPO-V exhibits a higher thermal stability. According to the method in the
literature [47], the amount of DOPO-V grafted onto the surface of the graphene was
calculated, and the result of the grafting percent was 61.6%.
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3.2. Thermal Stability

As shown in Figure 7, the effect of GO, DOPO-V and GO-DOPO-V on the thermal sta-
bility of EP was investigated by TGA measurement, and corresponding data is summarized
in Table 1. The T5wt% and T50wt% of EP/DOPO-V and EP/GO/DOPO-V exhibit similar val-
ues, but these values are still higher than those of EP/GO. Interestingly, the peak rate and
Tmax of EP/GO-DOPO-V are both higher than those of EP/GO and EP/DOPO-V, which
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Table 1. TGA data of EP, EP/GO, EP/DOPO-V and EP/GO-DOPO-V.

Sample
Temperature (◦C) Peak Rate

(wt%/◦C)
Residue Char

(wt%)T5wt% T50wt% Tmax

EP 346.0 383.5 381.4 2.09 7.02
EP/GO 322.5 378.6 378.2 1.84 6.95

EP/DOPO-V 338.7 380.2 376.8 1.84 8.19
EP/GO-
DOPO-V 338.4 381.9 379.0 1.96 8.52

Moreover, in the case of EP/GO, its residue char is lower than pure EP, since GO is
thermally unstable. The addition of DOPO-V and GO-DOPO-V exhibits a reverse trend in
the residue char compared with GO. In comparison with EP, the residue char of EP/DOPO-
V and EP/GO-DOPO-V is increased by 1.17 wt% and 1.50 wt%, respectively. It can be
concluded that since both Si and P elements have the function of promoting the formation
of residue char, the incorporation of DOPO-V in GO has a marked influence on the thermal
decomposition behavior of EP.

3.3. Flame Retardancy

The flame retardancy of EP, EP/GO, EP/DOPO-V and EP/GO-DOPO-V is measured
by cone calorimeter. Figure 8 shows the heat release rate (HRR) and total heat release (THR)
curves of all of the samples. As expected, the peak heat release rate (PHRR) and THR are
both decreased compared to that of pure EP, and the maximum decreases of 28.8% in PHRR
and 15.6% in THR are achieved by GO-DOPO-V. When compared with GO, GO-DOPO-
V exhibits greater improvement in flame retardancy of EP. The HRR and THR values
of EP/GO are 1710.39 kW/m2 and 85.32 MJ/m2, respectively, while the corresponding
values of EP/GO-DOPO-V are 1552.78 kW/m2 and 78.97 MJ/m2, respectively. In the HRR
curves of all samples, the time corresponding to PHRR of pure EP is the longest, while the
time corresponding to PHRR decreases gradually after adding various flame retardants.
Among them, EP/GO-DOPO-V is the shortest. This is because the flame retardant contains
phosphorus elements and unstable groups, which will induce the early degradation of
EP. In the degradation process, a residual char layer will be formed to complete the flame
retardant process.

Figure 9 shows SEM images of the residual char after CONE measurement. It can be
observed that EP is a highly flammable material and its residual char shows an obviously
honeycomb structure. Moreover, the char of EP/GO and EP/DOPO-V is bumpy and
porous, which is caused by the gaseous products during combustion, and the volatilization
of these gasses consequently leads to the formation of multi-porous interior chars [48,49].
For EP/GO-DOPO-V, homogeneous, continuous and compact residual char is formed. This
can be attributed to the barrier effect of GO and the phosphorus/silicon layer formation
by DOPO-V. From there comparisons, it is clear that owing to the chemical combination
of GO and DOPO-V during char formation, the strength of EP/GO-DOPO-V residual
char is improved, which can protect the underlying polymer and inhibit the exchange of
degradation products, combustible gases and oxygen. Finally, the combustion behavior of
EP is strongly enhanced, which is in accord with the results shown in TGA analysis and
CONE measurement.
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4. Conclusions

In conclusion, functionalized graphene with grafting DOPO-V was successfully syn-
thesized through a one-step reduction method and applied to prepare the flame retardant
epoxy composites. FTIR and XPS spectra show that the DOPO-V has been successfully
grafted onto the surface of GO. The thickness of the GO-DOPO-V sheet is increased from
about 1 nm of GO to 2~4 nm and GO-DOPO-V exhibits a higher char yield. Furthermore,
the incorporation of 2 wt% GO-DOPO-V contributes an excellent thermal stability and
flame retardancy to EP. From the TGA, SEM and CONE measurements, it can be concluded
that, attributed to the barrier effect of GO and the phosphorus/silicon layer formation by
DOPO-V, GO-DOPO-V is a highly-efficient flame retardant able to improve the combustion
behavior of EP nanocomposite.
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