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Abstract

Though pituitary adenomas are benign tumors in most cases, a considerable fraction of PAs behave in a malignant-
like manner and invade to the adjacent structures in sellar region, especially the cavernous sinuses. Cancer-cell
invasion and metastasis remain a great challenge for physicians and surgeons in spite of emerging advances in
drug therapy and surgical Treatment. matrix metalloproteinases, as a family of zinc-dependent endopeptidases,
have long been known to be associated with tumor invasion and metastasis mainly via breaking down basement
membrane in different tissues. Aberrant expression and activation of matrix metalloproteinases have been detected
in invasive pituitary adenomas as in malignancy and correlated to tumor invasion. Therefore, matrix metalloproteinases
are considered as promising biomarkers for predicting tumor behavior and even drug targets for novel therapeutic
strategies. In this review, we give an overview of the expression, function, regulation and clinical prospects of matrix
metalloproteinases, especially focusing on the biological network in which matrix metalloproteinases may be
abnormally activated in promoting pituitary adenoma invasion.
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Background
Pituitary adenomas (PAs) are the second most common
intracranial neoplasms with the prevalence of around 80/
100,000, representing up to 25% of brain tumors [1–3].
Though PAs are commonly benign tumors, a considerable
fraction of PAs, with the prevalence of 43% radiographic-
ally and 18% intraoperatively, behave in a malignant-like
manner and invade to the adjacent structures includ-
ing cavernous sinuses (CSs) and even internal carotid
arteries [4, 5]. Though the magnetic resonance
imaging-based Knosp grading system shows accept-
able reliability and prognostic value [6–8], intraopera-
tive visualization remains the gold standard for the
diagnosis of invasive PA. Thus, preoperative detection
of invasive PAs is of great significance for making ap-
propriate surgical strategies.
PA invasion is the most common cause of incomplete

surgical resection demanding further imaging follow-up,
radiotherapy and even chemotherapy. Intraoperative

findings of invasion to adjacent structures remain the
gold standard in diagnosing PA invasion, whereas
classification systems based on radiographic results
are important predicting tools prior to surgery. In the
present review, studies adopting intraoperative and
radiographic standards are comprehensively reviewed.
PA invasion stays a great challenge for most neuro-
surgeons though rich-experienced pituitary centers
with the assistance of multiple surgical techniques
can achieve gross total resection with a rate of up to
63.5% [9]. More tools are needed to assist the detec-
tion of PA invasion at an early stage. Taken together,
there are challenges in early detection and effective
therapy of PA invasion, whereas the mechanism re-
mains poorly understood and requires further explor-
ation. Accordingly, various biological molecules have
been screened in order to discover a biological
marker of relatively high sensitivity and specificity in
predicting PA invasion.
Matrix metalloproteinases (MMPs), as zinc-dependent

endopeptidases, consist of 24 members in mammals and
mainly function by degrading the structural tissue com-
ponents in extracellular matrix (ECM) [10]. MMPs are
found at high levels of protein and transcription in
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various types of tumor. Previous researches have demon-
strated that MMPs are associated with tumor invasion,
metastasis and angiogenesis [11]. Aberrant expression
and activation of MMPs are detected in invasive PAs,
suggesting the potential role of MMPs in promoting PA
invasion via its proteolytic activity [12, 13]. Emerging
evidence suggests that MMPs are implicated in the infil-
trative growth of PAs. In this review, we will summarize
expression, function, regulation and clinical prospects of
MMPs for a better understanding of PA invasion.

Molecular basis of PA invasion
The medial wall (MW) of CS, which is located in the
lateral side of pituitary gland, is penetrated by invasive
PAs. The mainstream view is that MW of CS mainly con-
sists of two distinct layers including pituitary capsule (PC)
and dura mater (DM). The existence of histologic defect
in MW of CS enabling PA invasion has been denied ana-
tomic researches. Instead, the interaction between MW
components and biological properties of PAs are believed
to account for invasion. Peker et al. [14] was the first to
investigate the collagen expression pattern of ECM in
sellar region. They found that PC and DM share collagen
I and II expressions in common while collagen III, IV and
V are differentially located in PC alone. Knappe et al. [15]
revealed a relatively different expression pattern of colla-
gen in perisellar ECM but also certified the fact that colla-
gen IV is densely expressed in PC. In contrast, Kawamoto
et al. [13] demonstrated that collagen IV is the main func-
tional component of DM in PAs, and therefore proposed
that type IV collagenases are involved in PA invasion. Dif-
ferent from previous studies, Ceylan et al. [16] defined
MW and PC as two distinct membrane structures and
found high concentrations of collagen IV in both mem-
branes. Though results of these studies concerning
anatomic structures and collagen expressions of MW are
slightly controversial, these findings all point out that
collagen IV is the key component of ECM in MW of CS
which may be activated by type IV collagenase, such as
MMP-9 and MMP-2, in PA invasion.

MMPs function in PA invasion
Proteolysis
The destruction of integrity of ECM by proteolysis is
considered as the main underlying mechanism of inva-
sion in tumor behavior. Proteolytic activation of MMPs
from a latent to an active form is regulated in a bio-
chemical procedure termed as cysteine-switch in which
a cysteine residue in the pro-domain compounding to
zinc-binding region is removed to unmask the proteo-
lytic site [17, 18]. Kawamoto et al. [12, 13] were the first
to put forward the thesis that collagen IV is the main
functional component of DM in PAs, and further

discovered that immunohistochemical staining with
MMP-9, a type IV collagenase, is strongly positive in in-
vasive PAs but negative in noninvasive ones, associating
MMP-9 and CS invasion. This series of great ground-
breaking value first introduced the concept of MMP-
induced invasion to PA invasion researches. In addition,
MMP-2, known as another gelatinase of MMP family
except for MMP-9, is also associated with tumor inva-
sion in PAs [19, 20].

Angiogenesis
Angiogenesis is a key biologic factor involved in tumor
proliferation, growth, invasiveness, and other cellular
processes. MMPs play a vital role in angiogenesis and
PA invasion [21]. Jugenburg et al. [22] performed a
quantitative morphologic study to disclose the vascular
supply of PAs by measuring percentages of capillary
area, number of vessels per field, percentage of endothe-
lial cells and numbers of endothelial cells per field. They
found that the vascular density is lower in PAs than in
normal pituitary tissues, and is almost the same between
invasive and noninvasive PAs. In contrast, Turner et al.
[23] detected higher vascular density in invasive macro-
prolactinoma compared with noninvasive macroprolacti-
noma, suggesting the potential role of microvessels in
PA invasion. The relationship between angiogenesis and
PA invasion still remains conflicting.
However, MMP-9 overexpression and angiogenesis

are positively correlated in invasive PAs though the
mechanism remains unclear. Turner et al. [24]
explored the role of MMP-9 in regulating tumor be-
havior of PAs, and they found MMP-9 overexpression
in invasive macroprolactinomas compared with nonin-
vasive ones. Based on their previous studies, they
further figured out the positive correlation between
MMP-9 and angiogenesis in tumor invasiveness [23,
24]. Pan et al. [25] also revealed higher vascular
density in invasive PAs than in noninvasive ones and
established the positive correlation between MMP-9
and angiogenesis.
Furthermore, increased expression of MMP-14 is

observed at mRNA and protein levels in invasive PAs
[26, 27]. Hui et al. [27] tried to explain the under-
lying mechanism by which MMP-14 contributes to
PA invasion via silencing MMP-14 gene in ATT20
cell lines. They demonstrated that the downregulation
of MMP-14 is accompanied by suppressed expressions
of PTTG, VEGF and TGF-β which participate in
angiogenesis in both physiological and pathological
conditions. They concluded that MMP-14 expression
is likely to be upregulated by increased PTTG expres-
sion, resulting in higher VEGF expression and subse-
quent angiogenesis-mediated PA invasion [27].
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Dysregulation of MMPs in invasive PAs
Protein kinase
Protein kinase C (PKC) is a family of protein kinase
enzymes playing important roles in cellular signal trans-
duction. PKC system-dependent MMP-2 and MMP-9
upregulations are associated with invasion and metasta-
sis in different kinds of tumors. Aberrant expressions of
MMP-2 and MMP-9 induced by PKC-related signaling
pathways are found to promote invasion in glioma,
breast cancer, melanoma, gastric cancer, colon cancer,
hepatocellular cancer and et al. [28–34]. Previous studies
have found significantly higher activity and expression of
PKC in PAs than normal pituitary tissues as well as
distinctive overexpression of PKC in invasive PAs com-
pared with noninvasive ones [35, 36]. Furthermore, a
single point mutation of PKC-α termed as D294G is
screened out and confirmed in PAs with more invasive
phenotypes, indicating the pivotal role of PKC in PA
invasion [37, 38]. In nonfunctioning PAs and HP75 cell
lines, Hussaini et al. [39] observed higher expression and
activity of MMP-9 and detailed the role of PKC, espe-
cially its isoenzymes (PKC-α and PKC-δ) in elevating
MMP-9 expression and activity. Addition of phorbol-12-
myristate-13-acetate (PMA) can activate PKC and result
in increased MMP-9 expression. PKC inhibitors and
gene silencing can block PA invasion induced by PMA-
mediated MMP-9 overexpression. Hence, they proposed
the combination of MMP-9 and PKC inhibitors as novel
strategies for treating invasive PAs [39].

Receptor tyrosine kinase
The discoidin domain receptors (DDRs) are unique
receptor tyrosine kinases characterized by binding colla-
gens as ligands [40]. Cell-collagen interaction is activated
by DDRs in regulating cancer cell behavior. DDRs
consist of two distinct subtypes, DDR1 and DDR2.
Yoshida et al. [41] investigated the expression and func-
tion of DDR1 in HP-75 cell lines by clone transfection
and gene silencing. They revealed that PA invasion is en-
hanced by the binding of DDR1-collagen I which
elevates the cellular secretion of MMP-2 and MMP-9. A
further research demonstrated that hypoxia increases
the expression of DDR1 at mRNA and protein levels
[42]. It is also confirmed that hypoxia-associated overex-
pression of DDR1 enhances the secretion of MMP-2 and
MMP-9 and promotes PA invasion [42].

Cytokine
Emerging evidence has demonstrated the promoting role
of inflammatory interleukin 17 (IL-17) and IL-17 recep-
tors (IL-17R) in cancer invasion and metastasis, suggest-
ing IL-17/IL-17R as promising targets for cancer
immunotherapy [43]. In contrast, the study concerning
IL-17/IL-17R axis in PAs is limited due to the benign

tumor behavior. Qiu et al. [44] performed a research de-
tecting relatively higher expression of IL-17, IL-17R and
MMP-9 at mRNA and protein levels and meanwhile
found the positive correlation of MMP-9 with IL-17 and
IL-17R, respectively. Serum IL-17 concentration is sig-
nificantly higher in invasive PAs than in noninvasive
ones, suggesting IL-17 as a biomarker for invasiveness
prediction in PAs. These findings warrant a deeper
exploration into the relation between IL-17/IL-17R axis
and MMPs in invasive PAs. Previous immunohistochem-
ical results showed weak expression of IL-6 in PAs and
normal tissues and demonstrated no significant correl-
ation between IL-6 and MMP-2 or MMP-9 [45]. H-
owever, integrative proteomics and transcriptomic data
with bioinformatics analysis detected IL-6 as an acti-
vated upstream regulator in invasion of pituitary null cell
adenomas [46]. Moreover, the data suggested that IL-6/
JAK2/STAT3 pathway contributes to tumor invasion by
elevating MMP-9 expressions [46].

Tumor suppressor gene
Hepatocellular carcinoma, downregulated 1 (HEPN-1)
gene is a novel tumor suppressor gene first described in
human hepatocellular carcinoma (HCC). Moh et al. [47]
revealed that silenced HEPN-1 gene is frequent in HCC
and that transfection of HEPN-1 gene into HepG2 cell
lines exerts antineoplastic effect. In HCC, miRNA-21
can suppress HEPN-1 expression resulting in carcino-
genesis [48]. In somatotroph PAs, HEPN-1 silencing is
associated with aggressive tumor behavior and is found
to promote invasiveness via upregulation of MMP-2 and
MMP-9 in GH3 and GT1.1 cells [49]. Contradictorily,
miRNA −21 is downregulated in corticotropinomas, sug-
gesting its different biologic role in PAs compared with
HCC [50].

Wnt signaling pathways
Previous studies have revealed that Wnt signaling path-
ways are critical for the development of pituitary gland
and tumorigenesis of PAs [51]. Wnt/β-catenin signaling
pathways are termed as canonical signaling participating
in transcription changes. Wnt-4 overexpression is
observed in most PAs, and Wnt-4 excessive activation is
inversely correlated to tumor invasion [52]. In β-catenin
knockdown PA cells, reduced invasiveness and a drastic
reduction of MMP-2/9 are detected simultaneously, sug-
gesting that MMP-2/9-medicated PA invasion may be in
the downstream of Wnt/β-catenin signaling pathway [53].

Tissue inhibitor of MMPs
Tissue inhibitors of MMPs (TIMPs) are endogenous reg-
ulators of MMP function via binding specific sites of
MMPs and therefore considered as potential inhibitors
of PA invasion. TIMPs consist of 4 members in human,
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which are TIMP-1, TIMP-2, TIMP-3 and TIMP-4.
Beaulieu et al. observed an inverse correlation between
TIMP-2 and TIMP-3 levels and tumor invasiveness. Sun
et al. [54] revealed that expression of TIMP3 in mRNA
and protein levels was negatively correlated with tumor
invasiveness in Cushing disease. In prolactinomas,
TIMP-2 was found to be a marker for tumor invasion
and recurrence [55]. However, the mechanism of TIMPs
and interaction between TIMPs and MMPs in PA inva-
sion have not been clarified.
Taken together, MMPs regulation network has not

been clarified (Fig. 1). We think that there may be
following reasons: (i) There have been cushing’s disease
dogs and prolactinoma rats used for imaging, surgery
and drug studies [56–58]. However, animal models of
different PA subtypes have not been stably established
[58, 59], and alternative PA cell lines are easily affected
by experimental conditions. (ii) tissue samples of human
PAs are difficulty to collect in most research centers,
and therefore molecular studies with large sample size
are quite limited. (iii) Underlying mechanism of MMPs
in promoting PA invasion may be not specific enough in
nature leading to indefinable correlation between aber-
rant molecular expression and invasive behavior.

Potential role of MMPs in diagnosing invasive PAs
In light of the positive association between MMPs and
PA invasion, MMPs are recommended as promising bio-
markers for detecting invasive PAs [20, 55, 60–62].
Among all the candidate biomarkers of MMPs, MMP-2
and MMP-9 are the most studied ones. Gong et al. [60]
strongly recommended MMP-9 as a reliable biomarker
for detecting invasive PAs and evaluating the extent of
invasiveness. In their test, significant increased MMP-9
expression and activity are seen and certified in invasive
PAs in contrast to noninvasive ones. Moreover, MMP-9
can distinguish the extent of invasiveness regardless of
tumor types, size and status (primary or recurrent),

paving the way of MMP-9 to clinical practice. Moreover,
MMP-9 expression may be affected by dopamine agonist
drugs in prolactinomas, indicating that MMP-9 can
reflect the response to drugs [55]. Liu et al. [19] demon-
strated that high MMP-2 mRNA and protein levels
correlate with PA invasiveness without respect to tumor
size and hormone secretion. They proposed MMP-2 as a
powerful tool for distinguishing the invasive potential of
PAs. These findings demonstrate the potential roles of
MMP-9 and MMP-2 as biomarkers. However, there is
no related study giving out the cut-off point, specificity
and sensitivity of serum MMP-9 or MMP-2 concentra-
tions in predicting PA invasion.

Conclusion
MMPs are considered as promising biomarkers and
future drug targets contributing to early detection and
improved prognosis of invasive PAs. The clinical value
of MMPs in predicting PAs invasion is of great signifi-
cance and worthy conducting a perspective study to
correlate the blood levels of MMPs and infiltrating ten-
dency and extent of PAs. Taken together, further studies, in
terms of both molecular biology and clinical evidence, are
warranted to elucidate the role of MMPs in invasive PAs.
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