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1  | INTRODUC TION

Colorectal cancer (CRC) is the third leading cause of cancer-related 
death worldwide.1 Old age, bad lifestyle and hereditary diseases 
are risk factors for CRC.2 Another risk factor is inflammatory bowel 
disease (IBD), including Crohn's disease (CD) and ulcerative colitis 
(UC).3 To date, treatments for CRC include some combination of 
surgery, radiation therapy, chemotherapy and targeted therapy.4 
However, due to the inherent ability of CRC to become chemother-
apy and radiation resistant, the combined-modality therapy has 
failed to universally improve patients’ prognosis.4 In tumour therapy, 
apoptosis tolerance is an important mechanism of tumour resistance 
to treatment.5 Autophagy is able to prevent drugs-induced apopto-
sis and promote tumour resistance.6 Nevertheless, autophagic cell 
death may also be a mode of death for apoptosis-tolerant tumour 
cells.7 Therefore, autophagy has a dual effect on cancer progression 
and cancer treatment.

Autophagy is an evolutionarily conserved process that involves 
degradation of eukaryotic cellular components.8 Specifically, dam-
aged or redundant proteins and dysfunctional cellular components 
are engulfed in the separation membrane and then extended into 
double-membrane autophagosomes, followed by fusion of dou-
ble-membrane autophagosomes with lysosomes to form autophago-
somes.9 It is subsequently degraded into simple ingredients to meet 
the energy and anabolic needs of the cells.10 Remarkably, the for-
mation of autophagosome is regulated by autophagy-related genes 
(ATGs), such as ATG12, ATG5 and microtubule-associated protein 
light chain 3 (LC3).11 Autophagy is a stress response required for 
cellular survival.12 More extensive studies showed that autophagy 
mediates tumour survival by providing nutrients to stressed cancer 
cells.13 However, a report has demonstrated that activation of auto-
phagy can result in cell death and inhibition of tumour progression.14 
A growing body of evidence suggests that anti-cancer therapies 
such as chemotherapy, radiation and targeted therapies can induce 
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Abstract
Colorectal cancer (CRC) has become a concern because of its high recurrence rate 
and metastasis rate, low early diagnosis rate and poor therapeutic effect. At present, 
various studies have shown that autophagy is closely connected with the occurrence 
and progression of CRC. Autophagy is a highly cytosolic catabolic process involved in 
lysosomes in biological evolution. Cells degrade proteins and damaged organelles by 
autophagy to achieve material circulation and maintain cell homeostasis. Moreover, 
microRNAs are key regulators of autophagy, and their mediated regulation of tran-
scriptional and post-transcriptional levels plays an important role in autophagy in 
CRC cells. This review focuses on the recent research advances of how autophagy 
and related microRNAs are involved in affecting occurrence and progression of CRC 
and provides a new perspective for the study of CRC treatment strategies.
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autophagy.6,15 In addition, autophagy also plays a regulatory role in 
tumour cellular metabolic abnormalities and hypoxia.16,17 Autophagy 
might have dual roles in tumour progression that may act as a sup-
pressor at early stages and as a promoter at the advanced stages of 
CRC.18 Therefore, it is important to determine the regulative mecha-
nisms of autophagy in CRC.

MicroRNAs (miRNAs) are non-coding RNA molecules (20-22 
nucleotides in length) that primarily function to prevent mRNA 
translation or initiate mRNA degradation at the post-transcrip-
tional level via binding to the 3’ untranslated region (UTR) of their 
target mRNAs.19 Besides, some animal miRNAs may also target 
5’ UTR and coding regions according to bioinformatics predic-
tions and other experiments.20 Many investigations have shown 
that miRNAs are associated with numerous diseases such as tu-
mours, autoimmune diseases, cardiac diseases and endocrine 
disorders.21 More studies have found that miRNAs are involved 
in tumour cell autophagy.22 Apart from the direct regulation be-
tween miRNAs and autophagy-associated genes, accumulating 
evidences have indicated that autophagy is capable of regulating 
miRNA homeostasis via degrading the miRNA-induced silencing 
complexes (miRISC).23 Studies have reported that miRNAs exert 
regulatory effect on the autophagy of CRC cells.24,25 For example, 
miR-216a regulates microtubule-associated protein 1S (MAP1S)-
mediated autophagy inhibition and involves the transforming 
growth factor-β (TGF-β) pathway.26 Moreover, miR-221 inhibits 
autophagy and targets tumour protein p53-induced nuclear pro-
tein 1 (TP53INP1) in CRC cells.27 Overexpression of miR-18a sup-
presses the activity of mammalian target of rapamycin complex 
1 (mTORC1), thereby preventing the occurrence in CRC HCT116 
cells by inducing autophagy.28 However, there is also evidence 
that miR-338-5p induces migration, invasion and metastasis of 
CRC by phosphatidylinositol 3-kinase, catalytic subunit type3 
(PIK3C3)-related autophagy pathway.29 In addition, miRNAs are 
frequently dysregulated in chemoresistant cancers, shown to tar-
get autophagy-related genes or modulators.30,31 It is interesting to 
investigate the effect of miRNA and autophagy on CRC.

2  | EFFEC TS OF AUTOPHAGY AND MIRNA 
ON CHEMOTHER APY OF CRC

In general, chemotherapeutic drugs are used as an adjunct to CRC.32 
Chemical drugs repress cancer progression by preventing the cell 
cycle and inducing apoptosis.32 Oxaliplatin (OXA) is the third-genera-
tion platinum compound and the first platinum compound to achieve 
a significant effect in the treatment of CRC.33 Nevertheless, despite 
the rapid reduction in tumour size after chemotherapy, cancer cells 
often develop resistance to OXA, leading to subsequent cancer re-
currence and metastasis.34 Similarly, 5-fluorouracil (5-FU) is a widely 
used first-line systemic chemotherapy drug. Its clinical therapeutic 
effect varies greatly among individuals, and drug resistance is con-
sidered to be the main reason for its failure to treat CRC.35 Some 
reports have indicated that the resistance of chemotherapeutics is 

highly correlated with the cytoprotective effects of autophagy.36,37 
In most cases, sustained drug exposure can induce an imbalance 
in the apoptotic pathway and lead to resistance to apoptosis.38 
Additionally, chemotherapeutic drugs activate autophagy to protect 
cells from stress-induced damage, thus promoting cancer cell re-
sistance and reducing the efficiency of most anti-cancer drugs.39,40 
Recently, some autophagy inhibitors have been shown to improve 
the efficacy of chemotherapeutic drugs for cancer treatment.41,42 
For example, inhibition of autophagy by 3-methyladenine (3-MA) 
and hydroxychloroquine (HCQ) can promote 5-FU-induced apopto-
sis in CRC cells.43 Therefore, enhancing apoptosis of cancer cells by 
inhibiting cytoprotective autophagy may be a promising strategy for 
adjuvant chemotherapy in CRC.

In vitro and in vivo experiments have illustrated that miR-22 can 
inhibit autophagy and promote apoptosis to increase the sensitivity 
of 5-FU treatment in CRC cells.44 B-cell translocation gene 1 (BTG1), 
a new target of miR-22, is a member of the anti-proliferative gene 
family that regulates cell growth and differentiation and can reverse 
the inhibition of miR-22-induced autophagy.45 Therefore, miR-22 may 
be considered as an important conversion factor between autoph-
agy and apoptosis, and the sensitivity of 5-FU may be regulated by 
post-transcriptional silencing of BTG1.44 It has been reported that p53 
is involved in apoptosis induced by 5-FU and other chemotherapeutic 
agents, including DNA damage and induction of pro-apoptotic genes 
such as Fas.46 Because p53-mutant is less capable of inducing apop-
tosis, p53-mutant CRC cells are more resistant to chemicals than p53-
wild-type.47,48 Compared with p53-wide-type CRC cells, accumulation 
of autophagosomes induced by 5-FU treatment is more pronounced 
in p53-mutant-type CRC cells.49 The findings indicate that the mu-
tant p53 regulates protective autophagy caused by chemotherapy or 
radiotherapy and has clinical implications.50,51 Mammalian target of 
rapamycin (mTOR) significantly modulates the competition between 
autophagy and apoptosis, and its expression is regulated by miR-
338-3p.52 It was showed that the miR-338-3p-mTOR-autophagy is 
regulated in a p53-dependent manner and involved in the response to 
5-FU treatment.31 Chemokine (C-X-C motif) ligand 12 (CXCL12) and 
its receptor C-X-C chemokine receptor type 4 (CXCR4) play import-
ant roles in cancer growth, metastasis and invasion.53,54 MiR-125b is 
up-regulated by activation of the CXCL12/CXCR4 axis, which in turn 
enhances CXCR4 expression.30 Study showed that miR-125b confers 
5-FU resistance by increasing autophagy, displaying the increase of 
Beclin 1, microtubule-associated protein light chain 3 II (LC3-II) cleav-
age and autophagosome formation.30

It was observed that overexpression of miR-409-3p sensitizes 
CRC cells to OXA and restrains chemotherapy-induced autophagy 
in a manner that depends on Beclin 1, suggesting that miR-409-3p 
is able to enhance the chemosensitivity of CRC cells by inhibiting 
Beclin 1-mediated autophagy.55 Furthermore, expression of miR-34a 
is down-regulated in OXA-resistant cells, whereas transfection of 
miR-34a mimics enhances the efficacy of OXA by repressing auto-
phagy and enhances the efficacy of OXA against OXA-resistant CRC 
cells. At the same time, the autophagy inhibitor 3-MA enhances the 
pro-apoptotic effect of OXA-resistant cells. These evidences have 
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implicated that activation of autophagy protects CRC cells from 
OXA-induced apoptosis by suppressing miR-34a expression.56 Wu 
et al identified that miR-27b-3p inhibited the expression of ATG10 at 
the post-transcriptional level, thus inhibiting autophagy to sensitize 
CRC cells to OXA in vivo and in vitro.57

In addition, emerging evidence demonstrated that chemotherapy 
against tumours require the involvement of the immune system.58 
Once the tumour immunogenic cell death (ICD) is induced in chemo-
therapy, the prognosis is good.59 However, the formation of auto-
phagy is thought to promote immune evasion.59 Damage-associated 
molecular patterns (DAMPs), which are recognized by receptors on 
the surface of immune cells, are released by autophagic cell death, 
apoptotic and necrotic tumour cells. They can initiate an adaptive 
immune response either directly or indirectly.60 It determines to 
some extent whether cell death is ICD or tolerogenic cell death.61 
Chemotherapy-induced ICD is able to trigger DAMPs, such as the 
kinetics of choleretic surface exposure, the secretion of adenos-
ine tri-phosphate (ATP) and high mobility group box 1 (HMGB1).62 
Evidence suggested that high expression of miR-27a induced by 
chemotherapeutic drugs disrupts DAMP, silences apoptotic path-
ways, and enhances cell growth and survival potential. Moreover, 
the high expression of miR-27a is involved in liver metastasis and 
worse prognosis.63 Similarly, CRC cells expressing low levels of miR-
27a undergoing drug-induced ICD can stimulate efficient maturation 
of dendritic cells and secretion of cytokines, promoting immune ac-
tivation and cell death.63 Notably, miR-27a also reversely regulates 
autophagy, and apoptosis and autophagy are oriented in the same 
direction in cell models.64,65 Consequently, it is of great significance 
to make a further study on the role of autophagy in the chemoresis-
tance of CRC cells.

3  | EFFEC TS OF AUTOPHAGY AND MIRNA 
ON CHEMOTHER APY OF CRC STEM CELL S

It is reported that miRNAs are capable of destroying the ability of 
autophagy to increase the chemosensitivity of CRC stem cells and 
inhibit the invasion.65,66 Cancer stem cells (CSCs) are cancer cells 
that have characteristics associated with normal stem cells, and it 
has the ability to differentiate into all cell types in a particular cancer 
sample.67 Since the small subpopulation of CSCs persists in tumours, 
CSCs can cause tumour resistance, relapse and metastasis through 
self-renewal and differentiation.68,69 The autophagy mechanism of 
CRC stem cells has been identified as one of the major contributors 
to CRC resistance to chemotherapy and recurrence and metastasis.39 
Mothers against decapentaplegic homolog 2 (Smad2), a downstream 
gene of the transforming growth factor beta (TGF-β) signalling path-
way, is associated with increased TGF-β levels and poor prognosis, 
which leads to increased survival of metastatic cells and organ colo-
nization in advanced CRC.70 In the experiment, hsa-miR-140-5p di-
rectly inhibits the expression of Smad2 and regulates ATG12, and 
then it suppresses cell invasion, proliferation and induced cell cycle 
arrest. In addition, hsa-miR-140-5p disrupts autophagy and inhibits 

the growth and metastasis of CRC stem cells in vivo and in vitro.71 
Furthermore, it is showed that miR-502 induces cell cycle arrest at 
both G1 and G2 checkpoints and is more prominent in wild-type p53 
HCT116 cells, and it can also restrain autophagy and reduce tumour 
growth by targeting Ras-related protein RAB1B.72 These findings 
provide new insights into the effects of autophagy and miRNA on 
CRC chemotherapy.

4  | EFFEC TS OF AUTOPHAGY AND MIRNA 
ON R ADIOTHER APY OF CRC

Recent studies have suggested that deregulation of autophagy is re-
lated to radiation resistance of tumours, and miRNA expression pat-
terns are involved in the modification of radiation therapy.73,74 After 
irradiation (IR) therapy, the levels of miR-214 in human CRC cells and 
peripheral blood are significantly decreased, while autophagy in CRC 
cells is induced.25 Further experiments showed that miR-214 is able 
to inhibit ATG12-induced autophagy and increase apoptosis, thus 
significantly increasing the radiosensitivity of CRC.25 These results 
indicate that miR-214 achieves radioresistant effect by targeting au-
tophagy-related gene ATG12.25,75 However, contrary experimental 
results have shown that increased abundance of miR-183-5p and de-
creased ATG5 levels are associated with poor prognosis of CRC, and 
miR-183-5p enhances radioresistance of CRC by directly targeting 
ATG5.76 Thus, further and deeper research is needed to clarify the 
role of miRNA and autophagy on radiotherapy in CRC.

Fibroblasts maintain the structural integrity of connective tis-
sue by continuously secreting precursors of the extracellular ma-
trix.77 Cancer-associated fibroblast (CAF) secretes growth factors 
and interacts with tumour cells to provide nutrient support for tu-
mour growth and enhance tumour metabolic regulation and immu-
nity reaction.78 A study by Yang et al revealed that up-regulation 
of miR-31 can inhibit the expression of autophagy-related genes 
Beclin 1, ATG, damage-regulated autophagy modulator (DRAM) 
and LC3, and it can increase the radiosensitivity of CRC cells co-cul-
tured with CAF.79

5  | EFFEC TS OF AUTOPHAGY AND MIRNA 
ON METABOLISM AND HYPOXIA OF CRC

Compared with normal cells, cancer cells exhibit a metabolic phe-
notype characterized by increased glycolysis and significantly alter 
nutrient utilization, regardless of oxygen availability. The phenom-
enon termed the Warburg effect.80 Since the survival of cancer cells 
mainly depends on the rate of high glucose consumption and the ele-
vation of glycolysis, the Warburg effect and glucose metabolism are 
important strategies for cancer treatment.81 In mammals, glucose 
metabolism can be regulated by controlling the expression of pyru-
vate kinase isozymes M1/M2 (PKM1/M2).82 Abnormal expression of 
PKM1/M2 is essential for maintaining the growth of cancer cells.83 
The ectopic expression of miR-124 induces apoptosis and autophagy 
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in CRC.84 The knock-down of polypyrimidine tract-binding protein 
1 (PTB1, also known as heterogeneous nuclear ribonucleoprotein 
I) is able to induce drastically apoptotic cell death which indicates 
PTB1 acts as an oncogene. In vitro experimental studies confirmed 
that miR-124 targets PTB1 and regulates the ratio of PKM1/PKM2 
to inhibit CRC growth.84 Furthermore, miR-18a induces apoptosis of 
CRC cells by directly binding to the oncogene heterogeneous nu-
clear ribonucleoprotein A1 (hnRNP A1) via autophago-lysosomal 
pathway.85,86

Due to the rapid proliferation of tumour cells, hypoxia within 
the tumour is one of the most important features of solid tumours. 
Hypoxia is a well-known inducer of autophagy which leads to cancer 
cells resistance to chemotherapy and radiotherapy.87,88 Hypoxia-
inducible factor 1-alpha (HIF-1α) is an important factor regulating 
cell responses to hypoxia.89 Hypoxia-induced autophagy is also in-
volved in HIF-1α-mediated cell survival mechanisms.90 The study 
found that miR-210 is continuously up-regulated in CRC and pro-
motes CRC migration and invasion. 90,91 Hypoxia induces HIF-1α and 
its downstream target miR-210, which is able to restrain the expres-
sion of B-cell lymphoma 2 (Bcl-2) and enhance autophagy, thereby 
contributing to the radioresistance of CRC cells.92 Bcl-2 exerts a dual 
function as an anti-apoptotic, anti-autophagic protein, and may be 

related to reactive oxygen species (ROS) levels.93 Similarly, under 
conditions of nutrient starvation, low levels of Bcl-2 phosphoryla-
tion initially occur and survival are promoted by activation of au-
tophagy, while higher levels of Bcl-2 phosphorylation accelerate 
apoptosis as prolonged starvation time.94 Besides, a previous study 
has reported that miR-20a is significantly down-regulated under hy-
poxia in CRC cells, and overexpression of miR-20a directly targets 
ATG5 and FIP200 (focal adhesion kinase family kinase-interacting 
protein of 200 KDa) and alleviates hypoxia-induced autophagy.95 
Consequently, a better understanding the mechanisms of miRNA 
and autophagy in metabolism and hypoxia may be of potential value 
in improving the effectiveness of CRC treatment.

6  | EFFEC TS OF AUTOPHAGY AND MIRNA 
ON INFL AMMATORY BOWEL DISE A SE

IBD is a group of inflammatory disorders of the colon and small in-
testine, of which CD and UC are the major types of inflammatory 
bowel disease.96 Due to the presence of symptoms such as abdomi-
nal pain, vomiting, diarrhoea, rectal bleeding and anaemia in IBD, it 
seriously affects the life quality of patients.97,98 CRC is a recognized 

F I G U R E  1   Regulatory relationship between miRNAs and autophagy in CRC. Autophagy consists of a series of activities, such as 
phagophore formation, elongation, autophagosome and fusion with lysosome to form autolysosome. MiRNAs exert dual regulatory effects 
on autophagy pathways related to CRC through indirect or direct pathways. In the figure, the purple box represents autophagy-related 
proteins, which indirectly regulate the autophagy process (eg, Bcl-2, mTOR), the green box represents autophagy-associated proteins, which 
are directly involved in the occurrence or formation of autophagy (eg, Beclin 1, LC3), and the yellow box represents the cellular process
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and worrying complication for patients with long-term colonic in-
flammation.3 Unfortunately, the current global incidence of IBD is on 
the rise.99 The onset of IBD is primarily due to an abnormal immune 
response against luminal antigens and microbiota.100

Dysfunctional autophagy is thought to be a contributing factor 
to many chronic inflammatory diseases including CD.101 Studies have 
pointed out that miRNA is capable of regulating autophagy-related 
genes involved in the pathogenesis of IBD, such as ATG5, autopha-
gy-related gene 16-like 1 (ATG16L1), autophagy-related 2 homolog 
B (ATG2B) and immunity-related GTPase family M protein (IRGM), 
while autophagy regulates miRNA homeostasis by degrading 
miRISC.102,103 MiR-142-3p targets ATG16L1 and reduces the au-
tophagic activity resulting from starvation-induced cell death and 
apoptosis in CRC cells.104 At the same time, miR-142-3p can inhibit 
inflammatory bowel disease protein 1 (IBD1)-dependent autophagy 

and effectively down-regulate interleukin 8 (IL-8) mRNA expression, 
further suggesting miR-142-3p exerts autophagy-related effects in 
intestinal inflammation and CD.104 Highly expressed miR-93 and 
miR-106b can also target ATG16L1 in active CD to reduce auto-
phagosome formation.105 Aylia et al extracted the total RNA from 
peripheral blood mononuclear cells of CD and UC patients and 
found miR-874-3p is the most differentially expressed. They further 
confirmed that miR-874-3p dysregulates autophagy by targeting 
ATG16L1.106 Above evidences have implicated unique panels of miR-
NAs in blood and tissue distinguishing CD and UC in varying regimes 
of disease activity. Additionally, both miR-130a and miR-30c are 
dysregulated in CD and considered to be key regulators of the auto-
phagy pathway in innate immunity.107,108 Nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) protein is involved in the 
control of immune and inflammatory responses, developmental pro-
cesses, cellular growth and apoptosis.109 It was demonstrated that 
enhanced autophagosome activity is effectively able to attenuate 
NF-κB-mediated inflammation.110 Experiments indicated that there 
is abnormal activation of NF-κB pathway in miR-143 overexpressed 
or ATG2B-depleted CRC cell lines, suggesting that miR-143 may sup-
press autophagy and increase inflammation reaction of the NF-κB 
pathway in CD by targeting ATG2B.111 Therefore, further researches 
should be conducted to promote the clinical application of miRNAs 
in IBD. (Figure 1) (Table 1).

7  | DISCUSSION AND CONCLUSION

Autophagy may perform a dual function in the progression of CRC.18 
As described above, the autophagy inhibitors 3-MA and HCQ are 
able to inhibit autophagy, promote 5-FU-induced CRC cell apoptosis 
and increase patient sensitivity to chemotherapy.43 However, some 
findings have revealed that the autophagy inducers rapamycin can 
reduce the migration capacity of CRC cells.112 Many miRNAs regu-
late autophagy under CRC stress conditions, including chemother-
apy, radiation therapy, nutrient and hypoxia.113

MiRNAs are thought to increase/decrease the chemosensiti-
zation  or radiosensitization by regulating the level of autophagy 
in CRC cells, which has potential value for the treatment of CRC. 
For example, miR-22 restrains autophagy and promotes apoptosis, 
thereby improving the sensitivity of 5-FU treatment in CRC cells.44 
In contrast, miR-183-5p directly targets ATG5 to enhance the radio-
resistance of CRC.76

Noticeably, recent studies have reported that several miR-
NAs have been shown to target autophagy-associated proteins 
in other tumours, regulating the occurrence and development of 
tumours. For instance, miR-543 is a cancerous suppressor in ovar-
ian cancer, inhibiting the expression of twist family bHLH tran-
scription factor 1 (TWIST1).114 TWIST1 is not only a vital protein 
involved in tumour metastasis and invasion, but also its stability is 
modulated by p62, the substrate of autophagy.115 However, miR-
543 is a cancer-promoting factor in CRC, which may be involved 
in regulating autophagy through the mTOR pathway to affect the 

TA B L E  1   MiRNAs regulating autophagy under different CRC 
conditions

Chemotherapy of CRC

miRNA
Potential target of 
miRNA

Effect of miRNA 
on autophagy

smiR-22 BTG1 Inhibition

miR-338-3p mTOR Inhibition

miR-125b CXCL12/CXCR4 Promotion

miR-409-3p Beclin 1 Inhibition

miR-34a ATG4B Inhibition

miR-27b-3p ATG10 Inhibition

miR-27a PINK1 Inhibition

Chemotherapy of CRC stem cells

miR-140-5p ATG12 Inhibition

miR-502 RAB1B Inhibition

Radiotherapy of CRC

miR-214 ATG12 Inhibition

miR-183-5p ATG5 Inhibition

miR-31 Beclin 1, ATG, LC3 Inhibition

Metabolism and Hypoxia of CRC

miR-124 PTB1 Promotion

miR-18a hnRNP A1 Promotion

miR-210 Bcl-2 Promotion

miR-20a ATG5 and FIP200 Inhibition

Inflammatory bowel disease

miR-142-3p ATG16L1 Inhibition

miR-142-3p IBD1 Inhibition

miR-93 ATG16L1 Inhibition

miR-106b ATG16L1 Inhibition

miR-874-3p ATG16L1 Inhibition

miR-130a 
miR-30c

ATG5 ATG16L1 Inhibition

miR-143 ATG2B Inhibition

Abbreviation: PINK1, PTEN-induced putative kinase 1.
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effect of chemotherapy.116-118 MiRNA-23b also has an inhibitory 
effect on non-small cell carcinoma by inhibiting RUNX family 
transcription factor 2 (Runx2) ,119 while Runx2 has been shown to 
promote autophagy by increasing the acetylation of microtubule 
α-tubulin subunits in advanced breast cancer cells.120 MiRNA-23b 
in CRC promoted cell migration by down-regulating forkhead box 
P2 (FOXP2).121 MiRNA-142-3p suppresses cellular proliferation 
and migration via directly acting on Rac family small GTPase 1 
(Rac1) in bladder cancer.122 It has been reported that Rac1 can 
regulate autophagy.123 MiRNA-142-3p was found to function as a 
cancer-promoting factor through Rac1 in CRC. By bioinformatics 
prediction, Rac1 has a miR-142-3p binding site in its 3'-UTR.124 
However, there is a positive correlation between Rac1 and miR-
NA-142-3p in CRC, and the authors believe that miRNA-142-3p 
may function through activating Rac1 indirectly.124 As can be seen 
from the above, although it has been found that miR-543, miR-
NA-23b and miRNA-142-3p are aberrantly expressed in CRC, the 
mechanism is not completely clear. There is a great possibility that 
it is related to autophagy, and more research is needed to explore 
this mechanism.

Since miRNA can be used as an influencing factor of autophagy, 
it may be a feasible research direction to study the upstream regu-
latory pathways of miRNA such as circular RNA (circRNA) and long 
non-coding RNA (lncRNA). In the previous study, circHIPK3 which pro-
moted OXA resistance in CRC through autophagy by sponging miR-
637 via miR-637/STAT3/Bcl-2/Beclin1 axis is up-regulated in tissues 
from chemoresistant and recurrent CRC patients and correlated with 
tumour size, regional lymph node metastasis, distant metastasis and 
survival.125 Furthermore, lncRNAs have been reported to regulate che-
moresistance.126 LncRNA small nucleolar RNA host gene 6 (SNHG6) 
is able to promote 5-FU resistance through unc-51 like autophagy ac-
tivating kinase 1 (ULK1)-induced autophagy by sponging miR-26a-5p 
in CRC cells.127 It has been proved that lncRNA metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1), which promotes CRC 
chemotherapy resistance,128 can affect the expression of enhancer of 
zeste homolog 2 (EZH2) by up-regulating miR-363-3p,129 and EZH2 is 
an essential regulatory factor that phosphorylates histone H2B and 
then increases autophagy.130 LncRNA H19 might work as a compet-
ing endogenous RNA (ceRNA) to sponge miR-194-5p and conferred 
5-FU resistance in CRC by promoting sirtuin1 (SIRT1)-mediated auto-
phagy.131 Moreover, lncRNA KCNQ1 opposite strand/antisense tran-
script 1 (KCNQ1OT1) enhances the chemoresistance of OXA in CRC 
by targeting the miR-34a/ATG4B pathway.56 The therapeutic strate-
gies of CRC besides exploring how miRNA and autophagy regulate the 
chemical sensitivity of CRC to drugs, the exploration of synthetic com-
pounds such as miRNA mimic/inhibitor and natural component such as 
the anti-tumour agent inositol hexaphosphate (IP6) which down-regu-
lated miR-155 to modulate the autophagy-related protein like HIF-1α 
may also be a new approach.132

It is important to probe into the molecular mechanism of CRC 
treatment, but the method of detecting the effect of treatment 
cannot be ignored. In recent years, liquid biopsy, such as detec-
tion of circulating miRNAs in plasma and serum, has become a 

research hotspot, and detection of miRNAs in serum exosomes 
is also expected to become a predictive marker of chemore-
sistance in advanced CRC.133 However, it may also encounter 
problems of high cost or poor repeatability. Absolutely, future 
fundamental and clinical researches are required considering 
these limitations.

Additionally, IBD is a chronic complex disorder caused by a va-
riety of factors.134 As mentioned above, autophagy-related genes 
are regulated by multiple miRNAs in IBD and play a role in regu-
lating inflammation, which is a complex network.104,105 Therefore, 
miRNA can be regarded as a new diagnostic marker and therapeu-
tic target. These evidences reveal underlying mechanisms of the 
pathophysiology and provide new diagnostic and therapeutic tar-
gets in IBD.

MiRNAs play an important role in the occurrence and develop-
ment of CRC by regulating the level of autophagy in CRC cells. The 
exact mechanisms by which miRNAs-regulated autophagy controls 
cancer occurrence and development have not been established. It 
appears to be dependent on the tumour microenvironment with a 
dual role of tumour promotion and inhibition. In fact, in addition 
to miRNA regulating autophagy, there are a few reports suggest-
ing that autophagy may affect miRNA homeostasis.135 Autophagy 
has been found to degrade the enzymes Dicer and AGO2 during 
miRNA processing and maturation in several tumours.23,102,136-138 
However, this phenomenon has not been reported in CRC. 
Therefore, it is necessary to determine how the autophagy mecha-
nism exerts a dual effect in the CRC. Further research is needed to 
better understand the relationship between miRNA and autophagy 
in CRC and to produce potentially beneficial drugs for the progno-
sis and treatment of CRC.
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