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Abstract
Background: Selection for exercise-adapted phenotypes in the Thoroughbred racehorse has
provided a valuable model system to understand molecular responses to exercise in skeletal
muscle. Exercise stimulates immediate early molecular responses as well as delayed responses
during recovery, resulting in a return to homeostasis and enabling long term adaptation. Global
mRNA expression during the immediate-response period has not previously been reported in
skeletal muscle following exercise in any species. Also, global gene expression changes in equine
skeletal muscle following exercise have not been reported. Therefore, to identify novel genes and
key regulatory pathways responsible for exercise adaptation we have used equine-specific cDNA
microarrays to examine global mRNA expression in skeletal muscle from a cohort of
Thoroughbred horses (n = 8) at three time points (before exercise, immediately post-exercise, and
four hours post-exercise) following a single bout of treadmill exercise.

Results: Skeletal muscle biopsies were taken from the gluteus medius before (T0), immediately after
(T1) and four hours after (T2) exercise. Statistically significant differences in mRNA abundance
between time points (T0 vs T1 and T0 vs T2) were determined using the empirical Bayes moderated
t-test in the Bioconductor package Linear Models for Microarray Data (LIMMA) and the expression
of a select panel of genes was validated using real time quantitative reverse transcription PCR (qRT-
PCR). While only two genes had increased expression at T1 (P < 0.05), by T2 932 genes had
increased (P < 0.05) and 562 genes had decreased expression (P < 0.05). Functional analysis of genes
differentially expressed during the recovery phase (T2) revealed an over-representation of genes
localized to the actin cytoskeleton and with functions in the MAPK signalling, focal adhesion, insulin
signalling, mTOR signaling, p53 signaling and Type II diabetes mellitus pathways. At T1, using a less
stringent statistical approach, we observed an over-representation of genes involved in the stress

Published: 30 December 2009

BMC Genomics 2009, 10:638 doi:10.1186/1471-2164-10-638

Received: 25 June 2009
Accepted: 30 December 2009

This article is available from: http://www.biomedcentral.com/1471-2164/10/638

© 2009 McGivney et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20042072
http://www.biomedcentral.com/1471-2164/10/638
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2009, 10:638 http://www.biomedcentral.com/1471-2164/10/638
response, metabolism and intracellular signaling. These findings suggest that protein synthesis,
mechanosensation and muscle remodeling contribute to skeletal muscle adaptation towards
improved integrity and hypertrophy.

Conclusions: This is the first study to characterize global mRNA expression profiles in equine
skeletal muscle using an equine-specific microarray platform. Here we reveal novel genes and
mechanisms that are temporally expressed following exercise providing new knowledge about the
early and late molecular responses to exercise in the equine skeletal muscle transcriptome.

Background
The Thoroughbred racehorse is an elite athlete, that for
four hundred years has been selected for physiological
traits enabling exceptional speed and stamina. As a highly
adapted athlete the Thoroughbred is a suitable model for
understanding the physiology of exercise [1]. Thorough-
breds have a very high aerobic capacity or maximal oxy-
gen uptake (VO2max) [2] relative to their body mass. A
bout of intense exercise requires both aerobic and anaero-
bic energy production and a Thoroughbred may increase
its metabolic rate from basal levels by up to 60-fold under
racing conditions [3]. A critical component for athletic
performance is muscle and it is notable that the Thor-
oughbred has a high skeletal muscle mass comprising
over 55% of total body mass [4].

The biological importance of skeletal muscle is reflected
in its remarkable structural and functional plasticity that
enables rapid alterations to phenotype following repeated
bouts of exercise [5]. A single bout of acute exercise
induces multiple stresses in skeletal muscle, including
increased demand for ATP and mechanical stress [6,7].
The responses to these stressors can be divided into two
broad categories: the return to homeostasis, and the adap-
tive response. The principle processes associated with
homeostatic recovery are glucose sparing, elevated fat oxi-
dation, glycogen resynthesis and free radical quenching,
as well as the repairing of free radical-mediated damage
and restoration of intracellular electrolyte concentrations
and pH [8-12]. The adaptive response is the process
whereby skeletal muscle responds to repeated exercise
bouts (conditioning or training) in ways that cumula-
tively lead to an enhanced ability to maintain muscle
homeostasis during exercise. This conditioning response
involves both morphological changes, such as hypertro-
phy, and metabolic responses such as an increased capac-
ity for oxidative substrate metabolism in mitochondria
and a shift toward oxidizing proportionately more fats
and less glucose during exercise [13,14].

Exercise studies using human subjects have demonstrated
that changes in the expression of a wide range of mRNA
transcripts play a major role in the adaptive response of
muscle to exercise [15-18]. Furthermore, microarray stud-

ies have shown that a large number of genes are differen-
tially expressed in skeletal muscle following exercise [19].
A single bout of exercise has been shown to increase
mRNA expression particularly in genes involved in mito-
chondrial biogenesis and metabolism [20].

While protein changes and mRNA quantified in small
panels of genes by Western blotting and real time qRT-
PCR [21-24] have been investigated, global mRNA expres-
sion during the immediate-response period (< 8 minutes)
has not, to our knowledge, previously been reported in
skeletal muscle following exercise in any species. Also,
global gene expression changes in equine skeletal muscle
following exercise have not been reported. Therefore to
identify novel genes and key regulatory pathways respon-
sible for exercise adaptation we have used equine-specific
cDNA microarrays to examine global mRNA expression in
skeletal muscle from a cohort of Thoroughbred horses (n
= 8) at two time points (immediately, and four hours
post-exercise) following a standardised incremental-step
exercise test on a high-speed equine treadmill.

Results and Discussion
Experiment overview
Eight four-year old unconditioned Thoroughbred horses
(castrated males) were exercised to maximum heart-rate
or fatigue in a standardized incremental-step exercise test
[25-27] on a high-speed equine treadmill. Skeletal muscle
biopsy samples were collected at three time points: at rest
pre-exercise (T0), immediately post-exercise (T1) and four
hours post-exercise (T2). In a direct comparison microar-
ray experiment, equine cDNA microarrays were hybrid-
ised with samples from T0 Vs T1 and from T0 Vs T2 for each
animal.

Exercise parameters
Following warm-up, the exercise test comprised an aver-
age of six (range 5 - 7) incremental steps achieving a mean
maximum velocity of 12.4 ± 0.2 m/s and a mean distance
of 4,362.9 ± 102.7 m for an average duration of 8.77 ± 0.5
min. Mean maximal heart rate was 218 ± 9 beats per
minute. Mean peak post-exercise (T1) lactate concentra-
tions were 13.3 ± 1.2 mmol/l and were significantly
increased compared to pre-exercise values (P < 0.0001).
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Microarray annotation and gene ontology
Of the 9,333 ESTs on the microarray 8,519 aligned to a
single location on the equine genome (EquCab 2.0), 372
aligned to more than one location and the remaining 442
failed to align to any location with high confidence. Fewer
than 50% (4,631) of the ESTs matched an Ensembl gene,
the majority (4,166) of which had human orthologs. The
human orthologs were used to create input files for gene
ontology functional analyses using the DAVID software
package [28,29].

The functional representation of ESTs on the microarray
relative to all genes in the Equus caballus Ensembl database
that had human orthologs (66%) was assessed using 15
broad GO categories (developmental process, multicellu-
lar organismal process, biological regulation, metabolic
process, cellular process, macromolecular complex,
organelle part, organelle, cell part, cell, transporter activ-
ity, transcription regulator activity, molecular transducer
activity, catalytic activity, binding). A similar distribution
pattern among GO categories was observed for ESTs on
the microarray when compared to all Ensembl genes
(Additional file 1).

Immediate response to exercise
Differential expression of genes
Immediately following exercise (T1) two probes were sig-
nificantly (P < 0.05) differentially regulated. Four hours
(T2) after exercise 1,485 probes were differentially
expressed with fold changes ranging from +4.8-fold to -
2.9-fold. At T2, 923 probes were up-regulated and 562
probes were down-regulated. At the chosen significance
threshold (α = 0.05) 74 of these probes are likely to be
false positives. The probes with the greatest changes in
expression (> +1.5-fold) immediately post-exercise are
shown in Table 1. The probes with the greatest changes in
expression (> +1.5-fold or -1.5-fold) four hours post exer-

cise are shown in Table 2 (up-regulated) and Table 3
(down-regulated). A full list of gene expression changes at
T1 and T2 are available in additional files 2 and 3. The
equine cDNA microarray expression data generated was
deposited in the NCBI Gene Expression Omnibus (GEO)
repository with experiment series accession
[GEO:GSE16235].

Among the probes with the greatest expression changes (>
+1.5-fold) at T1were seven probes representing four
genes: three probes representing FOS (v-fos FBJ murine
osteosarcoma viral oncogene homolog gene; mean +1.9-
fold, unadjusted P = 0.004, 0.003, 0.039); two probes rep-
resenting HSPA1A (heat shock 70 kDa protein 1A gene;
mean +2.7-fold, unadjusted P = 1.50E-07, 2.42E-05); one
probe located ~ 2kb upstream of PFKFB3 (6-phosphof-
ructo-2-kinase/fructose-2,6-biphosphatase 3 gene; +2.0-
fold, unadjusted P = 4.71E-06) and one probe represent-
ing EGR1 (early growth response 1 gene; +1.6-fold, unad-
justed P = 0.014).

The gene expression changes observed for the FOS and
HSPA1A genes are consistent with previous mammalian
studies that have shown increased expression of these
genes in response to exercise [24,30]. HSPA1A, FOS and
EGR1 are members of the immediate-early response (IER)
gene family. These genes are early regulators of cell growth
and differentiation signals, and are induced in response to
a wide variety of stress stimuli [31]. The heat shock pro-
tein Hsp70, encoded by the HSPA1A gene, is known to
protect skeletal muscle cells against the path physiological
effects of oxidative stress. In transgenic mouse models this
cytoprotection is brought about both through improve-
ment in muscle function and decreased apoptosis [32-34].
It has been suggested that the cytoprotective effects of the
Hsp70 protein are related to an ability to assist with the
refolding of denatured or partially degraded proteins [35].

Table 1: Genes ≥ +1.5-fold (up-regulated) differential expression immediately post-exercise compared to pre-exercise levels.

Gene Symbol Gene Name GenBank ID Fold change P adj P Annotation

HSPA1A Heat shock 70 kDa protein 1A CX602571 3.11 1.50E-07 0.001 EquCab
HSPA1A Heat shock 70 kDa protein 1A CX600510 2.15 2.42E-05 0.080 EquCab
FOS v-fos FBJ murine osteosarcoma viral 

oncogene homolog
CX597113 2.13 0.004 0.997 chr24:20,679,377-20,681,089

PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase

CX594334 1.96 4.71E-06 0.023 chr29:27,672,694-27,678,314

FOS v-fos FBJ murine osteosarcoma viral 
oncogene homolog

CX604427 1.87 0.003 0.997 H. Sapien

FOS v-fos FBJ murine osteosarcoma viral 
oncogene homolog

CX592361 1.59 0.039 0.997 H. Sapien

EGR1 early growth response 1 CX602573 1.55 0.014 0.997 H. Sapien

The gene names provided are either HUGO approved or Equus caballus specific.
Adj P is the P-value following adjustment for multiple testing.
Predicted gene annotations were assigned to unannotated probes of interest based on the gene located closest to the probe and homology to 
mammalian genes, chromosomal locations are provided for these genes.
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Table 2: Genes ≥ +1.5-fold (up-regulated) differential expression four hours post-exercise compared to pre-exercise levels.

Gene Symbol Gene Name Fold change adj P

HSPA1A heat shock 70 kDa protein 1A 4.84 1.61E-05
HSP90AA1 heat shock protein 90 kDa alpha (cytosolic), class A member 1 2.20 0.002
USP36 ubiquitin specific peptidase 36 2.17 0.001
VWCE von Willebrand factor C and EGF domains 2.07 0.001
CCDC6 coiled-coil domain containing 6 1.91 0.003
HSP90AA1 heat shock protein 90 kDa alpha (cytosolic), class A member 1 1.88 0.003
NFIC nuclear factor I/C (CCAAT-binding transcription factor) 1.85 0.003
RCSD1 RCSD domain containing 1 1.80 0.001
SEPT9 septin 9 1.75 0.005
TMEM145 transmembrane protein 145 1.71 0.002
BAIAP2 BAI1-associated protein 2 1.70 0.001
ATXN2L ataxin 2-like 1.70 0.003
NUCB1 nucleobindin 1 1.67 0.004
HSPA8 heat shock 70 kDa protein 8 1.67 0.005
STRN4 striatin, calmodulin binding protein 4 1.66 0.006
PKM2 pyruvate kinase, muscle 1.66 0.001
DLX5 distal-less homeobox 5 1.66 0.003
CRTC2 CREB regulated transcription coactivator 2 1.66 0.002
C20orf112 uncharacterised protein 1.64 0.001
LAMP2 lysosomal-associated membrane protein 2 1.64 0.003
EIF1 eukaryotic translation initiation factor 1 1.64 0.018
PKM2 pyruvate kinase, muscle 1.63 0.028
PLOD1 procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 1.63 0.003
EML3 echinoderm microtubule associated protein like 3 1.62 0.006
C14orf43 uncharacterised protein 1.61 0.016
PDCD6IP programmed cell death 6 interacting protein 1.61 0.001
OGFR opioid growth factor receptor 1.61 0.003
EMP3 epithelial membrane protein 3 1.61 0.006
DRAP1 DR1-associated protein 1 (negative cofactor 2 alpha) 1.61 0.001
C14orf151. uncharacterised protein 1.59 0.004
C20orf29 uncharacterised protein 1.59 0.001
TUBB tubulin, beta 1.58 0.001
RNF19B ring finger protein 19B 1.58 0.017
RCN3 reticulocalbin 3, EF-hand calcium binding domain 1.58 0.004
PRELP proline/arginine-rich end leucine-rich repeat protein 1.58 0.012
PEX16 peroxisomal biogenesis factor 16 1.58 0.003
NR4A1 nuclear receptor subfamily 4, group A, member 1 1.58 0.006
FTH1 ferritin, heavy polypeptide 1 1.58 0.004
CRTC2 CREB regulated transcription coactivator 2 1.58 0.004
SUZ12 suppressor of zeste 12 homolog (Drosophila) 1.57 0.001
SF3B5 splicing factor 3b, subunit 5, 10 kDa 1.57 0.003
SLC16A3 solute carrier family 16, member 3 (monocarboxylic acid transporter 4) 1.57 0.017
PKM2 pyruvate kinase, muscle 1.57 0.006
DNAJC1 DnaJ (Hsp40) homolog, subfamily C, member 1 1.57 0.002
DLX5 distal-less homeobox 5 1.57 0.004
DCHS1 dachsous 1 (Drosophila) 1.57 0.002
SIPA1L1 signal-induced proliferation-associated 1 like 1 1.56 0.014
SNAI1 snail homolog 1 (Drosophila) 1.55 0.006
PRKCSH protein kinase C substrate 80K-H 1.55 0.007
LCN2 lipocalin 2 1.55 0.002
HOXA5 homeobox A5 1.55 0.004
KDELR1 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 1 1.54 0.006
IDH2 isocitrate dehydrogenase 2 (NADP+), mitochondrial 1.54 0.011
AUP1 ancient ubiquitous protein 1 1.54 0.048
SLC16A13 solute carrier family 16, member 13 (monocarboxylic acid transporter 13) 1.53 0.008
NINJ1 ninjurin 1 1.53 0.003
HMOX2 heme oxygenase (decycling) 2 1.53 0.020
HSP90AA1 heat shock protein 90 kDa alpha (cytosolic), class A member 1 1.53 0.049
CCDC12 coiled-coil domain containing 12 1.53 0.011
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ARHGEF19 Rho guanine nucleotide exchange factor (GEF) 19 1.52 0.002
NAGPA N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase 1.52 0.005
PTTG1IP pituitary tumor-transforming 1 interacting protein 1.51 0.014
NR1D1 nuclear receptor subfamily 1, group D, member 1 1.51 0.020
CLSTN1 calsyntenin 1 1.51 0.002
BAIAP2 BAI1-associated protein 2 1.51 0.005
ATF4 activating transcription factor 4 (tax-responsive enhancer element B67) 1.51 0.005
C11orf24 uncharacterised protein 1.50 0.005
TSPAN4 tetraspanin 4 1.50 0.008
GMPPA GDP-mannose pyrophosphorylase A 1.50 0.016
CHAD chondroadherin 1.50 0.005
BCKDK branched chain ketoacid dehydrogenase kinase 1.50 0.014
ACTN1 actinin, alpha 1 1.50 0.006

Adj P is the P-value following adjustment for multiple testing.

Table 2: Genes ≥ +1.5-fold (up-regulated) differential expression four hours post-exercise compared to pre-exercise levels. (Continued)
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Table 3: Genes ≥ -1.5-fold (down-regulated) differential expression four hours post-exercise compared to pre-exercise levels.

Gene Symbol Gene Name Fold change adj P

ACTR10 actin-related protein 10 homolog (S. cerevisiae) -1.73 0.042
ANXA7 annexin A7 -1.73 0.039
CBX3 chromobox homolog 3 (HP1 gamma homolog, Drosophila) -1.51 0.010
C12orf57 chromosome 12 open reading frame 57 -1.52 0.008
C17orf37 chromosome 17 open reading frame 37 -1.59 0.011
COPB2 coatomer protein complex, subunit beta 2 (beta prime) -1.55 0.009
CFH complement factor H -1.63 0.035
CWF19L2 CWF19-like 2, cell cycle control (S. pombe) -2.87 2.67E-03
CWF19L2 CWF19-like 2, cell cycle control (S. pombe) -2.14 0.003
CYCS cytochrome c, somatic -1.52 0.012
FBXW5 F-box and WD repeat domain containing 5 -1.57 0.007
GALM galactose mutarotase (aldose 1-epimerase) -1.62 0.023
GLB1 galactosidase, beta 1 -1.54 0.006
GNL3 guanine nucleotide binding protein-like 3 (nucleolar) -1.54 0.019
HBS1L HBS1-like (S. cerevisiae) -1.70 0.042
HBS1L HBS1-like (S. cerevisiae) -1.62 0.047
KLHL2 kelch-like 2, Mayven (Drosophila) -1.66 0.040
LRRC8D leucine rich repeat containing 8 family, member D -1.67 0.039
ME1 malic enzyme 1, NADP(+)-dependent, cytosolic -1.59 0.003
MUT methylmalonyl Coenzyme A mutase -1.59 0.014
MIPEP mitochondrial intermediate peptidase -1.69 0.012
MRPL39 mitochondrial ribosomal protein L39 -1.52 0.013
NDUFA12 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12 -1.50 0.020
NDN necdin homolog (mouse) -2.01 0.004
NEDD1 neural precursor cell expressed, developmentally down-regulated 1 -1.52 0.022
PCOLCE2 procollagen C-endopeptidase enhancer 2 -2.10 0.004
PCOLCE2 procollagen C-endopeptidase enhancer 2 -1.62 0.010
PCOLCE2 procollagen C-endopeptidase enhancer 2 -1.51 0.017
QKI quaking homolog, KH domain RNA binding (mouse) -1.54 0.020
RTN4 reticulon 4 -1.59 0.039
RPL22 ribosomal protein L22 -1.61 0.048
ROBO1 roundabout, axon guidance receptor, homolog 1 (Drosophila) -1.83 0.007
SIAH2 seven in absentia homolog 2 (Drosophila) -1.55 0.023
TXNDC17 thioredoxin domain containing 17 -2.15 0.005
TRAM1 translocation associated membrane protein 1 -1.87 0.008
UXS1 UDP-glucuronate decarboxylase 1 -2.21 0.016
C13orf8 uncharactherised protein -1.51 0.020
VPS33A vacuolar protein sorting 33 homolog A (S. cerevisiae) -1.70 0.048

Adj P is the P-value following adjustment for multiple testing.
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Hsp70 can also interact with proteins involved in the reg-
ulation of cellular redox balance and Ca2+ homeostasis,
and thus reduce oxidative stress and Ca2+ overload in
response to physiological stress [36]. In addition Hsp70
protects against muscular degeneration and atrophy [37]
through inhibition of caspase activation [38] and protein
catabolism [37] and Hsp70 protein levels have been
shown to correlate with muscular regeneration following
injury [39]. Together these facts highlight the key role of
Hsp70 in muscle protection following stress and as a
modulator of muscular regeneration. The HSPA1A gene
displayed a further increase in transcript expression at T2
(+4.8-fold, P < 0.001), whereas the expression of FOS,
EGR1 and PFKFB3 had returned to resting levels. This sug-
gests that while FOS, EGR1 and PFKFB3 responses may be
immediate and transient, the HSPA1A response likely
contributes to long term adaptation.

The probe upstream of the PFKFB3 gene shares strong
homology to mammalian homologues of the gene thus it
is likely that it represents expression of this gene product.
The product of the PFKFB3 gene is involved in various
aspects of energy sensing and metabolism, but has not
previously been shown to be increased due to exercise.
However, studies have shown increased expression of
PFKFB3 in response to glucose deprivation [40] and
hypoxia [41], both stimuli associated with exercise. The
PFKFB3 protein is a powerful activator of glycolysis [42].
Surprisingly, in a panel of genes encoding glycolytic
enzymes and other anaerobic metabolites, differential
mRNA expression was not observed in this experimental
cohort despite significant increases in plasma lactate con-
centrations [43]. Similar observations of a lack of tran-
scriptional activation of glycolytic genes have been made
in human exercise studies [44]. PFKFB3 is also involved in
glucose-induced insulin secretion in pancreatic β cells
[45] and a SNP in the 3' untranslated region of the
PFKFB3 gene is associated with obesity in humans [46].
The PFKFB3 gene promoter contains hypoxic response
elements necessary for transactivation by hypoxia-induci-
ble factor-1 alpha (HIF-1α) in response to hypoxia [47].
This is relevant considering the observed increase in HIF-
1α protein in this cohort of horses immediately after exer-
cise [43].

There was some overlap among probes differentially
expressed at T2 and those tending towards differential
expression at T1. Among the 434 probes tending towards
differential expression (unadjusted P < 0.05) at T1 154
were also among those at T2, which is more than twice as
many expected by chance. Over 96% of the genes had
both the same direction of regulation at both time-points
and a greater magnitude of change at T2. Two genes had a
greater magnitude of change at T1 and a different direc-
tionality was observed for four genes. The genes with the

highest observed fold changes at both T1 and T2 included
HSPA1A (heat shock 70 kDa protein 1A gene, T1: +2.6-
fold (mean of two probes), unadjusted P = 1.22E-05; T2:
+4.8-fold, P = 1.61E-05); CRTC2 (CREB regulated tran-
scription coactivator 2 gene, T1: +1.3-fold, adjusted P =
0.001; T2: +1.7-fold, P = 0.003); and SLC16A3 (solute car-
rier family 16, member 13 gene, T1: +1.2-fold, adjusted P
= 0.03; T2: +1.6-fold, P = 0.012).

The CRTC2 protein is a potent activator of PGC-1α (per-
oxisome proliferater-activated receptor gamma coactiva-
tor 1 alpha), the master regulator of mitochondrial
biogenesis [48] and is also involved in the modulation of
gluconeogenesis [49]. The SLC16A3 protein is found in
greater abundance in fast twitch rather than slow twitch
muscle [50] and plays a direct role in lactate efflux out of
skeletal muscle. Thoroughbred horses have a strikingly
high proportion of fast to slow twitch muscle fibres [51],
which was also observed in this cohort of horses [43].
Increased mRNA levels of SLC16A3 were observed in "race
fit" compared to moderately conditioned Standardbred
horses [52]. SLC16A3 also plays a role in the transport of
the performance enhancing drug gamma-hydroxybutyric
acid (GHB) [53]. GHB is an endogenous metabolite but
can also be administered orally as a performance-enhanc-
ing drug; therefore it is reasonable to hypothesize that
endogenous GHB metabolism is associated with natural
athletic ability. This hypothesis is supported by the obser-
vation that the alcohol dehydrogenase iron-containing
protein 1 gene (ADHFE1), which is involved in GHB
catabolism [54] is located in a genomic region that has
been a target for positive selection during four hundred
years of Thoroughbred evolution [55].

Overall, these data suggest that, in addition to a rapid and
dramatic induction of a small number of stress response
genes immediately after exercise, there are also more sub-
tle early changes in gene expression that are difficult to
detect but are functionally relevant. It is possible that
many of the genes differentially expressed at T2 were also
differentially expressed at T1, but show more gradual
changes in gene expression and were not detectable at that
time point.

Overrepresentation of functional ontologies among differentially 
expressed genes
The relatively small number of probes (n = 434, unad-
justed P < 0.05) tending towards significant differential
expression immediately after exercise suggested that deriv-
ing meaningful functional information may be problem-
atic given an expected false discovery rate of
approximately 400 probes in this experiment. Therefore
the FatiScan gene enrichment test, which incorporates all
transcriptional data rather than limiting to only signifi-
cantly differentially expressed probes was used to analyse
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the transcriptional profile immediately after exercise [56].
Genes were ranked by differential expression and func-
tional blocks that were significantly up-regulated and
down-regulated immediately after exercise were identified
(Table 4). Overrepresented GO functional groups associ-
ated with up-regulated genes included response to stress,
RNA metabolism and developmental processes. The over-
representation of genes involved in the stress response
suggests that exercise-induced muscle repair may be a par-
ticular requirement for the maintenance of structural
integrity in Thoroughbred skeletal muscle following dis-
ruption of muscle fibres. This may be understood in the
light of very high aerobic and anaerobic capacities in
Thoroughbreds, which enable high intensity exercise even
in the unconditioned state. The principal GO functional
groups associated with down-regulated genes were those
involving the ribosome, oxidative phosphorylation and
proton-transporting ATP synthase complex. The strong
overrepresentation of down-regulated ribosomal genes
suggests an inhibition of protein synthesis. Previous stud-
ies have reported a reduced rate of protein synthesis
[57,58] and observed the disaggregation of polysomes to
ribosomes immediately post exercise [59]. The down-reg-
ulation of genes associated with oxidative phosphoryla-
tion may represent a shift form aerobic towards anaerobic
respiration.

The majority of exercise studies investigating the immedi-
ate response to exercise have focussed on post-transcrip-
tional or post-translational modifications or have used
real time qRT-PCR to investigate a limited number of

genes [21-23,60]. Because of the lack of literature docu-
menting the immediate transcriptional response to exer-
cise in skeletal muscle it is not clear whether the responses
detected in this study are specific to horses, or indeed
Thoroughbred horses.

Delayed response to exercise
Differentially expressed genes
A significantly larger number of genes were differentially
expressed four hours following exercise. Sixteen genes had
very significant (P < 0.01) increases in expression with
magnitudes > +1.8-fold and 104 had had significant (P <
0.05) expression differences > +1.5-fold. Among the 16
most differentially expressed genes at T2 were HSPA1A
(heat shock 70 kDa protein 1A gene, +4.8-fold, P < 0.001);
TPM4 (tropomyosin 4 gene; +1.9-fold, P = 0.008),
HSP90AA1 (heat shock protein 90 kDa alpha (cytosolic),
class A member 1 gene; +2.2-fold, P = 0.002) and USP36
(ubiquitin specific peptidase 36 gene; +2.16-fold, P =
0.001). Other notable genes present among those differ-
entially upregulated (> +1.5-fold) were HSPA8 (heat
shock 70 kDa protein 8 gene; +1.9-fold, P = 0.003);
CRTC2 (CREB-regulated transcription coactivator 2 gene;
+1.7-fold, P = 0.002) and LAMP2 (lysosome-associated
membrane glycoprotein 2 precursor gene; +1.6-fold, P =
0.028.

Notably genes encoding three heat shock proteins
(HSPA1A, HSP90AA1 and HSPA8) were among the most
highly differentially regulated transcripts. The Hsp70
(HSPA1A) and Hsp90 (HSP90AA1) proteins have been

Table 4: Significantly up-regulated and down-regulated GO categories immediately post-exercise compared to pre-exercise levels.

GO ID
Up-regulated

GO Term No. Genes P

GO:0006950 response to stress 3 0.001
GO:0007275 multicellular organismal development 6 0.001
GO:0048731 system development 5 0.002
GO:0048856 anatomical structure development 5 0.003
GO:0009986 cell surface 12 0.005
GO:0007242 intracellular signaling cascade 195 0.009
GO:0009897 external side of plasma membrane 5 0.026
GO:0005794 Golgi apparatus 76 0.034
GO:0044459 plasma membrane part 53 0.039
GO:0016070 RNA metabolic process 4 0.040
Down-regulated
GO:0003735 structural constituent of ribosome 21 0.000
GO:0005840 ribosome 26 0.000
GO:0044445 cytosolic part 33 0.001
GO:0043228 non-membrane-bound organelle 187 0.001
GO:0015934 large ribosomal subunit 15 0.003
GO:0043232 intracellular non-membrane-bound organelle 187 0.004
GO:0005829 cytosol 130 0.007
GO:0006119 oxidative phosphorylation 28 0.039
GO:0045259 proton-transporting ATP synthase complex 8 0.043

The FatiScan gene enrichment test was used to analyse the data
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shown to be associated with the transport of TOM (Trans-
locases of the outer membrane) complex proteins to the
mitochondrial surface [61,62] in response to contractile
activity. These proteins in turn are responsible for the
import of the hundreds of nuclear encoded proteins that
function in the mitochondria [63,64]. It clearly follows
that the reliance on nuclear encoded proteins for mito-
chondrial function is subject to the efficiency of protein
translocation to the mitochondria While numerous stud-
ies have reported Hsp70 and Hsp90 induction in skeletal
muscle in response to exercise [65,66], to our knowledge,
no study has reported an induction of constitutively
expressed HSPA8 protein. On the other hand, HSPA8 has
been reported to be induced in rat cardiac muscle follow-
ing hypoxic exposure [67] and may provide a protective
effect following oxidative stress [68]. LAMP-2 is a lyso-
somal receptor involved in the elimination of misfolded
proteins. It has been demonstrated that protesomal inhi-
bition results in an accumulation of Hsp70, LAMP-2 and
ubiquitin aggregates [69]. Similarly, the TPM4 protein
plays a major role in Ca2+-regulated skeletal muscle con-
traction and is upregulated in muscle undergoing regener-
ation and focal repair [70]. Presumably the up-regulation
of the heat shock genes, TPM4, LAMP2 and USP36 reflects
activity in the reparation or degradation of damaged and
misfolded proteins [69].

Fourteen probes representing 12 genes had very signifi-
cant (P < 0.01) decreases in expression at T2 with magni-
tudes greater than -1.8-fold. One hundred and twenty-six
genes had significant (P < 0.05) expression differences
greater than -1.5-fold. The most differentially expressed
genes were CWF19L2 (CWF19-like protein gene;repre-
sented by two probes, mean -2.5-fold, P = 0.003); UXS1
(UDP-glucuronic acid decarboxylase 1 gene; -2.2-fold, P =
0.016); TXNL5 (thioredoxin domain-containing protein
17 gene; -2.2-fold, P = 0.005); PCOLCE2, (procollagen C-
endopeptidase enhancer 2 precursor gene; represented by
two probes, mean -1.9-fold, P = 0.004, P = 0.01); NDN
(necdin gene; -2.0-fold, P = 0.004); TRAM1 (transloca-
tion-associated membrane protein 1 gene; -1.9-fold,P =
0.008); and ROBO1 (roundabout homolog 1 precursor
gene; -1.8-fold, P = 0.007). Six probes also had decreased
expression at T1 (unadjusted P < 0.05) representing GLB1
(T1: -1.2-fold; T2: -1.5-fold), SETD7 (T1: -1.1-fold; T2: -1.5-
fold) and four unannotated probes.

Overrepresentation of functional ontologies among differentially 
expressed genes
At T2 there was an observed overrepresentation of genes
that localised to the actin cytoskeleton, actin filament
bundle and cortical actin cytoskeleton (Table 5). The over-
representation of genes associated with the actin cytoskel-
eton may be indicative of responses to contraction and
mechanical stimuli and may be associated with muscle

remodelling via sarcomerogenesis. This is consistent with
an observed overrepresentation of genes in the focal adhe-
sion pathway. Actin remodelling has also been shown to
be responsible for an increase in GLUT4 translocation in
skeletal muscle [71]. An overrepresentation of actin-
related gene ontologies following exhaustive exercise has
not previously been reported. On the other hand, the
observed overrepresentations of genes with intramolecu-
lar oxidoreductase activity, unfolded protein binding and
heat shock protein binding molecular functions are con-
sistent with human exercise studies that predict replenish-
ment of intramuscular energy stores and a stress response
during recovery from intense exercise because of ROS pro-
duction, inflammation and intramuscular microtears
[8,19].

Because of the larger number of genes with assigned bio-
logical processes (497) the returned GO classes had more
general higher level functions (e.g. protein folding, regula-
tion of catalytic activity and regulation of the cell cycle)
providing little insight into the underlying adaptive mech-
anisms. Therefore, we searched for overrepresented KEGG
pathways among the significantly differentially regulated
genes at T2. These included the well established exercise
response pathways, insulin signalling [68], Type II diabe-
tes mellitus [72], mTOR signalling [73] and MAPK signal-
ing [74-76] as well as focal adhesion and p53 signaling
pathway. A list of genes differentially expressed in these
pathways is provided in additional file 4. The overrepre-
sented KEGG pathways are associated with different but
overlapping aspects of exercise stimuli and support the
hypothesis that the genes governing these cellular path-
ways have been targets for selection for exercise adapta-
tion in Thoroughbreds [55].

The less well described focal adhesion and p53 signaling
pathways are of particular note for their roles in muscle
hypertrophy and metabolic improvements. Muscle stretch
gives rise to the generation of focal adhesion complexes
through the induction of actin polymerisation at focal
adhesions and an increase in focal adhesion complex
associated proteins has been found in hypertrophic mus-
cle [77,78]. For instance, the mechanosensitive extra cel-
lular matrix protein tenascin-C has been identified as a
critical regulator of gene expression relating to repair and
growth in muscle following damaging exercise [79]. Fur-
thermore, focal adhesion kinase (FAK) has been shown to
be an upstream regulator of the control of muscle mass via
p70S6K [80] which may signal mTOR [81] independent
of Akt. The central role of FAK in muscle growth and dif-
ferentiation has been recently been demonstrated. Over-
expression of FAK led to a shift towards slow twitch mus-
cle generation and an up-regulation of genes involved in
mitochondrial metabolism and contraction [82]. There-
fore, an overrepresentation of focal adhesion molecules
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(page number not for citation purposes)



BMC Genomics 2009, 10:638 http://www.biomedcentral.com/1471-2164/10/638

Page 9 of 18
(page number not for citation purposes)

Table 5: GO categories and KEGG pathways overrepresented among differentially expressed genes (P ≤ 0.05) four hours post-exercise 
compared to pre-exercise levels.

GO ID
Molecular Function

GO Term No. Genes P Fold Enrichment

GO:0005515 protein binding 352 0.004 1.09
GO:0016853 isomerase activity 19 0.007 1.85
GO:0005200 structural constituent of cytoskeleton 7 0.026 2.72
GO:0003700 transcription factor activity 39 0.031 1.36
GO:0016860 intramolecular oxidoreductase activity 8 0.037 2.33
GO:0031072 heat shock protein binding 9 0.078 1.91
GO:0051082 unfolded protein binding 16 0.096 1.49
Cellular Compartment
GO:0044428 nuclear part 83 0.009 1.27
GO:0044446 intracellular organelle part 194 0.015 1.13
GO:0044422 organelle part 195 0.016 1.13
GO:0031974 membrane-enclosed lumen 75 0.018 1.26
GO:0043233 organelle lumen 75 0.018 1.26
GO:0005667 transcription factor complex 19 0.024 1.67
GO:0015629 actin cytoskeleton 15 0.029 1.78
GO:0044451 nucleoplasm part 37 0.032 1.37
GO:0005886 plasma membrane 79 0.042 1.20
GO:0016020 membrane 222 0.049 1.09
GO:0005654 nucleoplasm 40 0.061 1.29
GO:0031981 nuclear lumen 51 0.064 1.24
GO:0001725 stress fiber 4 0.066 3.79
GO:0032432 actin filament bundle 4 0.066 3.79
GO:0030864 cortical actin cytoskeleton 4 0.066 3.79
GO:0030863 cortical cytoskeleton 5 0.066 2.96
GO:0030054 cell junction 15 0.074 1.58
GO:0044433 cytoplasmic vesicle part 10 0.077 1.82
GO:0030659 cytoplasmic vesicle membrane 10 0.077 1.82
GO:0044448 cell cortex part 6 0.087 2.37
GO:0031410 cytoplasmic vesicle 28 0.090 1.33
GO:0012506 vesicle membrane 10 0.095 1.75
GO:0016023 cytoplasmic membrane-bound vesicle 24 0.098 1.35
GO:0005770 late endosome 7 0.100 2.07
Biological Process
GO:0051640 organelle localization 5 0.021 3.92
GO:0006457 protein folding 29 0.029 1.45
GO:0051650 establishment of vesicle localization 4 0.032 4.70
GO:0051648 vesicle localization 4 0.032 4.70
GO:0006903 vesicle targeting 4 0.032 4.70
GO:0050790 regulation of catalytic activity 26 0.044 1.44
GO:0051726 regulation of cell cycle 34 0.045 1.36
GO:0000074 regulation of progression through cell cycle 34 0.045 1.36
GO:0048523 negative regulation of cellular process 64 0.050 1.22
GO:0016568 chromatin modification 19 0.058 1.51
GO:0051656 establishment of organelle localization 4 0.067 3.76
GO:0065009 regulation of a molecular function 29 0.076 1.34
GO:0048519 negative regulation of biological process 65 0.080 1.19
GO:0007049 cell cycle 49 0.080 1.23
GO:0031324 negative regulation of cellular metabolic process 25 0.082 1.37
KEGG ID
hsa04010 MAPK signaling pathway 13 0.060 1.69
hsa04510 Focal adhesion 17 0.099 1.45
hsa04115 p53 signaling pathway 5 0.163 2.24
hsa00590 Arachidonic acid metabolism 3 0.182 3.70
hsa04910 Insulin signaling pathway 9 0.183 1.59
hsa05211 Renal cell carcinoma 7 0.198 1.73
hsa04670 Leukocyte transendothelial migration 7 0.233 1.64
hsa04150 mTOR signaling pathway 4 0.265 2.19
hsa00720 Reductive carboxylate cycle (CO2 fixation) 3 0.265 2.96
hsa04930 Type II diabetes mellitus 3 0.265 2.96

The FatiScan gene enrichment test was used to analyse the data



BMC Genomics 2009, 10:638 http://www.biomedcentral.com/1471-2164/10/638
indicates the importance of mechanical force altering skel-
etal muscle gene regulation towards muscle growth and
remodelling [83]. Moreover, we have previously deter-
mined that focal adhesion molecules may represent tar-
gets for recent artificial selection in the Thoroughbred and
therefore may be critical to the development of the muscle
strength phenotype for which Thoroughbreds are
renowned [55]. The p53 protein is best known for its role
in apoptosis, however, recent studies have suggested that
the p53 signaling pathway may play a role in regulation of
aerobic metabolism with significant reductions in COX4
activity in KO mice [84,85]. Importantly, p53 may regu-
late the expression of PGC-1α [86].

Other KEGG pathways that were overrepresented were:
arachidonic acid metabolism, involved in the modulation
of function of voltage gated ion channels, primarily in
neurons and muscle cells [87]; leukocyte transendothelial
migration, associated with the inflammatory response
and largely coordinated by chemokines [88,89]; reductive
carboxylate cycle (CO2 fixation), a metabolic pathway;
and the renal cell carcinoma signalling pathway, which
involves increased cell proliferation, energy demand and
O2 usage and is stimulated by hypoxia and HIF-1α
[90,91].

Validation of a panel of genes by real time qRT-PCR
Nine genes that were found to be differentially expressed
in the microarray experiment were selected for validation
by real time qRT-PCR. These genes were chosen based on
their involvement in muscle contraction or the response
to hypoxia. Two probes (Genbank IDs: CX594334 and
CX598227) that showed differential expression, but were
not found within an annotated gene were also included
for validation. CX594334 lies ~ 2 kb upstream of PFKFB3
and was upregulated immediately post-exercise.
CX598227 lies ~ 1 kb downstream of calmodulin 1
(Calm1) and was upregulated four hours post exercise.
The average gene expression of seven of the nine probes
studied reached significance (P < 0.05) and six [(basic
helix-loop-helix family, member e40 (BHLHE40), cal-
modulin 3(CALM3), HSPA1A, FOS, CX594334 and
CALM1] were concordant with the microarray data (Table
6, Figure 1). A point of major concern in microarray stud-
ies is the presence of false positives within a gene list.
Although the use of qRT-PCR is essential to validate the
overall dataset it is not feasible to interpret the experimen-
tal findings by evaluating each gene individually. As genes
function in co-operation within complex networks we
report principally the expression patterns of functionally
related groups of genes.

There were however, some interesting findings among the
validated genes. For instance, the expression of FOS
showed a high inter-sample variance in gene expression

change estimates (+18.2-fold to +506.0-fold increase).
The mean expression of the FOS gene mRNA transcript
increased +198-fold. The biological significance of the
high gene expression variance for this gene is not clear at
present but warrants further investigation.

Transcripts for the HSPA1A gene and the probe CX594334
(which may represent the PFKFB3 gene) were significantly
increased at T1 (2.3-fold and 2.7-fold fold respectively).
While both genes have quite different physiological roles
[42,92] both contain hypoxic response elements (HRE)
and have been shown to be transcriptionally activated by
the HIF-1α protein under hypoxic conditions [93].

During the recovery period, four hours post exercise,
HSPA1A mRNA levels remained elevated (+5.9-fold)
while CX594334 transcript levels returned to baseline
(Figure 1). The BHLHE40 gene, which increased in expres-
sion +2.3-fold is a transcription factor involved in the
hypoxic response, contains a HRE and is inducible in
hypoxic conditions through interaction with HIF-1α
[94,95]. CALM3 and CX598227 which lies ~ 1 kb down-
stream of CALM1 showed directionally different changes
in gene expression. CALM3 was downregulated -0.82-fold
while CX598227 was upregulated +2.4-fold. This is of par-
ticular interest as little is known regarding the differential
regulation of the individual genes within the Calmodulin
gene family. Calmodulin is a calcium binding protein
which acts as a calcium sensor [96] and plays an impor-
tant role in mediating many cellular processes including
muscle contraction [97,98].

Conclusion
The Thoroughbred horse provides a singular model sys-
tem to understand exercise adaptations. For the first time
following exhaustive exercise we have identified a large
number of genes with functions in mechanosensation,
muscle hypertrophy, repair and remodelling. The induc-
tion of the large numbers of genes with such functions
may be explained by the extraordinary innate aerobic and
anaerobic capacity of Thoroughbreds enabling high inten-
sity exercise even in an unconditioned state leading to
proportionally greater stresses on peripheral systems than
in other species. Importantly it is unlikely this knowledge
could be readily gained from human studies as the sus-
tained "all out" effort required to elicit such molecular
responses is difficult to attain from untrained/sedentary
human subjects, but is naturally achieved by Thorough-
breds.

The standard exercise test employed in equine exercise
physiology studies requires both endurance and strength,
a combination that is not easily reconstructed in other
exercise models. The result is that immediately after exer-
cise ribosomal genes are down-regulated indicating
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decreased protein synthesis, a signature of endurance
exercise. However, established responses associated with
resistance exercise such as muscle repair and hypertrophy
are observed four hours after exercise. Although the inhi-
bition of protein synthesis and muscle hypertrophy are
established responses to endurance and resistance exercise
respectively here we detect both responses at a global tran-
scriptional level from a single exercise bout combining
both endurance and resistance stimuli.

This study has provided a snapshot of the transcriptional
response to exercise in skeletal muscle from a highly
adapted system. Genes that were differentially expressed
immediately after exercise are likely to be directly
involved in metabolism and the stress response. Four

hours following exercise a more general transcriptional
response associated with recovery and adaptation was
observed, in particular highlighting the roles of genes in
metabolism and muscle hypertrophy. Further studies are
needed to clearly distinguish between the mechanisms
associated with the recovery from exercise and return to
homeostasis and those that are involved in the long term
adaptive response to recurring bouts of exercise condi-
tioning.

Methods
All animal procedures were approved by the University
College Dublin, Animal Research Ethics Committee. In
addition, a licence was granted from the Department of

Real time qRT-PCR results for genes used to validate microarray dataFigure 1
Real time qRT-PCR results for genes used to validate microarray data. The standard 2-ΔΔCT method was used to 
determine mean fold changes in gene expression [116]. All Ct values were normalised using the NSUN6 gene. The Student's t-
test was used to identify significant differences in mRNA abundance between time-points. Each point on the graph represents 
the relative fold change in gene expression compared to pre-exercise levels. * signifies a P-value of <0.05 **, signifies a P-value 
of <0.01, *** signifies a P-value of <0.001
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Health and Children (Ireland) and owners' consent was
obtained for all horses.

Subjects
Eight four-year old unconditioned Thoroughbred horses
(castrated males), raised at the same farm for the previous
12 months and destined for National Hunt racing with
the same trainer comprised the study cohort. The horses
had a mean height of 165.25 cm ((± 1.44) and a mean
pre-exercise weight of 565.75 kg (± 13.71). All horses par-
ticipated in a standardized incremental-step exercise test
[25-27] on a high-speed equine treadmill (Sato, Sato AB,
Knivsta, Sweden). Before the exercise test, all horses were
judged to be clinically healthy based on a veterinary exam-
ination that included a lameness assessment, resting
upper airway endoscopy and basic bloodwork (complete
blood count and serum biochemistry). Prior to entering
the study, all of the horses had been raised together and
had been kept in a grass field and fed 1.8 kg of 14% Race
horses cubes (Gain horse feeds, Clonroche, Co. Wexford,
Ireland) three times a day. During the study week the
horses were housed in a stable and provided ab libitum
access to water and fed grass hay and 2 kg of 10% Cool-n-
Cooked Horse and Pony Mix (Connolly's Red Mills, Bag-
nelstown, Co. Carlow, Ireland) twice daily. Horses were
fed approximately 3 hours and 55 minutes (235 ± 0.11
minutes) prior to the exercise test. All exercise tests were
performed between 1000 - 1130 am.

Standardised exercise test
The treadmill was housed in an insulated room with tem-
perature and humidity monitors. Prior to the exercise test,
all horses were acclimatized to stand quietly and to com-
fortably transition gaits on the treadmill. The treadmill
was set to a 6° incline for all of the exercise tests. The
warm-up period consisted of 2 minutes at 2 m/s, followed
by 2 minutes at 4 m/s and then 2 minutes at 6 m/s. This
was then followed by an increase in treadmill velocity to

9 m/s for 60 seconds, and then a 1 m/s increase in tread-
mill velocity every 60 seconds until the animal was no
longer able to maintain its position on the treadmill at
that speed or until the heart rate reached a plateau
(HRmax). Following completion of the test, the horses
were quickly brought back to a walk, taken off the tread-
mill and washed down with cold water.

Instrumentation
Any instrumentation was performed 30 minutes to 1 hour
prior to the exercise test. Heart rate (HR) was measured
continuously before, during and after exercise by teleme-
try (Polar Equine S810i heart rate monitor system, Polar
Electro Ltd, Warwick United Kingdom). Venous blood
samples were collected immediately after exercise, 5 min-
utes after exercise and 4 hours post-exercise. Blood sam-
ples were collected and placed into fluoride oxalate tubes
for the determination of plasma lactate concentrations.
All tubes were stored on ice with the plasma separated
within 1 hour of collection and analyzed within 30 min-
utes using the YSI 2300 STAT Plus™ lactate analyzer (YSI
UK Ltd, Hampshire, UK).

Muscle biopsy sampling
Percutaneous needle muscle biopsies [99] were obtained
from the dorsal compartment of the gluteus medius muscle
according to Dingboom and colleagues [100] using a 6
mm diameter, modified Bergstrom biopsy needle (Jørgen
KRUUSE, Veterinary Supplies). Biopsies were taken
approximately 15 cm caudodorsal (one-third of the dis-
tance) to the tuber coxae on an imaginary line drawn from
the tuber coxae to the head of the tail. The biopsies were
obtained at a depth of 80 mm. Each biopsy site was
shaved, scrubbed with an antiseptic and desensitized by a
local anaesthetic. The biopsy samples were washed with
sterile PBS (BD Biosciences, San Jose, CA) and preserved
in RNAlater (Ambion, UK) for 24 hours at 4°C and then
stored at -20°C.

Table 6: Real time qRT-PCR results for genes used to validate microarray data

Gene symbol GenBank ID Microarray qRT-PCR
FC T1 P FC T1 P

HSPA1A CX602571 3.11 0.001 2.68 2.87E-04
PFKFB3 CX594334 1.84 0.023 2.30 0.010
FOS CX604427 2.13 0.997 198.90 0.031

FC T2 P FC T2 P
ATF4 CX603997 1.50 0.005 -2.04 0.014
BHLHE40 CX599005 1.44 0.008 2.25 0.014
CALM3 CX600504 -1.40 0.045 -1.22 0.031
CRTC2 CX604423 1.58 0.004 -1.12 0.483
Calm1 CX598227 1.49 0.004 2.36 0.010
HSPA1A CX602571 4.84 1.6E-05 5.91 4.08E-04
PKM2 CX594899 1.63 0.028 1.05 0.648

FC T1 represents the fold change in gene expression immediately post-exercise.
FC T2 represents the fold change in gene expression four hours exercise post-exercise.
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Muscle biopsy samples were collected at three time
points: at rest pre-exercise (T0), immediately post-exercise
(T1) and four hours post-exercise (T2). Pre-exercise biop-
sies were collected within 93 minutes (range 68 - 93 mins)
before the commencement of exercise and between 155
and 170 minutes post feeding. The immediately post-exer-
cise (T1) biopsies were collected within seven minutes 30
seconds (range 5 mins 45 sec - 7 mins 30 sec) following
cessation of exercise and four hour post-exercise (T2)
biopsies were collected within 262 minutes (range 242 -
262 mins) following cessation of exercise.

RNA isolation and purification
Approximately 100 mg of each muscle biopsy sample was
removed from RNAlater and homogenized in 3 ml TRIzol
using a Kinematica Polytron Homogeniser PT 1200 C
Drive unit, 230 V (AGB, Dublin, Ireland) and the aqueous
and organic phases were separated using 200 μl of chloro-
form. Total RNA was precipitated using isopropyl alcohol
(0.6 times the volume of the aqueous phase). The remain-
ing pellet was washed once in 75% ethanol, and redis-
solved in 35 μl of nuclease-free water (Promega UK Ltd,
Southampton, UK). Each sample was purified using the
RNeasy ® Mini kit (Qiagen Ltd, Crawley, UK) and DNase
treated with RNase free DNase (Qiagen Ltd, Crawley, UK).
To elute the total RNA, 35 μl of nuclease-free water were
applied to the silica-gel membrane of the column to elute
the total RNA, which was stored at -80°C. RNA was quan-
tified using a NanoDrop® ND1000 spectrophotometer V
3.5.2 (NanoDrop Technologies, Wilmington, DE) and
RNA quality was subsequently assessed using the 18S/28S
ratio and RNA integrity number (RIN) on an Agilent Bio-
analyser with the RNA 6000 Nano LabChip kit (Agilent
Technologies Ireland Ltd, Dublin, Ireland) according to
manufacturer's instructions. The RNA isolated from these
samples had an average RNA integrity number (RIN) of
8.43 ± 0.08 (range 8.0 - 9.0).

Microarray description and annotation
Microarray slides were printed with clones selected from a
cDNA library generated using mRNA purified from the
articular cartilage of a 15-month old male Thoroughbred
horse [101]. Probe sets on the microarray slides were pre-
pared and printed as previously described [102,103].

The cDNA sequences for all annotated genes on the Equus
caballus Version 2.0. (EquCab2.0) genome sequence http:/
/www.broad.mit.edu/mammals/horse/ were downloaded
from Ensembl http://www.ensembl.org, release 50. The
expressed sequence tag (EST) sequences of all the probes
on the array were masked to remove repeats using Repeat-
Masker [104] and blast searched against the cDNAs.
BLAST hits were filtered to retain only hits with e values ≤
10-10, ≥ 50 bp long, above 95% match-target identity, and
where the best hit e value was ≥ 1010 better than the next

best. The EST sequences were cross-matched to horse Ent-
rez gene IDs and to human Ensembl and Entrez gene IDs
via accessions. EST matches to multiple horse or human
genes were excluded. Because fewer than 50% of ESTs
matched an Ensembl gene predicted gene annotations
were assigned to unannotated probes of interest based on
the gene located closest to the probe and homology to
mammalian genes. Following a BLAST of RefSeq and pro-
tein databases search hits with an e value of < 1-10 and hits
on non-mammalian species were eliminated. If the pre-
dicted gene annotations based on location and homology
did not match, the probe was not assigned a predicted
annotation.

Microarray hybridisation and experimental design
Total RNA was amplified using a MessageAmpTM ampli-
fied RNA (aRNA) linear amplification kit (Ambion). 2 μg
of aRNA was reverse transcribed and directly labelled with
Fluor647 or Fluor555 using the SuperScript™ Plus Direct
cDNA Labeling System (Bio-sciences, Dublin Ireland)
according to the manufacturer's instructions. Labelled
samples were combined and co-hybridised on equine
cDNA microarrays using SlideHyb Glass Array Hybridisa-
tion Buffer #3 (Applied Biosystems, Cambridgeshire, UK).
Microarray hybridisations were performed on an auto-
mated HS400 hybridisation station (Tecan Group Ltd.
Seestrasse 103 CH-8708 Männedorf, Switzerland) with
the following protocol - wash: 75°C, runs 1, wash 10 s,
soak 20 s; probe injection: 85°C; denaturation: 95°C, 2
min; hybridisation: 42°C, agitation frequency medium, 4
h; hybridisation: 35°C, agitation frequency medium, 4 h;
hybridisation: 30°C, agitation frequency medium, 4 h;
wash: 37°C, runs 2, wash 10 s, soak 20 s; wash: 25°C,
runs 2, wash 15 s, soak 30 s; wash: 25°C, runs 2, wash 20
s, soak 40 s; slide drying: 25°C 2 min.

The experimental design was a direct comparison for each
animal between pre- and both post-exercise time points.
Each slide was hybridised with samples from T0 Vs T1 and
from T0 Vs T2 for each animal. Technical replicates in the
form of a dye swap were performed for each investigation.

Microarray scanning and data acquisition
Hybridised and dried slides were scanned using a GenePix
4000B scanner (Molecular Devices, Berkshire, UK) and
image acquisition, first-pass data analysis and filtering
were carried out using the GenePix 6.0 microarray image
analysis package (Molecular Devices, Berkshire, UK). As a
first step of feature extraction spots that were flagged as
'poor' by the GenePix software (due to signal foreground
or background contamination, shape irregularity or poor
spot quality) were assigned a weight of zero and were
excluded from differential expression analyses. Images of
the slides were visually examined and any obvious irregu-
larities were also flagged, assigned a weight of zero and
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excluded from differential expression analyses. All spots
with a mean signal of less than background plus two
standard deviations were flagged and were also excluded
from differential expression analyses.

Microarray data analyses
All statistical analyses on the gene expression data were
performed using the R language, version 2.5.1 [105] and
the packages statmod and LIMMA from the Bioconductor
project [106]. Robust multichip average (RMA) [107] and
print tip lowess normalization [108,109] were performed
on the data before differential expression analyses were
performed using the lmFit function in LIMMA.
Fluor647:Fluor555 log2 ratios were calculated for each
spot on the microarray and duplicate spots were averaged.
The function duplicateCorrelation [110] was used to esti-
mate the correlation between technical replicates (dye
swaps) by fitting a mixed linear model by REML individ-
ually for each probe. The function also returned a consen-
sus correlation, which is a robust average of the individual
correlations. This was used to fit a linear model to the
expression data for each probe taking into account the
inter-technical replicate correlation between each micro-
array hybridisation.

Differentially expressed targets were determined using a
Bayes moderated t-test [111]. Multiple testing was
addressed by controlling the false discovery rate (FDR)
using the correction of Benjamini and Hochberg [112]. A
probe was flagged as differentially expressed if the cor-
rected P value was < 0.05.

Functional clustering according to gene ontology 
annotations
A list of Entrez IDs of human homologs of probes on the
microarray was obtained in a similar manner as for micro-
array annotation. Using the Entrez IDs of human homo-
logues of equine genes it was possible to use the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [28,29] for functional clustering and overrepre-
sentation analyses. DAVID was used to investigate the rep-
resentation of broad gene ontology (GO) categories
(Level 1) on the equine cDNA microarray relative to the
whole genome.

The DAVID system was also used to cluster differentially
expressed genes according to their function. For T0 vs T2
experiments, a probe was called differentially expressed if
its corrected P value was < 0.05 [112]. The enrichment of
categories was assessed and compared with the propor-
tion observed in the total population of genes on the
microarray, using the Expression Analysis Systematic
Explorer (EASE) tool within DAVID [113]. A different
approach was used when functionally clustering differen-
tially expressed genes from the T0 vs T1 experiments.

Although we expected there would only be small number
of genes differentially expressed at T1, there remains the
possibility that some more modest but still genuine
changes in gene expression may not be detected. There-
fore the FatiScan [56,114] gene enrichment test was used
to analyse the transcriptional profile immediately after
exercise. FatiScan is part of the Babelomics Suite Genes
and tests for the asymmetrical distribution of biological
labels in an ordered list of genes. Genes were ranked by
differential expression and FatiScan was used to detect
functional blocks (GO and KEGG pathways) that were sig-
nificantly up-regulated and down-regulated immediately
after exercise.

Quantitative real time RT-PCR
Selected cDNA samples from seven of the eight animals
were quantified by real time qRT-PCR. One of the animals
was omitted due to a shortage of RNA in the pre-exercise
sample. 1 μg of total RNA from each sample was reverse
transcribed into cDNA with oligo-dT primers using a
SuperScript™ III first strand synthesis SuperMix kit accord-
ing to the manufacturer's instructions (Invitrogen Ltd,
Paisley, UK). The converted cDNA was diluted to 2.5 ng/
μl working stocks and stored at -20°C for subsequent
analyses. Oligonucleotide primers for real time qRT-PCR
were designed using Primer3 version 3.0 http://
www.primer3.sourceforge.net and commercially synthe-
sized (MWG Biotech, Germany), details of these primers
are available in additional file 5. Each reaction was carried
out in a total volume of 20 μl with 2 μl of cDNA (2.5 ng/
μl), 10 μl SYBR® Green PCR Master Mix (Applied Biosys-
tems, Cambridgeshire, UK) and 8 μl primer/H2O. Opti-
mal primer concentrations were determined by titrating
50, 300 and 900 nM final concentrations and disassocia-
tion curves were examined for the presence of a single
product. qRT-PCR was performed using a 7500 Fast Real-
Time PCR machine (Applied Biosystems, Cambridge-
shire, UK).

A panel of four putative reference or 'housekeeping' genes
were selected for a reference gene study. This panel com-
prised two frequently used reference genes (HPRT1,
hypoxanthine phosphoribosyltransferase 1 gene; and
GAPDH, glyceraldehyde-3-phosphate dehydrogenase
gene) and two genes (NSUN6, NOL1/NOP2/Sun domain
family, member 6 gene; and PIGO, phosphatidylinositol
glycan anchor biosynthesis, class O gene) that were
selected based on minimal variation across the time
points observed in the microarray results. The panel of
genes was evaluated using geNorm version 3.4 for Micro-
soft Excel [115]. Briefly, the gene expression stability
measure 'M' for each control gene was calculated as the
pairwise variation for that gene with all other tested refer-
ence genes across the exercise time-course (T0, T1, T2). The
candidate reference genes were ranked in order of decreas-
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ing 'M' values or increasing mRNA expression stability
[85]. Based on the geNorm analyses, the NSUN6 gene was
the optimal reference gene and pre-exercise (T0) values
were used to normalise the data. The 2-ΔΔCT method
(where CT is cycle threshold) was used to determine mean
fold changes in gene expression [116]. The Student's t-test
was used to identify significant differences in mRNA
abundance between time-points.
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