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Abstract
Background: Predicting the origin of premature ventricular contraction (PVC) from 
the preoperative electrocardiogram (ECG) is important for catheter ablation therapies. 
We propose an explainable method that localizes PVC origin based on the semantic 
segmentation result of a 12-lead ECG using a deep neural network, considering suit-
able diagnosis support for clinical application.
Methods: The deep learning-based semantic segmentation model was trained using 
265 12-lead ECG recordings from 84 patients with frequent PVCs. The model classi-
fied each ECG sampling time into four categories: background (BG), sinus rhythm (SR), 
PVC originating from the left ventricular outflow tract (PVC-L), and PVC originating 
from the right ventricular outflow tract (PVC-R). Based on the ECG segmentation re-
sults, a rule-based algorithm classified ECG recordings into three categories: PVC-L, 
PVC-R, as well as Neutral, which is a group for the recordings requiring the physician's 
careful assessment before separating them into PVC-L and PVC-R. The proposed 
method was evaluated with a public dataset which was used in previous research.
Results: The evaluation of the proposed method achieved neutral rate, accuracy, sen-
sitivity, specificity, F1-score, and area under the curve of 0.098, 0.932, 0.963, 0.882, 
0.945, and 0.852 on a private dataset, and 0.284, 0.916, 0.912, 0.930, 0.943, and 
0.848 on a public dataset, respectively. These quantitative results indicated that the 
proposed method outperformed almost all previous studies, although a significant 
number of recordings resulted in requiring the physician's assessment.
Conclusions: The feasibility of explainable localization of premature ventricular con-
traction was demonstrated using deep learning-based semantic segmentation of 12-
lead ECG.
Clinical trial registration: M26-148-8.
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1  |  INTRODUC TION

Premature ventricular contraction (PVC) is known as a common ar-
rhythmia. Repeated PVCs increase the risk of developing arrhyth-
mias or cardiomyopathy that causes heart failure.1,2 PVCs are caused 
by abnormal excitations, which mainly originate from the right and 
left ventricular outflow tracts (RVOT and LVOT).3,4 Catheter abla-
tion (CA) is a treatment for patients with PVC whose drug therapy 
is ineffective or discontinued due to unacceptable side effects.5 
Localizing the PVC origin from the preoperative electrocardiogram 
(ECG) before the CA is important because it will help in choosing 
the appropriate approach for catheter preparation leading to avoid 
complications, saving procedural time, improving the success rate, 
and suppressing recurrent risk.6–10

Various approaches have been proposed so far to assist physi-
cians in localizing PVC origins from preoperative ECG. Rule-based 
algorithms using indices extracted manually from ECG waveforms 
have been proposed in many studies6,9,11–13 For example, Yoshida 
et al. proposed an index calculated from the S-wave of V2 lead and 
the R-wave of V3 lead.12 Some validities of those methods have 
been demonstrated, but the clinical application remains difficult 
because those require manual measurement of ECG waveform 
features by physicians. Moreover, these algorithms are limited 
to PVCs with typical waveforms because manually extracted in-
dices and simple dichotomization are inadequate for accurate 
estimation.4

Machine learning (ML) approaches have been proposed in lo-
calizing PVC origins to overcome those limitations of rule-based al-
gorithms, thereby expecting automatic extraction of effective ECG 
features.4,8 For example, Zheng et al. proposed the extreme gradient 
boosting tree model which identifies PVC origin as LVOT or RVOT, 
and the model achieved an accuracy of 0.976 which significantly ex-
ceeds that of manual algorithms.8

ML-based methods outperform rule-based algorithms, but ac-
countability is a major and general problem for clinical application 
of many ML-based diagnosis methods because physicians are ulti-
mately responsible for the diagnosis.14 Explainable models that show 
which features of the image were focused on using gradients of the 
neural network have been proposed in the field of medical image 
analysis.15 Conversely, ML models for localizing PVC origin output 
only the PVC origin outcome, and these models are supposed to be 
less credible for surgeons and not suitable for supporting diagnosis 
because of the inadequate basis of outputs.

This study aimed to realize an ML-based explainable model for 
localizing PVC origins from preoperative 12-lead ECG. To realize ex-
plainable localization of PVC origins, we propose a deep learning-
based semantic segmentation model which classifies every sampling 
time of ECG signal into four categories: background (BG), sinus 

rhythm (SR), PVC originating from LVOT (PVC-L), and PVC originat-
ing from RVOT (PVC-R) and a rule-based algorithm that localizes PVC 
origin as LVOT, RVOT, or Neutral, which is a group for the recordings 
requiring the physician's careful assessment before separating them 
into PVC-L and PVC-R (Figure 1). In this study, the accuracy of the 
proposed method was evaluated based on the clinical preoperative 
12-lead ECG signals of patients with PVC.

2  |  METHODS

2.1  |  Study design

The deep learning-based semantic segmentation model was trained 
and evaluated on our private dataset, which includes 265 ECG re-
cordings from 84 patients with frequent PVCs. The dataset was col-
lected at the National Cerebral and Cardiovascular Center (NCVC 
dataset). Furthermore, inference using the trained model with the 
NCVC dataset was conducted on the public dataset used in the prior 
study, and the accuracy was compared with that of previous studies. 
This retrospective analysis of patients' clinically acquired data was 
approved by the ethics committee of the NCVC (M26-148-8), and 
all patients provided written informed consent before undergoing 
ablation.

2.2  |  Patient selection

This study included 84 patients (37 males and 47 females; mean age 
50.1 ± 17.7 years) with frequent PVCs who underwent successful CA 
at the NCVC from November 2010 to December 2019. A total of 
14 patients had dilated cardiomyopathy, 1 had ischemic cardiomyo-
pathy and others had no apparent heart disease. The frequency of 
PVC ranged from 12% to 32%, with a median of 19%. A 3D mapping 
system was utilized in the CA surgeries, and the origin of the PVC 
was judged where suppression of the PVC was finally achieved by 
applying radiofrequency energy. As a result of CA, 37 patients had 
PVC-L and 47 patients had PVC-R.

2.3  |  ECG recording and measurement

Preoperative ECGs of patients with PVC were recorded in the su-
pine position and acquired at a sampling rate of 500 Hz using LS9900 
OS win 7 (Ver: 2.8a) and a CLEARSIGN amplifier (Boston Scientific, 
MA, USA). A total of 265 ECG recordings from 84 patients were 
collected, and each recording was 10 s long with a sampling rate of 
500 Hz and consisted of 12 leads. Among them, 101 recordings were 
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from 37 patients with PVC-L and 164 recordings were from 47 pa-
tients with PVC-R.

2.4  |  Dataset preparation

The ground truth label (BG, SR, PVC-L, and PVC-R) of each sampling 
time for semantic segmentation was annotated manually by a clinical 
expert and the ground truth label (PVC-L and PVC-R) of each record-
ing was annotated based on the CA surgery outcome.

This study performed fivefold cross-validation to prevent vari-
ations in learning accuracy depending on the choice of data. The 
dataset was divided into five groups, ensuring that recordings from 
the same patient belonged to the same group and the number of 
recordings and proportion of PVC origin were equal among the 
groups. Table 1 shows the number of recordings and patients in each 
group. One group was randomly selected as validation data from 
four groups excluding the test data in each dataset division pattern 
of fivefold validation, and the remaining three groups were used as 
training data.

In our preliminary investigation, it was observed that the ac-
curacy of ECG semantic segmentation did not significantly differ 

between the use of chest leads alone and the inclusion of limb leads. 
Consequently, this study exclusively utilized chest leads and exam-
ined the optimization of their combination. Table  2 shows the 14 
different ECG combinations considered as inputs for a deep neural 
network (DNN) model, the combination of chest leads was selected 
to include leads focusing on the right ventricle as well as leads fo-
cusing on the left ventricle. A total of 70 patterns of the validation 
dataset and input ECG-lead combinations were examined. In each 
case, 3600 samples in the center were chosen out of 5000 samples 
by removing the 700 sampling at both ends, because annotated la-
bels could be incorrect at both ends due to inadequate information. 

F I G U R E  1  Comparison of the 
localization process between the 
proposed method and ML-based methods 
of previous studies. ML-based methods 
of previous studies determine PVC 
originating from LVOT (PVC-L) or PVC 
originating from RVOT (PVC-R) from the 
input ECG. Conversely, the proposed 
method performs deep learning-based 
semantic segmentation on the input ECG 
which classifies every sampling time into 
four categories (background, SR, PVC-L, 
and PVC-R) and a rule-based algorithm 
which classifies the input ECG into three 
categories (PVC-L, PVC-R, and Neutral) 
based on the preceding segmentation 
results. The semantic segmentation 
results can be used as the basis of the 
diagnosis.

TA B L E  1  Number of patients and recordings in fivefold 
validation.

LVOT RVOT

Patients Recordings Patients Recordings

Group 1 7 20 9 33

Group 2 8 21 9 32

Group 3 7 20 10 33

Group 4 7 20 10 33

Group 5 8 20 9 33
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Additionally, 3072 consecutive samples in each epoch were ran-
domly selected out of 3600 samples.

2.5  |  Development of DNN model for semantic 
segmentation

The developed DNN model was based on the ECG-SegNet proposed 
for semantic segmentation that classifies each ECG sampling time 
into several categories using bidirectional long short-term memory 
(BLSTM).16 The DNN model consisted of a 1-dimensional-convolutional 
neural network (1DCNN) and BLSTM which are effective for feature 
extraction of time series data. Figure 2 shows a detailed of the devel-
oped DNN architecture. In each layer of 1DCNN, the kernel size was 
set to seven, and an exponential linear unit was used as activation 

function. Furthermore, a BLSTM layer with a dropout rate of 20% 
was implemented. Categorical cross-entropy error was used as the 
loss function, and an Adam optimizer with a learning rate of 0.001 
was used as the optimization function. The batch size was set to 10, 
and the number of epochs was set to 300. The DNN model was ap-
plied to the validation data for each epoch, and the error between 
output and labels was calculated. The final weight of the DNN model 
adopted the DNN model weight of the epoch with the smallest vali-
dation error among the 300 epochs. All experiments were performed 
in Python using TensorFlow17 on a Linux Server (Ubuntu 18.04.3 LTS) 
with NVIDIA GeForce RTX 2080 GPU.

2.6  |  Localization algorithm of PVC origin based on 
ECG segmentation

Recordings with difficult-to-determine PVC-L or PVC-R should not 
be forcibly classified as either one or the other, considering the reli-
able support of physicians in diagnosis, and such recordings should be 
assessed by physicians carefully. Therefore, a new class Neutral was 
added for these recordings, and the following rule-based algorithm 
classified each recording into three categories (PVC-L, PVC-R, and 
Neutral) based on ECG segmentation by a trained DNN model. The 
existence of a timing when the respective probabilities of PVC-L and 
PVC-R exceeded the threshold value in the analysis interval was de-
termined for a given threshold value. The corresponding category was 
determined as the result of the recording classification if one of the re-
sults of either PVC-L or PVC-R was positive. Conversely, the recording 
was classified as Neutral if the result of both was positive or negative.

2.7  |  Evaluation metrics

At first, the same algorithm, as mentioned above, was applied to 
the ground truth label of the segmentation to determine the ground 

TA B L E  2  Combinations of ECG-leads for estimation of PVC 
origin.

The number of leads Leads pattern

1 V1

2 V1, V4

V1, V5

V1, V6

V2, V4

V2, V5

V2, V6

3 V1, V3, V4

V1, V3, V5

V1, V3, V6

V2, V3, V4

V2, V3, V5

V2, V3, V6

6 V1, V2, V3, V4, V5, V6

F I G U R E  2  Architecture of the deep neural network (DNN) model. The DNN model classifies each ECG sampling time into four categories 
(background, SR, PVC originating from LVOT, and PVC originating from RVOT) via a 1-dimensional-convolutional neural network (1DCNN), 
bidirectional long short-term memory (BLSTM), and dense layer from the input ECGs of size C × L, where C is the number of ECG leads and L 
is the number of ECG samplings.
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truth of the recordings. The labels of the recordings were deter-
mined uniquely regardless of the threshold because the probability 
of the label is always 0 or 1. Then, the following metrics were used to 
evaluate the trained model and the localization algorithm.

Neutral rate (NR), which is the ratio of recordings classified as 
Neutral out of the recordings with the ground truth label of deter-
minable (“PVC-L” or “PVC-R”), was evaluated for each trained DNN 
model. Toward the recordings classified as determinable, accuracy 
(ACC), sensitivity to “PVC-R” (SE), specificity (SP), F1-score, and the 
area under the curve (AUC) of the receiver operating characteris-
tic (ROC) curve were calculated as the metrics of the classification 
among PVC-L and PCV-R.

2.8  |  Evaluation using a public dataset

We evaluated the proposed method with a public dataset used in 
previous studies to compare their performance. The dataset con-
sisted of 334 12-lead ECGs recorded at Ningbo First Hospital of 
Zhejiang University from 334 patients and ground truth labels 
(Ningbo dataset).18 The ground truth labels for the Ningbo dataset 
were determined based on the outcomes of CA procedures, with 
77 recordings classified as PVC-L and 257 recordings classified as 
PVC-R.

The best combination of the lead patterns of the DNN model and 
the threshold of the localization algorithm for the NCVC dataset was 
selected to compare with previous studies. A fivefold average of NR 
and ACC for NCVC dataset was calculated for 14 different models 
with different lead patterns by varying the threshold of the localiza-
tion algorithm from 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95. 
Then, we selected the best combination that minimizes the loss in 
Equation (1) out of them with NR of <0.3 and ACC of >0.9.

In this study, � was set to 0.1 because it is preferable to classify as 
Neutral than to make a wrong decision for recordings with difficult-
to-determine PVC-L or PVC-R, considering the reliable diagnosis 
support.

The DNN model with the lead patterns of the best combination 
was trained again with whole NCVC dataset. The NCVC dataset was 
split into training data and validation data. The training data con-
sisted of 88 recordings from 31 patients with PVC-L and 151 record-
ings from 40 patients with PVC-R. The validation data consisted of 
13 recordings from six patients with PVC-L and 13 recordings from 
seven patients with PVC-R. The detailed learning curve is presented 
in Figure S1.

Then, the trained DNN model with the private dataset was eval-
uated using the public Ningbo dataset. The above-mentioned evalu-
ation metrics (NR, ACC, SE, SP, F1-score, and AUC) were calculated. 
The recordings with a sampling rate of 2000 Hz were downsampled 
uniformly to 1/4 so that the sampling rate was the same as 500 Hz of 
training data when inputting ECG recordings of the Ningbo dataset 
into the trained DNN model.

3  |  RESULTS

3.1  |  DNN model performance when varying 
ECG-lead combinations and thresholds

Figure  3A–C shows the change in NR, ACC, and loss defined in 
Equation  (1). The results of the lead combination, which has the 
smallest loss for each number of input leads, were shown in these fig-
ures. Both NR and ACC tended to decrease as the threshold was in-
creased, as shown in Figure 3A,B. Moreover, NR tended to decrease 
and ACC tended to increase as the number of input leads increased, 
but using all six ECG-leads as input was not best for the DNN model. 
Figure 3C shows the change of loss under conditions of NR of <0.3 
and ACC of >0.9. The best combination was the lead patterns of V2 
and V6 lead and threshold of 0.4, as shown in Figure 3C. The pro-
posed method with the best condition (leads: V2 and V6, threshold: 
0.4) achieved NR of 0.098; ACC of 0.932; SE to PVC-R of 0.963; SP 
of 0.882; F1-score of 0.945 on the NCVC dataset. Figure 3D shows 
the ROC curve of the best performance proposed method for one of 
the fivefold validation, and the average AUC was 0.852.

3.2  |  Inference examples of the proposed method

Figure 4 shows segmentation examples performed on the test data of 
the NCVC dataset using the trained DNN model with V2 and V6 leads. 
The top and middle images represent the ECG waveforms of V2 and 
V6 in each panel, respectively, which are inputs to the DNN model, 
and the bottom image represents the predicted probability of the 
presence of PVC-L and PVC-R by the trained DNN model. Figure 4A,B 
shows the trained DNN model predictions for typical ECG waveforms 
of PVC-L and PVC-R, respectively. These results revealed that the 
trained DNN model appropriately increased the probability of the 
correct category at the time of PVC occurrence while maintaining the 
probability of the incorrect category at almost zero. Figure 4C shows 
the inference results of the trained DNN model for a recording with 
both PVC-L and PVC-R typical waveforms. Hence, the probabilities of 
both PVC-L and PVC-R increased slightly at 2–3 s, but the probabilities 
each increased appropriately at the onset of the typical waveform. In 
this example, the highest probabilities of both PVC-L and PVC-R in the 
recording were nearly 1, and this recording was classified as Neutral 
for almost all threshold settings. Figure 4D shows a recording with 
PVC-L atypical waveforms and the prediction results of the trained 
DNN model. In this example, not only the PVC-L probability but 
also the PVC-R probability increased at the time of PVC occurrence, 
and the classification result for the recording was Neutral when the 
threshold was <0.636 and PVC-L when the threshold was >0.636.

3.3  |  Performance comparison with previous studies

Table 3 shows the quantitative comparison for NR, ACC, SE, SP, 
F1-score, and AUC of the proposed method in this study and the 

(1)Loss = (1 − NR)(1 − ACC) + �NR
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conventional methods of previous studies. The proposed method 
with V2 and V6 leads and a threshold of 0.4 achieved a NR of 
0.284, ACC of 0.916, SE of 0.912, SP of 0.930, F1-score of 0.943, 
and AUC of 0.848 on the public Ningbo dataset. The proposed 
method outperformed most previous studies in all ACC, SE, SP, 
F1-score, and AUC although 28.4% of the recordings were classi-
fied as Neutral.

4  |  DISCUSSION

4.1  |  Explainable localization of PVC

This study proposed a deep learning-based segmentation model 
and a rule-based algorithm for explainable PVC origin localization. 
The proposed method provides the physician with the prediction 

F I G U R E  3  Performance of the proposed method. (A–C) Changes in Neutral rate (NR), Accuracy (ACC), and Loss defined in 
Equation (1) relative to threshold. From (C), the best combination was the leads pattern of V2 and V6 leads and threshold of 0.4, and the 
best performance DNN model achieved NR of 0.098, ACC of 0.932, SE to PVC-R of 0.963, SP of 0.882, and F1-score of 0.945. (D) ROC 
curve of the best performance DNN model (leads: V2 and V6, threshold: 0.4). The average AUC of the best performance DNN model was 
0.852.
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result of PVC origin and the segmentation results, while conven-
tional DNN models only output the PVC localization results. The 
segmentation results can be the basis of the diagnosis, and the pro-
posed method can significantly increase explainability of automatic 
PVC origin localization. Moreover, the proposed method achieved 
ACC of 0.916, SE of 0.912, SP of 0.930, F1-score of 0.943, and 
AUC of 0.848 on the public dataset, which indicated that it outper-
formed almost all previous studies, although it excluded 28.4% of 
recordings as Neutral. Therefore, the feasibility of explainable PVC 
localization using deep learning-based semantic segmentation of 
12-lead ECG was shown.

4.2  |  Classification into the Neutral category

The three-class classification of PVC-L, PVC-R, and Neutral is one 
of the features of this study. For example, conventional ML-based 
methods had to determine PVC-L or PVC-R even for the recording 
containing both PVC-L and PVC-R seen in Figure 4C and the record-
ing with atypical PVC waveforms seen in Figure 4D, while the pro-
posed method can classify the controversial recordings as Neutral. 
More reliable diagnostic assistance can be achieved by classifying 
such recordings as Neutral. A threshold set for the predicted prob-
ability of PVC-L and PVC-R can classify the controversial recordings 

F I G U R E  4  The segmentation example performed on the test data of the private dataset using the trained DNN model with V2 and 
V6 leads. (A, B) Typical ECG wave forms of PVC-L and PVC-R and the segmentation output of the trained DNN model. These results 
revealed that the trained DNN model only changed the segmentation probability of the correct category drastically while the segmentation 
probability of the other category was kept at almost zero. (C) A prediction example by the trained DNN model for a recording which has 
both PVC-L and PVC-R typical wave forms, and the probabilities of PVC-L and PVC-R increased appropriately at the onset of the typical 
waveform. The highest probability values for PVC-L and PVC-R in the recording were nearly 1, so this recording was classified as Neutral 
for almost all threshold values. (D) Atypical ECG wave forms of PVC-L and a prediction by the trained DNN model. The probabilities of 
both PVC-L and PVC-R increased with the timing of PVC occurrence in this case. The recording was classified as Neutral and PVC-L when 
thresholds were smaller and larger than 0.636, respectively.
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as Neutral even in previous studies. However, this approach lacks 
explainability because it does not indicate how it came to the Neutral 
classification. Conversely, the classification of PVC-L, PVC-R, and 
Neutral in the proposed method is made by a rule-based algorithm 
based on the segmentation result, so the reason for classification 
can be traced. Therefore, one of the advantages of the proposed 
method is that it can make an explainable classification as Neutral 
even for controversial recordings.

4.3  |  Performance comparison with 
previous studies

Table  3 shows the performance comparison (NR, ACC, SE, SP, 
F1-score, and AUC) of the proposed method and conventional 
methods for the public Ningbo dataset. The results revealed that 
the proposed method outperformed most conventional methods, 
while the previous study by Zheng et al. reported almost 100% for 
all evaluation metrics, which seems to indicate that the classifica-
tion performance is higher than the proposed method. However, 
such near 100% performance is rather unusual to be achieved 
in the presence of controversial data, such as those shown in 
Figure  4C,D. Additionally, the proposed method of classifying 
such data as Neutral is considered proper in terms of diagnostic 
support.

4.4  |  Balance between classification 
accuracy and NR

We used Loss (Equation 1) to select the optimal ECG-leads combi-
nation and threshold, as shown in Figure 3C. The Loss is the sum 
of a term related to classification accuracy and a term related to 
NR, and the balance between these two terms is determined by 
λ. A small value of λ allows the selection of a DNN model that 
prioritizes classification accuracy, while a large value of λ allows 

the selection of a DNN model that prioritizes NR reduction. The 
models selected with different λ could be utilized for stepwise 
screening. Controversial recordings that should be confirmed by 
a physician may be extracted by gradually applying from a model 
with high accuracy to a model with low NR if the number of re-
cordings that can be diagnosed by a physician is determined in 
advance. This combination of various models can achieve a highly 
reliable and efficient diagnosis.

4.5  |  Limitations

This study proposed a deep learning-based semantic segmentation 
for every time sampling of ECG to establish an explainable automatic 
diagnosis of PVC origin localization. However, no public dataset with 
segmentation labels existed, so we assigned segmentation labels 
to the NCVC dataset and used them for training the DNN model. 
Therefore, the data used for training is limited to 265 ECG recordings 
of 84 patients, but the proposed method is expected to gain further 
accuracy and generalization performance by increasing the number 
of training data in the future. Additionally, this study conducted the 
comparison with previous studies using the public Ningbo dataset to 
evaluate the generalization performance of the proposed method. 
The Ningbo dataset was used for comparison with the latest previ-
ous studies, but this dataset also does not have a huge amount of 
data, and the generalization performance of the proposed method 
has not been fully examined.

Furthermore, this study investigated the optimal combinations 
of ECG leads for identifying PVC origins, and it was demonstrated 
that when using V2 and V6 leads, estimation of PVC origins with 
an accuracy, sensitivity, and specificity of approximately 0.9 was 
achieved. Since our preliminary experiments did not show a sig-
nificant improvement in accuracy with the addition of limb leads, 
it is considered reasonable to use only chest leads to reduce the 
total number of lead combinations for optimization. However, 
since limb leads can capture excitation conduction from different 

Proposed method NR ACC SE SP F1-score AUC

This study 0.284 0.916 0.912 0.930 0.943 0.848

Kamakura et al.19 0 0.301 0.633

Zhang et al.20 0 0.80

Betensky et al.13 0 0.87 0.78 0.90

Yoshida et al.21 0 0.70 0.86

Cheng et al.22 0 0.88 0.76 0.91

Yoshida et al.12 0 0.76 0.53

Nakano et al.23 0 0.53 0.46

Cheng et al.24 0 0.58 0.59 0.58

He et al.6 0 0.78 0.67 0.01

Xie et al.25 0 0.68 0.58

Di et al.9 0 0.70 0.70 0.68

Zheng et al.8 0 0.98 0.97 1.00 0.98 0.99

TA B L E  3  Comparison of performance 
with previous studies.
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directions than those of chest leads, effectively utilizing informa-
tion from limb leads may further enhance the accuracy of PVC or-
igin estimation.

Moreover, this study proposed the Neutral classification for a 
controversial recording but did not consider the appropriate treat-
ment for the cases classified as Neutral. We may consider the 
explainable treatment strategy by analyzing features, such as maxi-
mum and/or mean for the segmentation probabilities of PVC-L and 
PVC-R, if we have to determine whether PVC originating from LVOT 
or RVOT, as in the conventional method. Conversely, recordings 
classified as Neutral are likely to be atypical recordings as seen in 
Figure  4C,D. Additionally, such atypical recordings may differ sig-
nificantly from typical PVC-L and PVC-R in the PVC location occur-
rence from an electrophysiological point of view. Therefore, other 
appropriate ablation strategies for cases classified as Neutral may be 
necessary to achieve a more sophisticated PVC ablation treatment.

5  |  CONCLUSIONS

This study proposed a deep learning-based semantic segmentation 
on ECG signal and a rule-based localization algorithm based on the 
preceding segmentation results to realize an ML-based explainable 
model for localizing PVC origins from preoperative 12-lead ECG. 
The proposed method achieved NR of 0.284, ACC of 0.916, SE to 
PVC-R of 0.912, SP of 0.930, F1-score of 0.943, and AUC of 0.848 
on the public dataset and outperform almost all the previous stud-
ies while it required physician's assessment for some of the ambigu-
ous recordings. The feasibility of explainable PVC localization using 
deep learning-based semantic segmentation of 12-lead ECG was 
indicated.
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