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Abstract 

Background: Inherent sources of error and bias that affect the quality of sequence data include index hopping and 
bias towards the reference allele. The impact of these artefacts is likely greater for low‑coverage data than for high‑
coverage data because low‑coverage data has scant information and many standard tools for processing sequence 
data were designed for high‑coverage data. With the proliferation of cost‑effective low‑coverage sequencing, there is 
a need to understand the impact of these errors and bias on resulting genotype calls from low‑coverage sequencing.

Results: We used a dataset of 26 pigs sequenced both at 2× with multiplexing and at 30× without multiplexing to 
show that index hopping and bias towards the reference allele due to alignment had little impact on genotype calls. 
However, pruning of alternative haplotypes supported by a number of reads below a predefined threshold, which 
is a default and desired step of some variant callers for removing potential sequencing errors in high‑coverage data, 
introduced an unexpected bias towards the reference allele when applied to low‑coverage sequence data. This bias 
reduced best‑guess genotype concordance of low‑coverage sequence data by 19.0 absolute percentage points.

Conclusions: We propose a simple pipeline to correct the preferential bias towards the reference allele that can 
occur during variant discovery and we recommend that users of low‑coverage sequence data be wary of unexpected 
biases that may be produced by bioinformatic tools that were designed for high‑coverage sequence data.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Sequence data has the potential to empower identifica-
tion of causal variants that underlie quantitative traits or 
diseases, to enhance livestock breeding, and to increase 
the precision and scope of population genetic studies. 
For sequence data to be used routinely in research and 
breeding, low-cost sequencing strategies must be used 
to assemble large datasets that cover most of the genetic 
diversity in a population. Such low-cost strategies could 
involve sequencing large numbers of individuals at low 

coverage, followed by imputation of whole-genome 
sequence data [1–3].

Current sequencing technologies have inherent sources 
of errors and bias that affect the quality of the resulting 
sequence data. Some biases affect the ability to success-
fully generate and align reads that cover regions with 
structural complexity, extreme base compositions, or par-
ticular sequence motifs [4–8]. Biases, together with other 
sources of errors, also increase the error rate in genotype 
calls [9–11]. Among these, two of the most important 
causes of incorrect genotype calls are index hopping and 
preferential bias of some bioinformatic tools towards the 
reference allele. The impact of these artefacts is likely 
greater for low-coverage data than for high-coverage data 
because low-coverage data has scant information and 
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many standard tools for processing sequence data were 
designed for high-coverage data. With the proliferation 
of cost-effective low-coverage sequencing, there is a need 
to understand the impact of these artefacts on resulting 
genotype calls.

Index hopping has a biochemical cause and appears 
in the early stages of sequencing. Currently, the most 
widely used high-throughput sequencing platform is 
the HiSeq series of instruments from Illumina Inc. Due 
to the large sequencing capacity of these platforms, sev-
eral samples are often sequenced jointly within a single 
flow cell channel by multiplexing. To link multiplexed 
sequence reads to the original samples, the adapter 
sequences used during library preparation include a set 
of unique index sequences. However, spurious extensions 
of library fragments with an incorrect sample index can 
occur during the exclusion-amplification (ExAmp) clus-
tering that is used by the Illumina instruments when free 
adapters are present in a library pool. This leads to mis-
assignment of sequence reads between samples in the 
multiplex. Recently, alarming data showed index hop-
ping incidences of up to 10% [12]. These results sparked 
debate and concern about index hopping, although some 
subsequent studies reported a low incidence for most 
applications [13–15], which is in line with expectations if 
cleaning protocols are used to remove free adapters from 
the libraries [16]. While these results are reassuring, they 
pertained to high-coverage sequence data and the effect 
of index hopping on low-coverage sequence data and its 
downstream analysis remains unclear.

Preferential bias of some bioinformatic tools towards 
the reference allele (i.e., the allele that is present in the 
reference genome sequence) can be observed in sequence 
data following bioinformatic processing. It originates 
mainly during read alignment, but it can also occur dur-
ing variant discovery and genotyping. Alignment of 
sequence reads onto a haploid reference genome relies 
on the calculation of similarity scores between reads and 
the reference genome. The more a read diverges from the 
reference, the less likely it is to align appropriately. This 
disfavours the alignment of reads that carry the alterna-
tive allele at a variant site because such reads have at least 
one additional mismatch to the reference genome com-
pared to reads that carry the reference allele. If a read 
covers multiple variant sites and carries alternative alleles 
at multiple sites, the probability of aligning that read 
decreases even further, which in turn produces a stronger 
reference allele bias in highly polymorphic regions. This 
can lead to biases in downstream applications, e.g., in the 
estimation of allele frequencies [9, 17].

Another potential source of bias towards the reference 
allele can occur during variant discovery and genotyp-
ing. One of the most popular variant callers is GATK 

HaplotypeCaller [18], which provides a pipeline for effi-
cient joint genotyping of multiple samples. In the GATK 
Best Practices pipeline, variant discovery and joint geno-
typing of multiple samples are performed as two separate 
steps [18, 19]. In the variant discovery step, read infor-
mation for each site of the reference genome is stored 
for each individual sample in a gVCF file, which differs 
from the traditional VCF file in that it stores informa-
tion of the non-variant sites as well as the variant sites. In 
the joint genotyping step, the gVCF files that have been 
created separately for each individual are combined, and 
genotypes are called for all individuals at all sites that are 
variant for at least one individual in the sequenced popu-
lation. Compared to other pipelines, this two-step pro-
cess has the advantage that only the genotyping is done 
jointly for all the samples and not the variant discovery 
itself, which is the most computationally demanding step. 
This two-step process improves scalability and facilitates 
incorporation of new batches of sequenced individu-
als for the joint genotyping step. However, GATK Hap-
lotypeCaller was designed for high-coverage sequencing 
and, to our knowledge, its performance in low-coverage 
sequencing has not been assessed.

In this study, we explored the impact of index hop-
ping and bias towards the reference allele in low-cov-
erage sequence data. We show that index hopping and 
bias towards the reference allele due to alignment have 
little impact on genotype calls. However, unexpected 
biases may arise from pipelines that apply tools that 
were designed for high-coverage sequence data to low-
coverage sequence data. In particular, we describe how a 
function from GATK HaplotypeCaller that is very useful 
for high-coverage data introduces a strong bias towards 
the reference allele when used on low-coverage data. We 
propose a new pipeline that avoids this bias. The results 
in this paper show the importance of validating the per-
formance of tools designed for high-coverage data on 
low-coverage data.

Methods
Sequenced individuals
Twenty-six commercial pigs were used in this study. Tissue 
samples were collected from ear punches or tail clippings 
and genomic DNA was extracted using Qiagen DNeasy 
96 Blood & Tissue kits (Qiagen Ltd., Mississauga, ON, 
Canada). Paired-end library preparation was conducted 
using the TruSeq DNA PCR-free protocol (Illumina, San 
Diego, CA). Two sets of libraries were produced; one with 
an average insert size of 350 bp and the other with an aver-
age insert size of 550 bp. Libraries with an average insert 
size of 350 bp were sequenced on a HiSeq 4000 instrument 
(Illumina, San Diego, CA), for a target coverage of 2× per 
sample. For this, all 26 samples were multiplexed within 
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a single flow cell channel. Libraries with an average insert 
size of 550  bp were sequenced on a HiSeq X instrument 
(Illumina, San Diego, CA), for a target coverage of 30× 
per sample. For this, the 26 samples were sequenced, one 
sample per flow cell channel. All libraries were sequenced 
at Edinburgh Genomics (Edinburgh Genomics, Univer-
sity of Edinburgh, Edinburgh, UK). DNA samples from the 
same pigs were also genotyped using the GGP-Porcine HD 
BeadChip (GeneSeek, Lincoln, NE).

Variant discovery
DNA sequence reads were pre-processed using Trimmo-
matic [20] to remove adapter sequences from the reads. 
Then, the reads were aligned to the reference genome 
Sscrofa11.1 (GenBank accession: GCA_000003025.6) using 
the BWA-MEM algorithm with default settings and the 
option of marking shorter split hits as secondary alignment 
[21]. Duplicates were marked with Picard (http://broad insti 
tute.githu b.io/picar d). Single nucleotide polymorphisms 
(SNPs) and short insertions and deletions (indels) were iden-
tified with the variant caller GATK HaplotypeCaller (GATK 
3.8.0) [18, 19]. The GATK HaplotypeCaller performs local 
re-assembly of the reads to generate a list of possible hap-
lotypes in a region by constructing a read-threading graph. 
Sections of that graph, which are supported by a number of 
reads (kmers) smaller than a predefined threshold, are con-
sidered to be likely sequencing errors and removed from 
the graph in a step referred to as ‘pruning’. By default, the 
threshold for pruning is set to ‘–minPruning 2’. We used 
the default settings but we also performed variant discov-
ery without pruning (–minPruning 1). Variant discovery 
with GATK HaplotypeCaller was performed separately for 
each individual. A joint variant set for the 26 individuals was 
obtained by extracting the variant sites from all the individu-
als with GATK GenotypeGVCFs. Finally, biallelic SNPs were 
extracted with VCFtools [22]. To minimise computing costs, 
we considered variants on chromosome 1 only.

Genotyping
We did not use genotypes that were called directly by GATK 
GenotypeGVCFs or any other software tool. Instead, we 
extracted allele read counts (i.e., the coverage that each allele 
received at each variant site) from the VCF file. Then, we 
called genotypes based on genotype probabilities that were 
calculated from allele read counts of the reference allele 
(nRef) and the alternative allele (nAlt). Genotype probabili-
ties for the reference homozygote (0), heterozygote (1), and 
alternative homozygote (2) were calculated, respectively, as:

p(0) = (1− e)nRef · enAlt,

p(1) = 0.5nRef · 0.5nAlt, and

p(2) = enRef · (1− e)nAlt,

where e is the sequencing error rate, which was assumed 
to be 0.01. The three probabilities were scaled to sum to 
1. Genotype calls were made at three levels of certainty: 
(1) the most probable genotypes (referred to as ‘best-
guess’); (2) genotypes that had a probability greater than 
0.90; or (3) genotypes that had a probability greater than 
0.98.

Genotype and allele concordance
Genotype concordance was calculated by: (1) compar-
ing genotypes for the same variant from the sequence 
data and the SNP genotyping array, using the SNP array 
genotypes as being true; or (2) comparing the same vari-
ant from the sequence data at low and high coverage and 
using the high-coverage genotype calls as being true. 
Genotype concordance was calculated as the percentage 
of matches between the true genotypes and the genotype 
calls. We used the genotypes from all SNPs on chromo-
some 1 for which there was evidence of allele segregation 
based on the SNP genotyping array data of the 26 individ-
uals and that were successfully discovered based on the 
sequence data of these individuals. The number of SNPs 
tested for concordance with SNP genotyping array data 
was equal to 5136 for the low-coverage data and 5531 
for the high-coverage data. The same set of 5531 SNPs 
was also used to test the concordance between the low- 
and high-coverage sequence data. We also calculated 
allele concordance, as the percentage of matched alleles 
between the true genotypes and the genotype calls.

Bias towards the reference allele due to variant caller 
and new pipeline
Initially, we called genotypes using the read counts stored 
in the gVCF files produced by GATK HaplotypeCaller. 
For testing potential biases introduced by the variant 
caller, we also called genotypes using the read counts that 
were obtained directly from the aligned reads stored in 
the BAM files. To do this, we extracted the read counts 
from the BAM files for the variant sites discovered by 
GATK HaplotypeCaller using pysam (version 0.13.0; 
https ://githu b.com/pysam -devel opers /pysam ), which is a 
wrapper around htslib and the samtools package [23]. We 
excluded reads with a mapping quality MAPQ lower than 
20, reads that were not mapped in a proper pair, and sec-
ondary alignments. We refer to this method as the ‘new’ 
pipeline.

Our initial results indicated that there was a strong 
bias towards the reference allele introduced by the vari-
ant caller. Therefore, for all further analyses we used read 
counts that were obtained from the BAM files with the 
new pipeline for genotyping. We called genotypes for the 
5531 variant sites on chromosome 1 discovered from the 

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://github.com/pysam-developers/pysam
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high-coverage sequence data that had already been geno-
typed using the SNP genotyping array.

Bias towards the reference allele due to alignment
In this study, we defined alignment bias to be the differen-
tial alignment of almost-identical reads that differed only 
in one allele at a given variant site, regardless of whether 
it was the reference or alternative allele. To quantify the 
alignment bias, we aligned the 2× data against two refer-
ence genomes: the ‘original’ reference genome (GenBank 
accession: GCA_000003025.6) and a ‘tailored’ reference 
genome. The tailored reference genome was created by 
replacing the reference allele with the alternative allele 
at all variant sites discovered across the 26 individuals 
with the 30× sequence data from chromosome 1. Thus, 
the allele that was originally the alternative allele became 
the reference allele in the tailored reference genome and 
vice versa. We extracted the allele read counts from the 
aligned reads in the BAM files that were generated with 
both reference genomes. The allele read counts were 
used to call genotypes for evaluating genotype concord-
ance between the 2× data and the true genotypes (from 
the 30× data). Genotypes were called from the allele 
read counts obtained with either: (1) the original refer-
ence genome (REF), or (2) the tailored reference genome 
(ALT). Because REF could favour the alignment of reads 
that carry the reference allele and disfavour the alignment 
of reads that carry the alternative allele, and vice versa for 
ALT, we also considered two additional cases that were a 
combination of the previous two: (3) read counts for the 
reference allele from the original reference genome and 
read counts for the alternative allele from the tailored ref-
erence genome (CIS), and (4) vice versa, read counts for 
the reference allele from the tailored reference genome 
and read counts for the alternative allele from the origi-
nal reference genome (TRANS). Thus, the CIS case used 
allele read counts that had a more favourable alignment 
for each allele, and, in contrast, the TRANS case used 
allele read counts that had a more unfavourable align-
ment for each allele.

Index hopping
In order to quantify the incidence of index hopping in 
our 2× dataset, we generated 2× data that either were 
free of index hopping or had different levels of simulated 
index hopping. The 2× data free of index hopping were 
generated by down-sampling the 30× data (i.e., random 
sampling of ~ 1/15 of the 30× reads), which had been 
generated without multiplexing (1 sample per lane). The 
resulting down-sampled 2× data was used to obtain 
baseline sequence data in the absence of index hop-
ping. Then, index hopping was introduced in this data 
by randomly assigning reads to other individuals with a 

probability of 0.1, 0.5, 1, 2, or 5%. For each of these cases, 
we down-sampled the data independently before simu-
lating index hopping to account for the random sampling 
of reads that occurs during sequencing.

To analyse the data, genotypes in each dataset were 
called as described above (best-guess or above a cer-
tain probability threshold) but also with an additional 
method that was more sensitive to index hopping based 
on the presence/absence of each allele. With this pres-
ence/absence method, the presence of a single read that 
supported the opposite allele was sufficient to change 
the genotype call (e.g., the genotype call with nRef = 10 
and nAlt = 0 would be homozygous but the genotype 
call with nRef = 10 and nAlt = 1 would be heterozygous). 
Note that this method is equivalent to calling best-guess 
genotypes with null sequencing error rate.

To predict the level of index hopping level in the 
observed 2× dataset, we regressed the percentages of 
genotype concordance on the level of index hopping. 
Concordance percentages represent relative, rather 
than absolute, information and therefore should not be 
analysed using standard statistical techniques that are 
defined in real space, which has an absolute scale [24]. 
In order to validate the estimates of the level of index 
hopping with a methodology that was more appropriate 
for compositional data, we also analysed the data using 
isometric log-ratio transformations (ilr) of the concord-
ance percentages [25, 26]. The ilr were the log-ratios of 
the percentage of correct calls against the percentages of 
incorrect calls or the log-ratios of the percentage of cor-
rect homozygous calls against the percentage of incorrect 
heterozygous calls. We fitted a quadratic regression of 
the ilr variables on the level of index hopping.

Results
Variant discovery
Most of the SNPs present on the SNP genotyping array 
were discovered using sequence data, both at high and 
low coverage. The number of biallelic SNPs discovered 
on chromosome 1 with high- and low-coverage data is in 
Table 1. A total of 1,693,308 biallelic SNPs were discov-
ered with the high-coverage data and 1,333,943 with the 
low-coverage data. The low-coverage sequence data con-
tained 76.3% (1,292,269) of the biallelic SNPs that were 
discovered with the high-coverage data. The SNP geno-
typing array had 5779 SNPs on chromosome 1 that seg-
regated in the 26 sequenced individuals. Of these, 95.7% 
(5531) were discovered with the high-coverage data and 
88.9% (5136) with the low-coverage data.

Disabling the pruning step in GATK HaplotypeCaller 
for processing the low-coverage data increased the 
number of variants discovered but also the number of 
potential false positives. The numbers of biallelic SNPs 
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discovered on chromosome 1 with low-coverage data 
with or without pruning are in Table  2. When pruning 
was disabled, 1,877,644 biallelic SNPs were discovered 
with the low-coverage data. This number was larger than 

the set of variants discovered with the high-coverage data 
with the default pruning settings (Table  1). However, 
24.1% of these extra SNPs could not be validated using 
the high-coverage data, which is a much greater propor-
tion than when pruning was used (3.1%).

Genotype concordance and bias towards the reference 
allele due to variant caller
The variant caller that we used introduced a bias towards 
the reference allele and this had a large impact on geno-
type calling with low-coverage data. Table  3 shows the 
genotype concordance for calls that were obtained with 
the allele read counts from the gVCF files produced by 
GATK HaplotypeCaller. This table shows that there was 
a large bias towards the reference allele with the low-
coverage sequence data. In the most extreme case of sites 
with 1× coverage, we would expect the genotypes that 
are heterozygous according to the SNP genotyping array 
to be called as either of the two possible homozygotes, ‘0’ 
and ‘2’, 50% of the times. Instead, we called them as refer-
ence homozygotes ‘0’ 95.1% of the times and as alterna-
tive homozygotes ‘2’ only 4.9% of the times. Also, at 1× 
coverage, 82.0% of the alternative homozygotes ‘2’ were 
called as reference homozygotes ‘0’. Because of this bias, 
the overall genotype concordance was only 62.1% and the 
allele concordance was only 77.6%.

The bias towards the reference allele due to the vari-
ant caller can be avoided by calling genotypes from the 
read counts that are obtained directly from the aligned 
reads stored in BAM files. Table  4 shows the genotype 
concordance obtained with the new pipeline using allele 
read counts that were extracted directly from BAM files. 
The bias was corrected and the concordances matched 

Table 1 Number of biallelic SNPs discovered on chromosome 
1 with  low and  high sequencing coverage and  percentage 
of overlap with the SNP genotyping array

a Relative to the 5779 variants present in the SNP genotyping array GGP‑Porcine 
HD BeadChip (GeneSeek, Lincoln, NE) that segregated in the 26 individuals 
tested

Low coverage High coverage

Number of variants 1,333,943 1,693,308

Overlap with high‑coverage data 96.9% –

Overlap with low‑coverage data – 76.3%

Overlap with the SNP genotyping 
 arraya

88.9% 95.7%

Table 2 Number of biallelic SNPs discovered on chromosome 
1 with  low sequencing coverage with  different GATK 
HaplotypeCaller pruning options, the percentage of variants 
not validated with high sequencing coverage, and genotype 
and allele concordances with the SNP genotyping array

minPruning = 2 
(default)

minPruning = 1

Number of variants 1,333,943 1,877,644

Not validated at high coverage 3.1% 24.1%

Best‑guess genotype concordance 62.1% 76.5%

Allele concordance 77.6% 87.5%

Table 3 Concordance of  best-guess genotype calls from  sequence data with  SNP array genotypes, using allele read 
counts obtained with the default settings of GATK HaplotypeCaller

a Number of genotypes called across 26 individuals at 5136 and 5531 SNPs for low‑ and high‑coverage data, respectively

Concordance is shown by coverage at variant site

na Genotype 
concordance 
(%)

Allele 
concordance 
(%)

Concordance by genotype (%)

True = 0 True = 1 True = 2

0|0 1|0 2|0 0|1 1|1 2|1 0|2 1|2 2|2

Low coverage

 1× 27,185 42.2 61.0 99.97 – 0.03 95.14 – 4.86 81.96 – 18.04

 2× 33,638 57.2 76.0 99.94 0.00 0.06 72.87 3.51 23.62 20.07 0.25 79.68

 3× 24,789 70.3 84.5 99.91 0.08 0.01 56.37 31.87 11.76 6.23 1.45 92.32

 4× 14,015 79.7 89.6 99.85 0.13 0.02 43.11 51.44 5.46 2.14 1.69 96.16

 5× 6502 85.6 92.7 99.93 0.04 0.04 32.65 64.75 2.59 0.90 1.96 97.14

 6–10× 3705 90.5 95.2 99.83 0.12 0.06 22.47 74.68 2.85 0.61 1.07 98.32

 Overall 109,834 62.1 77.6 99.92 0.04 0.03 66.41 21.50 12.09 29.84 0.71 69.45

High coverage 131,806 99.7 99.9 99.80 0.19 0.01 0.21 99.72 0.07 0.17 0.16 99.68
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expectations. Overall, genotype and allele concordances 
rose to 81.1 and 90.5%, respectively. As expected, most of 
the incorrect calls arose from the difficulty of calling het-
erozygous genotypes at low coverage.

Disabling pruning was not as good a solution for cor-
recting the bias as the new pipeline of extracting the 
allele read counts from the BAM files. Table  2 shows 
genotype and allele concordances with the default prun-
ing setting and without pruning. Without pruning, the 
genotype and allele concordances rose to 76.5 and 87.5%, 
respectively, but these percentages were lower than with 
the new pipeline.

Once the bias towards the reference allele due to the 
variant caller was corrected, the concordance at homozy-
gous sites was very high, regardless of the conservative-
ness of the genotype calls, but these thresholds were 
important for concordance at heterozygous sites. Table 5 
shows genotype concordance between calls with low- 
and high-coverage data obtained as best-guess genotypes 
or with a minimum probability of 0.90 or 0.98. At refer-
ence and alternative homozygous sites, the best-guess 
genotypes had an overall concordance of 98.5 and 98.2%, 
which was greater than the concordance of calls with a 
minimum probability of 0.90 (97.2 and 96.4%, respec-
tively), despite the latter being called with a greater level 
of certainty. The reason for this is that with a minimum 
probability of 0.90, there is not enough certainty for call-
ing any genotype at sites with a coverage of 1×, and at 
sites with a coverage of 2× or 3×, only potential het-
erozygotes (either true or false), but not homozygotes, 
can be called due to the considered error rate. While the 
number of homozygotes that were incorrectly called as 
heterozygous was actually very small, the impact of these 
incorrect calls on overall concordance was noticeable 

because the low-coverage data had many more loci with 
2× and 3× coverage than with 4× or greater coverage. A 
similar situation occurred with genotype calls that had a 
minimum probability of 0.98.

At heterozygous loci, it was very difficult to call het-
erozygotes at the lowest coverages. Because of the 
large proportion of loci with low coverage, the geno-
type concordance of heterozygous loci with best-guess 
genotypes was 52.4%. With more conservative calls, the 
heterozygotes were called more accurately and the gen-
otype concordance was 93.3 and 98.3% with minimum 
probabilities of 0.90 and 0.98, respectively. However, 
there was a trade-off between the concordance of called 
genotypes and the number of called genotypes. With 
more conservative calls, the number of called genotypes 
was only a small fraction of those that could be called 
using best-guess genotypes: 33.7% with a minimum 
probability of 0.90 and only 8.3% with a minimum prob-
ability of 0.98.

Bias towards reference allele due to alignment
Reads with an allele that was present in the reference 
genome had a greater probability of successful alignment, 
but the difference was small. Table  6 shows the average 
allele read counts depending on which allele was in the 
reference genome. Approximately 1.3% of reads were not 
aligned when the reference genome contained the oppo-
site allele than the read. The number of reads that carried 
the allele in the reference genome but that were incor-
rectly mapped to a site where the individual was homozy-
gous for the opposite allele increased by 9.8% due to the 
alignment bias, but these potentially mismapped reads 
represented only a small fraction of the total.

Table 4 Concordance of  best-guess genotype calls from  sequence data with  SNP array genotypes, using allele read 
counts obtained from aligned reads in BAM files

a Number of genotypes called for 5531 SNPs across 26 individuals both for low‑ and high‑coverage data

Concordance is shown by coverage at variant site

na Genotype 
concordance 
(%)

Allele 
concordance 
(%)

Concordance by genotype (%)

True = 0 True = 1 True = 2

0|0 1|0 2|0 0|1 1|1 2|1 0|2 1|2 2|2

Low coverage

 1× 28,300 62.1 80.8 99.34 – 0.66 51.46 – 48.54 0.96 – 99.04

 2× 32,699 79.5 89.7 98.42 1.53 0.05 26.41 48.15 25.44 0.21 1.70 98.09

 3× 25,993 88.3 94.1 98.25 1.72 0.03 14.01 71.98 14.01 0.12 2.36 97.52

 4× 16,346 92.5 96.3 97.91 2.09 0.00 8.36 83.84 7.80 0.00 2.77 97.23

 5× 8878 94.9 97.5 97.28 2.72 0.00 4.83 91.15 4.02 0.16 2.81 97.03

 6–10× 6444 95.0 97.5 97.43 2.50 0.07 5.01 91.09 3.90 0.00 2.75 97.25

 Overall 118,660 81.1 90.5 98.39 1.43 0.18 24.43 52.30 23.27 0.33 1.71 97.96

High coverage 131,782 99.8 99.9 99.80 0.19 0.01 0.12 99.81 0.07 0.10 0.17 99.73
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However, the impact of the bias towards the reference 
allele due to alignment on the genotype calls is likely to be 
small. Table 7 shows the genotype concordance between 
low- and high-coverage sequence data after alignment 
with the original reference genome (REF), the tailored 
reference genome (ALT), or a combination of both (CIS 
and TRANS). Use of the REF or ALT reference genomes 
introduced some bias towards homozygote calls for the 
reference or the alternative allele, respectively. Use of 
the CIS combination, where the allele read counts were 
obtained from the most favourable case for each (i.e., the 
reference genome contained that same allele), increased 

the number of genotype calls regardless of the conserva-
tiveness of the calls and increased the ability of correctly 
calling heterozygotes with lower levels of certainty. In 
contrast, use of the TRANS combination, where the allele 
read counts were obtained from the least favourable case 
for each (i.e., the reference genome contained the oppo-
site allele), reduced the number of genotype calls and the 
ability to correctly call heterozygotes. Overall, changes in 
best-guess genotype concordance were small and the per-
centage of incorrect calls between the use of CIS (most 
favourable case) and REF (current practice) differed only 
by 0.1 absolute percentage points.

Table 6 Average allele read counts depending on which allele is in the reference genome

a Alleles are defined as reference or alternative allele based on the original pig reference genome Sscrofa11.1 (GenBank assembly accession: GCA_000003025.6)
b The tailored reference genome was created by replacing the reference allele with the alternative allele at all variant sites discovered across the 26 individuals with 
the 30× sequence data from chromosome 1
c Proportion of reads that did not align when the reference genome carried the opposite allele

Allelea Reference genome Allele in reference  genomea Overall True genotype

0 1 2

Reference Original Reference 1.483 2.470 1.237 0.017

Tailoredb Alternative 1.463 2.440 1.219 0.016

Difference not alignedc 1.3% 1.2% 1.5% 9.8%

Alternative Original Reference 0.980 0.014 1.217 2.407

Tailoredb Alternative 0.993 0.016 1.234 2.438

Difference not alignedc 1.3% 9.8% 1.3% 1.3%

Table 7 Impact of  bias towards  the  reference allele due to  alignment on  concordance between  low- and  high-
coverage sequence data by  alignment with  the  original reference genome (REF), the  tailored reference genome (ALT), 
or a combination of both (CIS and TRANS)

a Number of genotypes called for 5531 SNPs across 26 individuals

na Genotype 
concordance 
(%)

Allele 
concordance 
(%)

Concordance by genotype (%)

True = 0 True = 1 True = 2

0|0 1|0 2|0 0|1 1|1 2|1 0|2 1|2 2|2

Best‑guess

 REF 129,435 81.4 90.7 98.53 1.34 0.13 24.27 52.40 23.33 0.18 1.61 98.21

 ALT 129,327 81.4 90.7 98.36 1.49 0.14 23.66 52.42 23.92 0.17 1.47 98.36

 CIS 129,610 81.5 90.7 98.37 1.49 0.14 23.82 52.73 23.45 0.17 1.62 98.21

 TRANS 129,148 81.3 90.6 98.52 1.34 0.13 24.11 52.10 23.79 0.18 1.46 98.36

Probability ≥ 0.90

 REF 43,643 95.1 97.5 97.18 2.82 0.00 3.52 93.26 3.21 0.00 3.65 96.35

 ALT 43,489 95.0 97.5 96.75 3.25 0.00 3.35 93.30 3.36 0.00 3.22 96.78

 CIS 43,970 95.0 97.5 96.88 3.12 0.00 3.44 93.30 3.26 0.00 3.52 96.48

 TRANS 43,145 95.1 97.6 97.10 2.90 0.00 3.42 93.28 3.30 0.00 3.32 96.68

Probability ≥ 0.98

 REF 10,679 98.8 99.4 99.65 0.35 0.00 1.00 98.28 0.72 0.00 0.57 99.43

 ALT 10,638 98.8 99.4 99.64 0.36 0.00 0.92 98.26 0.81 0.00 0.41 99.59

 CIS 10,858 98.8 99.4 99.65 0.35 0.00 0.98 98.23 0.78 0.00 0.55 99.45

 TRANS 10,463 98.8 99.4 99.64 0.36 0.00 0.94 98.31 0.75 0.00 0.43 99.57
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Index hopping
Index hopping was estimated to be around 1.5% in our 
dataset. The results of using the method based on pres-
ence/absence of each allele, which is more sensitive to 
index hopping, are in Table 8, which shows the genotype 
concordance for the real and simulated data. Regression 
of genotype concordance for homozygotes on the level 
of index hopping had a very high  R2 (≥ 0.99), while the 
 R2 was less than 0.05 for heterozygotes. Similarly, regres-
sion of ilr transformations of concordance on the level 
of index hopping also had a high  R2 when calculated for 
homozygotes (≥ 0.98). In all cases, the level of index hop-
ping was estimated to range from 1.3 to 1.8%.

Results obtained using the concordance variables of 
best-guess genotypes and genotypes called with prob-
abilities higher than 0.90 and 0.98, largely supported the 
results for the presence/absence calling method (data not 
provided). Results obtained using the concordance vari-
ables of best-guess genotypes gave estimates of the level 
of index hopping ranging from 1.3 to 1.8%  (R2 ≥ 0.99). 
The concordance variables of genotypes with probabili-
ties higher than 0.98 were less sensitive to index hopping 
and resulted in a lower regression fit and lower or unre-
liable estimates of the level of index hopping (1.1–1.3%, 
 R2 = 0.96–0.99, for percentages; 1.4–1.7% but  R2 = 0.81 to 
0.97 for ilr). The concordance variables of the genotypes 
with probabilities higher than 0.90 were in between, with 
estimates ranging from 1.3 to 1.5%  (R2 ≥ 0.99).

Table  9 shows the impact of different levels of index 
hopping on genotype concordance. Incidences of 1 or 2% 
of index hopping increased the percentage of incorrect 
calls from 17.8 to 18.1 or 18.7%, respectively, for best-
guess genotypes, from 3.1 to 3.8 or 4.6%, respectively, for 
genotypes with a probability above 0.90, and from 0.6 to 
0.8 or 0.9%, respectively, for genotypes with a probability 
above 0.98.

Discussion
We quantified the impact of different sources of sequenc-
ing errors and biases towards the reference allele on 
genotype calls derived from low-coverage data. Index 
hopping and bias towards the reference allele due to 
alignment had little impact on genotype calls. However, 
we found that variant callers can introduce a strong bias 
towards the reference allele and this has a large impact on 
genotype calls. This bias is likely to be pipeline specific 
[11], but we have detected it using one of the most popu-
lar tools for variant discovery. The step that causes this 
bias was designed for the processing of high-coverage 
data but introduces a systematic bias when it is applied to 
low-coverage data. Other unexpected biases may appear 
when tools designed for use with high-coverage data are 
used to process low-coverage data. Awareness of these 

biases allowed us to design a pipeline that gave signifi-
cantly more accurate genotype calls from low-coverage 
sequence data than a standard pipeline. In the following, 
we discuss each of the sources of errors and biases that 
we have analysed and our proposed new pipeline for vari-
ant discovery and joint genotyping, which addresses the 
most important source of bias.

Bias towards the reference allele due to variant caller
Tools that are designed for high-coverage sequence data 
can introduce unexpected biases when used to process 
low-coverage sequence data. We found that this was the 
case for the ‘pruning’ step implemented in GATK Haplo-
typeCaller. During variant discovery, it is virtually impos-
sible to distinguish between a sequencing error and a 
genuine variant. In order to make variant discovery more 
robust, different tools use different strategies to identify 
potential sequencing errors. In the case of GATK Hap-
lotypeCaller, this strategy is the ‘pruning’ step. GATK 
HaplotypeCaller performs local re-assembly of the reads 
to generate a list of possible haplotypes in a region by 
constructing a read-threading graph. Paths of this graph 
that are supported by a number of reads (kmers) equal 
or smaller than a predefined threshold are considered to 
be probably sequencing errors and are removed from the 
graph (pruned). In the next step of the HaplotypeCaller 
method, each individual read is aligned against each pos-
sible haplotype, including the reference, and a likelihood 
score is calculated for each read-haplotype pair. Then, the 
likelihood that a read carries each of the alleles at a site 
is calculated as the product of the likelihoods of all hap-
lotypes that carry that allele. Finally, the allele with the 
greatest marginal likelihood is called.

While this is a reasonable strategy for high-coverage 
sequence data, it introduces a huge bias towards the ref-
erence allele when used for low-coverage sequence data. 
This can be understood intuitively with a simple example. 
Imagine that at any given site with the reference allele ‘A’ 
and the alternative allele ‘B’, we have only one read and 
that this read carries the alternative allele B. The graph 
path representing the haplotype with the allele B will be 
supported by only one read and will be pruned out of the 
graph with the default settings, where at least two reads 
supporting a path are required. This means that the only 
haplotype that remains in the graph path is the reference 
haplotype with allele A. Then, in the next step, this same 
read with allele B will be paired with all the possible hap-
lotypes. In this case, the only possibility is the reference 
haplotype with allele A and therefore that read is called 
as carrying the reference allele A. Thus, instead of the 
true state with nRef = 0 and nAlt = 1, we end up with 
the opposite situation with nRef = 1 and nAlt = 0. The 
same bias would arise with a coverage of 3×, if two reads 
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carry allele A and one read carries allele B. In that case, 
instead of the true state with nRef = 2 and nAlt = 1, which 
indicates a heterozygote, we end up with nRef = 3 and 
nAlt = 0, which indicates a reference homozygote. Then, 
these biased allele read counts are stored in a gVCF, the 
file that includes both the variant and non-variant sites 
and that is used for multi-sample joint genotyping.

The bias in our low-coverage data was so pervasive that 
it was carried over to downstream analyses and affected 
imputation accuracy at the population level. We per-
formed preliminary analyses of whole-genome imputa-
tion using the hybrid peeling algorithm implemented in 
AlphaPeel [27] with sequence data of 1146 individuals, 
mostly with 2× coverage. We used a leave-one-out design 
to assess imputation accuracy on 84 individuals that were 
sequenced at high coverage. To test the impact of the bias 
on imputation accuracy, we used as input information 
either the biased allele read counts obtained with pruning 
or the non-biased allele read counts that were extracted 
directly from the aligned reads. We estimated that the 
individual-wise dosage correlations decreased by an aver-
age of 0.10 (0.04 SD; max. 0.20) and the individual-wise 
percentage of correct best-guess genotypes by 7.5 abso-
lute percentage points (3.8% SD; max. 14.7%) as a result 

of this bias (unpublished data). The imputation algo-
rithm that we used for this test accounts for uncertainty 
by calculating genotype probabilities from the allele read 
counts [27], but the impact of the bias on imputation 
accuracy could be even greater for imputation algorithms 
that instead take genotype calls as an input.

New pipeline
Based on our findings, we propose a new pipeline for 
variant discovery and genotype calling with low-coverage 
sequence data that takes advantage of the robustness pro-
vided by the pruning option of GATK HaplotypeCaller 
while avoiding bias towards the reference allele. The pro-
posed pipeline has two steps: (1) variant discovery with 
the default pruning setting of GATK HaplotypeCaller; 
and (2) genotype calling from the aligned reads stored in 
the BAM files for the variants discovered.

Variant discovery with GATK HaplotypeCaller In step 1 
of the proposed pipeline, variant discovery is performed 
with GATK HaplotypeCaller with the default pruning 
setting on a per-individual basis. Disabling pruning does 
not seem an appropriate solution for variant discovery 
with low-coverage sequencing because this increases the 

Table 9 Impact of level of index hopping on concordance between low- and high-coverage sequence data

Genotype 
concordance (%)

Allele 
concordance (%)

Concordance by genotype (%)

True = 0 True = 1 True = 2

0|0 1|0 2|0 0|1 1|1 2|1 0|2 1|2 2|2

Best‑guess

 0% 82.2 91.1 99.63 0.34 0.03 23.65 52.82 23.53 0.04 0.47 99.49

 0.1% 82.4 91.2 99.55 0.41 0.03 23.67 53.36 22.97 0.08 0.49 99.43

 0.5% 82.2 91.1 99.30 0.64 0.06 23.97 53.08 22.96 0.10 0.89 99.01

 1% 81.9 90.9 99.03 0.87 0.10 23.77 53.09 23.14 0.14 1.28 98.58

 2% 81.3 90.6 98.25 1.59 0.16 23.79 52.78 23.43 0.23 2.07 97.70

 5% 80.1 89.9 96.45 3.17 0.37 23.63 53.23 23.14 0.59 4.58 94.82

Probability ≥ 0.90

 0% 96.9 98.5 99.20 0.80 0.00 2.46 94.98 2.55 0.00 1.16 98.84

 0.1% 96.7 98.3 99.01 0.99 0.00 2.59 94.70 2.71 0.00 1.26 98.74

 0.5% 96.4 98.2 98.39 1.61 0.00 2.59 94.75 2.66 0.00 1.98 98.02

 1% 96.2 98.1 97.87 2.13 0.00 2.68 94.99 2.33 0.00 2.98 97.02

 2% 95.4 97.7 96.36 3.64 0.00 2.59 94.85 2.56 0.00 4.92 95.08

 5% 93.2 96.6 92.53 7.47 0.00 2.65 94.78 2.57 0.00 10.55 89.45

Probability ≥ 0.98

 0% 99.4 99.7 100.00 0.00 0.00 0.53 99.03 0.44 0.00 0.00 100.00

 0.1% 99.3 99.6 100.00 0.00 0.00 0.63 98.85 0.53 0.00 0.00 100.00

 0.5% 99.4 99.7 99.95 0.05 0.00 0.37 99.09 0.54 0.00 0.09 99.91

 1% 99.2 99.6 99.82 0.18 0.00 0.51 98.97 0.52 0.00 0.46 99.54

 2% 99.1 99.5 99.47 0.53 0.00 0.52 98.89 0.59 0.00 0.75 99.25

 5% 98.6 99.3 98.42 1.58 0.00 0.59 98.94 0.47 0.00 2.83 97.17
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number of potential false positives (Table  2), as well as 
computational time. The pruning option of GATK Hap-
lotypeCaller makes variant discovery more robust to false 
positives, but there is a trade-off between specificity and 
sensitivity. While pruning reduces the ability to discover 
variants from low-coverage data, this can be overcome 
by sequencing strategies that target haplotypes from the 
population instead of individuals (e.g., AlphaSeqOpt; [28, 
29]) in two ways: (1) sequencing individuals that share 
large amounts of haplotypes with the population at high 
coverage ensures discovery of many common variants 
[30]; and (2) given that the realized coverage at a base 
site follows a Poisson distribution and, therefore, every 
individual has a greater coverage than the average target 
coverage at many random sites, many variants can be dis-
covered if a sufficiently large number of individuals are 
sequenced at low coverage, even if pruning is enabled. For 
instance, with only 26 individuals sequenced at 2× cov-
erage, we discovered 76.3% of the variants that were dis-
covered with the same individuals at 30× coverage. The 
gap between variants discovered at low or high coverage is 
expected to decrease with increasing sample sizes.

Genotype calling from  aligned reads In step 2 of the 
proposed pipeline, a joint list of variant sites is extracted 
from the individual VCF files and the allele read counts at 
these sites are extracted from the aligned reads stored in 
the BAM files for each individual. GATK HaplotypeCaller 
with pruning induces a bias towards the reference allele 
when used with low-coverage data. This bias is introduced 
during variant discovery but manifests itself in the geno-
type calls if the joint genotyping uses the allele read counts 
stored in the gVCF or VCF files that are produced by the 
variant caller. This bias can be avoided if we call genotypes 
based on allele read counts, which are extracted directly 
from the aligned reads that are stored in the BAM files 
using tools such as pysam (https ://githu b.com/pysam 
-devel opers /pysam ).

The proposed pipeline provides the scalability needed 
for routine incorporation of new batches of sequenced 
individuals, using a similar logic as the GATK Best 
Practices pipeline. In the latter pipeline, information 
for both variant and non-variant sites is stored for each 
individual in the gVCF files, which is used later for joint 
genotyping at all variant sites, but these gVCF or VCF 
files contain biased allele read counts for low-coverage 
data. In the new pipeline that we propose, we produce 
regular VCF files only to obtain a list of all variant sites 
that have been discovered across the sequenced sam-
ples, followed by extracting the raw allele read counts 
at those sites for all individuals. Using this pipeline, it 
is very easy to add new batches of samples without hav-
ing to repeat the joint genotyping by simply extracting 

the allele read counts for the new individuals and the 
new variants discovered and adding them to any pre-
existing dataset. This also reduces data storage needs 
because the VCF files are much smaller than the gVCF 
files.

The proposed pipeline simplifies the processing of 
large numbers of individuals that are sequenced at low 
coverage by using available tools. This pipeline gave 
better genotype and allele concordances than using 
GATK HaplotypeCaller with disabled pruning. Alterna-
tive pipelines based on tools such as SAMtools [23] or 
ANGSD [31] may be equally well-suited for low-cover-
age sequence data. Pipelines based on imputation tools 
such as STITCH [32] may also be unaffected by the bias 
introduced by the pruning step because, similar to the 
proposed pipeline, they directly exploit the information 
from the aligned reads (in this case, the phase informa-
tion of the reads).

Bias towards the reference allele due to alignment
With the current pig reference genome Sscrofa11.1, 
bias towards the reference allele due to alignment was 
very low and its impact on genotype calls was negligi-
ble. Our estimates suggest that 1.3% of the reads did 
not align because the reference genome contained the 
opposite allele to the read allele and this increased 
the percentage of incorrect best-guess genotype calls 
by only 0.1 absolute percentage points. The reference 
genome Sscrofa11.1 was largely constructed using 
Pacific Biosciences long reads, with a coverage of 65× 
and provides much better mapping quality than the 
previous version Sscrofa10.2 (GenBank accession: 
GCA_000003025.4). For example, in a 2× coverage 
sample, the percentage of mapped reads increased from 
89% with Sscrofa10.2 to 95% with Sscrofa11.1, the per-
centage of properly paired reads increased from 77 to 
86%, and the percentage of reads with high mapping 
quality (MAPQ ≥ 40) increased from 71 to 84%. Here, 
we considered only SNPs but we expect that the align-
ment bias would have a greater impact when using a 
lower quality reference genome or in regions of high 
variability and structural complexity, e.g., in presence 
of multiple indels. Development of alternative-aware 
alignment algorithms or genome variation graphs [10, 
33] could alleviate bias towards the reference genome 
due to alignment in the near future, but these methods 
still have some practical limitations and their use is not 
yet generalised.

Index hopping
We estimated the level of index hopping in the 26 sam-
ples sequenced in a multiplex at 2× coverage to be equal 

https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
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to 1.5%. This was within expectations based on Illumina 
guidelines (< 2%) [16]. The impact of index hopping on 
the percentage of incorrect genotype calls depends on 
the conservativeness of the genotype calls. For conserva-
tive calls, the impact was negligible, but for best-guess 
genotype calls, the percentage of incorrect calls increased 
by 0.3 to 0.9 absolute percentage points (1.8–5.2% more 
incorrect calls).

We used a novel empirical method to estimate the level 
of index hopping that relies on sequencing the same set of 
samples twice, with and without multiplexing, such that 
the level of index hopping in the multiplexed data can be 
measured against a scale of simulated index hopping levels 
obtained from a set of index hopping-free data. Previously, 
Owens et al. [13] proposed a method for testing index hop-
ping that was based on finding heterozygotes with unbal-
anced read counts for the reference and alternative alleles 
(e.g., one allele supported by many reads but the opposite 
allele only by one read), and then estimating index hop-
ping based on the frequency of that opposite allele in the 
rest of individuals in the multiplex. The advantage of this 
method is that it uses existing data and does not require 
the same samples to be sequenced twice. However, this 
method requires high-coverage data and does not answer 
how index hopping affects genotype calls.

Our results, together with those of other studies [13, 14], 
reassure us that the high levels of index hopping reported 
by Sinha et al. [12] are unlikely to occur in most applica-
tions when good cleaning protocols are followed to remove 
excess free-floating indexing primers during library prepa-
ration or when unique dual indexes are used [15].

Conclusions
Index hopping and bias towards the reference allele due 
to alignment have little impact on downstream genotype 
calls from low-coverage sequence data, but unexpected 
biases may arise from pipelines that use tools that were 
designed for high-coverage sequence data on low-cov-
erage sequence data. The step of ‘pruning’ that is imple-
mented in GATK HaplotypeCaller is an example of a 
feature that is desirable for high-coverage data but that 
introduces a systematic bias when applied to low-cover-
age data. We propose a simple new pipeline to correct 
this bias and we recommend that users of low-coverage 
sequence data be wary of unexpected biases before using 
bioinformatic tools that were designed for high-coverage 
sequencing.
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