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The role of attention in visual word recognition and reading aloud is a long debated
issue. Studies of both developmental and acquired reading disorders provide growing
evidence that spatial attention is critically involved in word reading, in particular for the
phonological decoding of unfamiliar letter strings. However, studies on healthy participants
have produced contrasting results. The aim of this study was to investigate how the
allocation of spatial attention may influence the perception of letter strings in skilled readers.
High frequency words (HFWs), low frequency words and pseudowords were briefly and
parafoveally presented either in the left or the right visual field. Attentional allocation
was modulated by the presentation of a spatial cue before the target string. Accuracy
in reporting the target string was modulated by the spatial cue but this effect varied with
the type of string. For unfamiliar strings, processing was facilitated when attention was
focused on the string location and hindered when it was diverted from the target. This
finding is consistent the assumptions of the CDP+ model of reading aloud, as well as
with familiarity sensitivity models that argue for a flexible use of attention according with
the specific requirements of the string. Moreover, we found that processing of HFWs
was facilitated by an extra-large focus of attention. The latter result is consistent with the
hypothesis that a broad distribution of attention is the default mode during reading of
familiar words because it might optimally engage the broad receptive fields of the highest
detectors in the hierarchical system for visual word recognition.
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INTRODUCTION
Visuo-spatial attention is likely to be engaged at many levels of the
process of recognizing printed word (McCandliss et al., 2003), but
despite many studies investigating this issue the literature does not
offer a clear and uncontroversial picture. Several different manip-
ulations of attention have been used to investigate whether word
processing is automatic or whether it requires some engagement
of attention and, in the latter circumstance, what kind of reading
sub-processes consume attention resources. We review below the
previous literature and then present a new study examining the
involvement of spatial attention in visual word perception, more
specifically how the latter is modulated by focusing attention on
the target stimulus.

The most cited evidence for the automaticity of word reading
is the Stroop effect (for a review see MacLeod, 1991). Longer reac-
tion times (RTs) in naming the ink color of words that convey
incongruent color names is usually taken as a demonstration of
automatic processing up to the word meaning, thereby suggesting
that suppression of word reading is difficult or even impossible
(e.g., Neely and Kahan, 2001; Brown et al., 2002). Nevertheless,
automatic word processing in Stroop tasks can be moderated by
attentional manipulations, as shown by the finding that focus-
ing spatial attention on a single letter of the word can reduce the
magnitude of the Stroop effect (e.g., Stolz and Besner, 1999; see
also Lachter et al., 2004, 2008).

Another way to investigate the automaticity of word read-
ing is to assess whether it can proceed in parallel with another
task. To this aim, some studies have used the psychological
refractory period (PRP) paradigm (Pashler, 1994; Johnston et al.,
1995), which requires to perform two tasks in rapid succession.
When the time interval between the two tasks is long, the two
tasks are performed without interference, while RTs for the sec-
ond task increase sharply when the time interval is short (i.e.,
PRP effect). McCann et al. (2000) concluded that orthographic-
lexical processing needs central attention, whereas Cleland et al.
(2006) found exactly the opposite. Other studies, using the
locus-of-slack logic, provide evidence that phonological recoding
requires central attention while earlier visual-orthographic pro-
cessing can automatically proceed (Reynolds and Besner, 2006;
O’Malley et al., 2008). Lien et al. (2008) used the PRP paradigm
in combination with the recording of event-related potentials
(ERPs). They assessed the amplitude and latency of the N400
wave elicited by words that were semantically related or unre-
lated to the context, as well as the amplitude and latency of
the P300 wave elicited by high or low frequency words (LFWs).
Overall, their conclusion was that neither semantic nor lexical
processing can proceed without attention (but see Rabovsky et al.,
2008). Converging evidence regarding the role of attention in
word reading is also provided by studies on mindless reading (e.g.,
Reichle et al., 2010; Schad et al., 2012).
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Posner’s spatial cuing paradigm (Posner, 1980) allows to direct
attention to a particular position in visual space and to assess
the consequences of processing a target stimulus at the attended
vs. unattended location. In the context of written word percep-
tion, orienting spatial attention away from the target should be
detrimental if word processing requires attention. However, the
studies using variants of this paradigm have produced inconsistent
results. Some studies have reported that biasing spatial attention
with a cue either at the beginning or at the end of a letter string has
a stronger influence on pseudoword (PWs) than on word reading
(Sieroff and Posner, 1988; Givon et al., 1990; Auclair and Siéroff,
2002), thereby suggesting that the lexical status of the string can
influence the distribution of attention. Other studies, however,
reported that the cuing effect was not modulated by the type
of string. For example, McCann et al. (1992) found faster lex-
ical decision latencies at the cued position for both words and
PWs that were presented above or below the fixation point. Sim-
ilar results were found using left or right parafoveal presentation
(Nicholls and Wood, 1998; Ortells et al., 1998; Lindell and Nicholls,
2003). Finally, a lack of cueing effect was reported by Ducrot and
Grainger (2007) using a perceptual identification paradigm with
target words appearing left or right of a central fixation point and
using a string of hash marks as spatial cue. In valid trials the cue
matched the target both in location and spatial extent, while in the
neutral condition the hash marks covered both possible locations
of the target. When the target was presented in central vision, with
fixation either on the first or on the last letter, little or no effects of
spatial cueing were found. However, it is important to note that the
absence of invalid trials might have influenced the latter results.

Familiarity of the stimulus is typically manipulated through the
frequency or the lexicality of the string (e.g., Monsell et al., 1989;
Allen et al., 2005). A different approach was adopted by Risko
et al. (2011), who used repetition to manipulate familiarity and
combined it with spatial cueing in the context of a word naming
task. They found that in the repetition condition (i.e., when the
word was repeated numerous times throughout the experiment)
the cueing effect was smaller than in the no repetition condition
(i.e., when the word was presented a single time). This finding
is in line with the idea that familiar items place less demands
on spatial attention. Moreover, the study of Risko et al. (2011)
offers an explanation of the inconsistent findings on the auto-
maticity of reading, because the findings using the Stroop task may
reflect the fact that stimulus repetition reduces spatial attentional
requirements.

In summary, the studies reviewed above suggest that attention is
flexibly used in visual word processing. This is also consistent with
the finding of individual differences in the automaticity of visual
word recognition that largely depend on reading skills (Ruthruff
et al., 2008) and presumably on reading experience (Siéroff and
Riva, 2011). In contrast to the idea of fully automatic processing
that is highlighted by the Stroop task, the engagement of atten-
tion seems a necessary requirement in order to process visually
presented words.

SPATIAL ATTENTION IN MODELS OF READING ALOUD
Beginning readers need to learn a system for mapping between
visual symbols and sounds (Ziegler and Goswami, 2005). Simple

visual features are combined to form detectors of letter shapes
(Dehaene et al., 2005; Zorzi et al., 2013) and letters are then orga-
nized into higher-order units that map onto sounds (Perry et al.,
2007, 2013). Indeed, phonological decoding is thought of as sine
qua non for reading acquisition (Share, 1995). Repeated exposure
to the printed material and the ability to recognize words through
phonological decoding progressively leads to the development of
orthographic representations of whole words (Ziegler et al., 2014,
and Di Bono and Zorzi, 2013, for computational models of ortho-
graphic learning), with a neural substrate in the occipito-temporal
area (i.e., the visual word form area, McCandliss et al., 2003; Glezer
et al., 2009; Dehaene and Cohen, 2011). The distinction between
phonological decoding (which involves small grain-size units) and
recognition of whole words is a prominent feature of dual-route
models of reading aloud (e.g., Coltheart et al., 2001; Perry et al.,
2007, 2010). Nevertheless, the assumption that reading involves
the interaction between two different pathways, one phonological
and the other lexical-semantic, is shared by virtually all computa-
tional models (e.g., Plaut et al., 1996; Harm and Seidenberg, 2004;
for a review see Zorzi, 2005).

In line with the seminal proposal of LaBerge and Samuels
(1974), some of these models make specific assumptions on how
attention is engaged in the two different pathways. In the CDP+
model (Perry et al., 2007), spatial attention is assumed to be
engaged by the phonological pathway during the parsing of let-
ter strings into the constituent graphemes that provide the input
to the phonological decoding network (see also Perry et al., 2013).
Other models assume a parsing mechanism that can operate on
units of different sizes (e.g., letters vs. syllables; Ans et al., 1998)
depending on the context. Regardless of the specific details, pars-
ing in all models is thought to rely on focused spatial attention
that moves from left to right across the letter string. That is, a top-
down search mechanism is used to sweep the spotlight of attention
serially over the sub-word units (Vidyasagar, 1999; Vidyasagar and
Pammer, 2010).

Several lines of evidence support the hypothesis that the
phonological route, rather than the lexical route, requires effi-
cient focusing of visual-spatial attention. Patients with severe
neglect dyslexia show preserved lexical-semantic access in read-
ing (Ladavas et al., 1997a,b), suggesting an interaction between
the attentional system and the different reading routes. More-
over, several studies have linked developmental reading difficulties
to impaired visual-attentional processing mechanisms. Impaired
visual-spatial attention has been repeatedly described in dyslexic
children (e.g., Facoetti et al., 2005) and adults (Laasonen et al.,
2012), in particular for those showing poor non-word reading
ability (Cestnick and Coltheart, 1999; Buchholz and McKone,
2004; Facoetti et al., 2006, 2010; Roach and Hogben, 2007; Jones
et al., 2008). Non-word reading performance taps the function-
ing of the phonological route and its impairment is a hallmark of
dyslexia across different languages (Ziegler et al., 2003). Dyslexic
children perform worse on visual-attention span tasks (i.e., tasks
measuring the number of distinct visual elements that can be
simultaneously processed at a glance) than normally reading chil-
dren (Bosse et al., 2007). Moreover, the reading performance of
dyslexic children can substantially improve after training visuo-
spatial attention (Geiger and Lettvin, 1999; Facoetti et al., 2003;
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Franceschini et al., 2013) or through a simple manipulation of
the physical appearance of the text (i.e., extra-large spacing of
the letters) that reduces the demands on focused spatial atten-
tion (Zorzi et al., 2012; Schneps et al., 2013). Finally, visual-spatial
attention skills in pre-schoolers is predictive of future reading
performance (Franceschini et al., 2012).

The aim of this study was to further investigate how visual
word processing is modulated by the allocation of spatial atten-
tion. Following Ducrot and Grainger (2007), we assessed the
effect of a spatial cuing manipulation within a perceptual iden-
tification task. Importantly, and in contrast to the study of
Ducrot and Grainger (2007), we included an invalid spatial cue
condition and we manipulated the lexicality of the stimuli (by
including PWs) in addition to familiarity (i.e., word frequency).
We predicted that high frequency words (HFWs) should be less
influenced by the distribution of attention than LFW, whereas
PW should be the most influenced by the attention modula-
tion because phonological decoding places particular demands
on the orienting of focused visuo-spatial attention (Perry et al.,
2007).

MATERIALS AND METHODS
PARTICIPANTS
Twenty undergraduate students from University of Padua partici-
pated in the study. Their mean age was 22.85, with range of 18 to
28 years. They were all native Italian speakers and had normal or
correct-to-normal vision.

APPARATUS AND STIMULI
Stimulus presentation was on a 17” CRT monitor connected to
a Pentium IV computer running E-Prime 1.1 software (Schnei-
der et al., 2002). Strings were presented in uppercase white letters
against a black background in 12-point Courier New font. Par-
ticipants were seated at a distance of 60 cm from the screen.
Each string subtended a visual angle of 4.25◦. Two hundred
and sixteen eight-letter strings were used as target. Seventy two
strings were HFWs (mean printed frequency greater than 33
occurrences per million; Bertinetto et al., 2005), whereas sev-
enty two strings were LFWs (mean printed frequency less than
3 occurrences per million). Finally, seventy two strings were PW
obtained by replacing two letters in a set of HFWs (different from
those used as targets). In each frequency set, words were 88%
nouns, 8% verbs, and 4% adjectives. The target strings were pre-
sented in the left or right visual field such that either the last
letter or the first letter were aligned with the central fixation
point.

In the valid condition, the spatial cue consisted of a string of
eight hash marks (########) presented either in the right or left
visual field accordingly with the location of the target string. In
the invalid condition, the same spatial cue was presented either
in the right or left visual field, opposite to the target string. In
the neutral condition, the spatial cue consisted of a string of fif-
teen hash marks, presented centrally and covering both the right
and left positions. The central fixation consisted by two vertically
aligned central lines with a gap between them (as in Experi-
ment 3 of Ducrot and Grainger, 2007) in order to avoid masking
effects.

DESIGN AND PROCEDURE
Participants had their head positioned on a headrest and they
were instructed to avoid eye movements. At the beginning of each
trial, the fixation was displayed in the middle of the screen and
participants were instructed to fixate the gap. After a delay of
1000 ms, the spatial cue appeared for 50 ms. After 30 ms of delay
(i.e., cue-target interval was 80 ms), the target string was presented
for 80 ms (Figure 1). Then, a window appeared on the screen
inviting the participant to type the corresponding string using the
computer keyboard.

Every experimental session was divided in two block with a
short break between them. During the experiment, target strings
were randomly presented such that every string was presented once
and their position in the visual field, left vs. right, was randomly
chosen such that half of the stimuli were assigned to the left pre-
sentation and the other half to the right presentation. The spatial
cue condition (valid, invalid, and neutral) was randomly chosen
such that each condition had a probability of one third. Therefore,
the experiment consisted of three within subjects manipulations:
type of string (HFW, LFW, and PW), spatial cue (valid, invalid,
and neutral) and visual field (left and right).

RESULTS
Data were analyzed employing mixed-effect multiple regression
models (Baayen et al., 2008) using lme4 package (Bates et al., 2013)
and afex package (Singmann, 2013), in the R environment
(R Core Team, 2013). Mixed-effects models offer a flexible frame-
work for modeling the sources of variation and correlation that
arise from grouped data. In particular, the model fitting pro-
cedure takes into account the covariance structure of the data
including random effects (for an exhaustive discussion about
fixed and random effects, see Gelman, 2005). A great advantage
of mixed models, as compared to more conventional methods,
is that they do not assume independence amongst observations
allowing a wide variety of correlation patterns to be explic-
itly modeled (Pinheiro and Bates, 2000). Another advantage is

FIGURE 1 | Experimental paradigm. Each trial started with the “fixation
gap.” After a delay of 1000 ms, the spatial cue appeared for 50 ms. After
30 ms of delay the target string was presented for 80 ms. The response
window remained on the screen until participants typed in the perceived
string.
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Table 1 | Mean accuracy (in percentage of correctly reported letters) and standard deviation (in parenthesis) for all conditions in the experiment.

Left visual field Right visual field

String type Valid Neutral Invalid Valid Neutral Invalid

High frequency words 32.81 (17.36) 38.44 (17.37) 29.84 (14.94) 79.01 (12.71) 83.70 (11.53) 76.98 (12.12)

Low frequency words 26.61 (11.91) 24.22 (14.61) 21.46 (12.83) 65.62 (16.00) 66.82 (12.85) 63.28 (9.21)

Pseudowords 23.02 (12.42) 18.07 (7.90) 19.53 (10.25) 49.11 (9.10) 48.80 (8.43) 46.51 (11.14)

that mixed models can deal with the problem of the language-
as-fixed-effect fallacy (Clark, 1973). Since it is not possible to
make use of systematic sampling procedures both with subjects
and items, bringing them as random effects into the model
allows controlling better the unexplained by-subject and by-item
variances. Overall, mixed models provide insight into the full
structure of the data, they have slightly superior power (Baayen,
2008) and finally, they can also be extended to non-normal
outcomes.

Response accuracy was computed by counting, for each item,
the number of letters correctly reported by the participant. Each
letter had to be reported in the correct position in the string to
be counted as correct. Nevertheless, the results were virtually
identical using a more lenient criterion that did not considered
letter position. Note that string-level accuracy was too low for
PWs to allow for meaningful analyses. We applied a multiple
regression model with a logarithmic link function (Jaeger, 2008)
and poisson variance distribution that is appropriate for counts
of events in a fixed time window (e.g., Agresti, 2007; Baayen,
2008). Mean accuracies in the different conditions are reported
in Table 1.

Barr et al. (2013) suggested that linear mixed-effects models
generalize best when they include maximal random effects struc-
ture justified by the design. In our study, this implies the exclusion
of the by-item random slopes for type factor because our manipu-
lation of string type implies different items for each level of the type
factor. Subsequently, overfitted models (i.e., models with a random
structure that caused the model to break) or random effects with
no explanatory power (with variance parameters driven to zero or
the correlations to +1 or −1) were excluded. Therefore, the final
random structure included both by-subject and by-item random
intercepts and random variation (random slopes) for the cue fac-
tor at the subject level and random variation (random slopes) for
the visual field factor at the item level.

The model included three fixed effect and their interactions:
type of string, spatial cue, visual field, two way-interactions type of
string by spatial cue, type of string by visual field, spatial cue by
visual field, and the three-way interaction type of string by visual
field by cue. Table 2 reports random effects of the final model.
There was inter-subject variability and it was moderately modu-
lated by the spatial cue effect. Furthermore, the variability in the
neutral condition was correlated with the variability in the valid
condition (0.79) and it was negatively correlated with the vari-
ability in the invalid condition (−0.66). There was inter-stimulus
variability modulated by the visual field effect. Importantly, taking
into account both these sources of variability, all predictors (fixed

Table 2 | Random effects of the final model.

Groups Name Variance SD Corr

Item (Intercept) 0.0157 0.1253 – –

VF: L 0.1629 0.4037 0.09 –

Sub (Intercept) 0.0265 0.1629 – –

Cue: I 0.0011 0.0325 −0.06 –

Cue: V 0.0034 0.0583 0.79 −0.66

Visual field (VF): L = left. Sub: subjects. Cue: V = valid, I = invalid.

effects) considered were significant. Table 3 reports fixed effect
coefficients of the final model (factors were dummy coded with
HFW, neutral cue and right visual field as reference levels). Note
that the b coefficient represents the adjustment with respect to the
reference level.

In order to assess the significance of the main effects and inter-
actions, we performed Type III test (which is based on control sum
coding rather than dummy coding), comparing a model in which
only the corresponding effect is missing with the model contain-
ing the effect. The p-values were calculated via the likelihood ratio
tests. The type of string main effect was significant χ2(2) = 80.42,
p < 0.0001, indicating that the accuracy was different for the
three types of string. The spatial cue main effect was significant,
χ2(2) = 6.83, p < 0.05, indicating that accuracy was modulated
by the spatial cue. The visual field main effect was significant,
χ2(1) = 353.86, p < 0.0001, indicating that that accuracy was
better in the right visual field than in the left visual field. The inter-
action type of string by spatial cue was significant, χ2(4) = 16.51,
p < 0.01, indicating that the effect of the spatial cue was differ-
ent for the three types of string. The interaction visual field by
spatial cue was not significant, χ2(2) = 3.30, p = 0.19, indicating
that the effect of the spatial cue was similar in the two hemifields.
The interaction type of string by visual field was not significant,
χ2(2) = 4.61, p = 0.09, indicating that the effect of the type of
string was similar in the two hemifields. However, the three-way
interaction just missed significance, χ2(4) = 9.12, p = 0.05, sug-
gesting that the effect of the spatial cue on the types of string
was different in the two hemifields for at least one of the three
types.

The interaction between type of string and spatial cue, which is
crucial for the purpose of the present study, is shown in Figure 2.
The nature of this interaction was inspected conducting separate
multilevel models on each level of the type of string factor. Hence,

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 42 | 4

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Montani et al. Spatial attention and reading

Table 3 | Fixed effects of the final model.

Estimate SE z value Pr(>|z|)

(Intercept) 1.88 0.05 40.05 0.00

Type: LFW −0.22 0.04 −5.11 0.00

Type: PW −0.54 0.05 −11.47 0.00

Cue: I −0.08 0.04 −2.06 0.03

Cue: V −0.06 0.04 −1.54 0.12

VF: L −0.93 0.07 −13.74 0.00

TypeLFW × CueI 0.02 0.06 0.37 0.71

TypePW × CueI 0.03 0.06 0.53 0.59

TypeLFW × CueV 0.04 0.05 0.72 0.47

TypePW × CueV 0.06 0.06 0.98 0.33

TypeLFW × VFL −0.17 0.06 −1.73 0.08

TypePW × VFL 0.12 0.10 −1.13 0.26

CueI × VFL −012 0.07 −1.69 0.09

CueV × VFL −0.07 0.07 −1.03 0.30

TypeLFW × CueI × VFL 0.10 0.16 0.91 0.36

TypePW × CueI × VFL 0.25 0.11 2.23 0.03

TypeLFW × CueV × VFL 0.10 0.10 0.99 0.32

TypePW × CueV × VFL 0.32 0.11 2.88 0.00

Type: LFW = low frequency words, PW = pseudowords. Cue:V = valid, I = invalid.
Visual Field (VF): L = left.

for this analysis the main effect and the interaction term of the
type of string were excluded. In addition, since in the full model
the interaction type of string × spatial cue × visual field just
missed significance, we first assessed for each model (i.e., type
of string) whether inclusion of the visual field by cue interaction
would improve the model fit according to the likelihood ratio tests.
This was the case only for PWs (HFW: χ2(2) = 2.46, p = 0.29;
LFW: χ2(2) = 0.39, p = 0.82; PW: χ2(2) = 7.20, p < 0.05). There-
fore, for HFWs and LFWs the visual field factor was excluded.
Factors were dummy coded with valid or neutral cue as refer-
ence levels. We report regression coefficients (b), z and p values.
Figure 3 shows how accuracy for each type of string changed as a
function of cue condition and hemifield, using the neutral cue as
baseline.

For PWs in the right visual field, accuracy did not signifi-
cantly differ across cue conditions (valid vs. invalid: b = −0.05,
z = −1.04, p = 0.30; valid vs. neutral: b = −0.01, z = −0.16,
p = 0.87; invalid vs. neutral: b = −0.06, z = −1.16, p = 0.25).
For PWs in the left visual field, accuracy was significantly higher
in the valid condition in comparison to both the invalid and the
neutral condition (respectively b = −0.16, z = −2.30, p < 0.05
and b = −0.23, z = −3.15, p < 0.01). The difference between the
neutral and the invalid conditions was not significant (b = 0.07,
z = 0.91, p = 0.36). For LFWs, none of the effects reached sig-
nificance (valid vs. invalid: b = −0.07, z = −1.64, p = 0.10;
valid vs. neutral: b = −0.02, z = −0.43, p = 0.66; neutral vs.
invalid: b = −0.05, z = −1.35, p = 0.18). Finally, for HFWs,
there was no difference between valid and invalid conditions
(b = −0.04, z = −1.14, p = 0.25). However, the neutral condition

FIGURE 2 | Accuracy in string identification (percentage of correctly

reported letters) as a function of type of string and validity of the

spatial cue. Error bars represent standard error of the means (SEMs).

showed higher accuracy than both the valid condition (b = −0.09,
z = −2.62, p < 0.01) and the invalid condition (b = −0.13,
z = −4.20, p < 0.001).

DISCUSSION
The central question addressed in the present study is how spa-
tial attention affects the processing of visual words. To this
end, in the context of a perceptual identification paradigm, we
manipulated the focus of attention concurrently with the type
of string. HFWs, LFWs, and PWs were presented in parafoveal
view, either in the left or in the right visual field. Target strings
were preceded by a spatial cue that oriented attention to the tar-
get location (valid condition) or away from it (invalid condition).
In the neutral condition, the cue broadened the focus of atten-
tion by directing it on both possible locations. The results of
previous studies using various variants of the cueing paradigm
do not offer a clear and uncontroversial picture. A novel aspect
of our study was the control of random variability both at
the subject and items level by exploiting mixed-effects models
(Baayen et al., 2008), thereby increasing the sensitivity of the anal-
yses and eliminating confounding factors that might affect the
results.

Performance was markedly superior in the right visual field
than in the left visual field, in agreement with previous stud-
ies that found a right visual field advantage for briefly presented
parafoveal words (e.g., Mishkin and Gorgays, 1952; Ducrot and
Grainger, 2007; Siéroff and Riva, 2011). The direct access to the
left hemisphere for right presented word, scanning reading habits
and attentional effects are the different factors most likely involved
in the emergence of a right visual field superiority effect (see Siéroff
et al., 2012, for further discussion).

Performance was also significantly affected by the spatial cue,
but crucially it varied with the type of string (see Figure 2). In
addition, but for PWs only, the cueing effect was modulated by
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FIGURE 3 | Cueing effect (in percentage) for the three types of string, using neutral condition as baseline. This was computed as difference between
valid and neutral condition (dark gray), and difference between invalid and neutral condition (light gray). LVF, left visual field; RVF, right visual field. Error bars
represent SEMs.

the visual field (see Figure 3). In particular, PW identification
was affected by the spatial cue when the string was presented
in the left visual field, in agreement with previous studies that
found a larger cueing effect in the left visual field (Nicholls and
Wood, 1998; Gatheron and Siéroff, 1999). PWs were better identi-
fied in the valid condition, that is when attention was focused on
the target location. For LFWs, the spatial cue effect was not sig-
nificant but the mean accuracies showed a similar trend. These
results are consistent with those of Sieroff and Posner (1988),
Auclair and Siéroff (2002), as well as with the assumption of
the CDP+ model (Perry et al., 2007) that the phonological route
implies parsing of the string into sub-lexical units by sweeping
the attentional focus from left to right across letters. Therefore,
the pre-allocation of spatial attention to the target position fol-
lowing a valid cue meets the processing demands of phonological
decoding and PW processing in particular, in line with previous
studies that have linked spatial attention to phonological decoding
(e.g., Facoetti et al., 2006, 2010; Ruffino et al., 2010). This expla-
nation is also supported by the significant interaction between
spatial cue and visual field for PWs. The attentional bias theory
(Kinsbourne, 1970) assumes that more attentional resources are
allocated to the right visual field. Accordingly, a valid cue will be
more effective for the location where the least amount of atten-
tion is already allocated (Siéroff et al., 2012). This implies that the

processing of stimuli that require more attention will exhibit a
greater advantage.

A completely different pattern emerged for HFWs. Strikingly,
word identification was best in the neutral cue condition that is
when attention was directed to both the possible locations. The
neutral condition showed an advantage with respect to both the
valid and the invalid conditions. Given that the lateralized cues
were uninformative of target location, it could be argued that the
unexpected advantage of neutral trials might reflect a form of
inhibition of return (Klein, 2000) that follows the exogenous shift
to the lateral locations. However, this interpretation falls short in
explaining why the advantage of neutral trials would be limited to
the HFWs. Indeed, the classic time course of inhibition of return
leads to the prediction that the effect would be maximal for the
more difficult stimuli, that is the PWs. A more plausible inter-
pretation of this finding can be found by carefully examining the
nature of the neutral cue. Indeed, the neutral cue consisted in a
string of hash marks that had double length with respect to the
target because it was designed to cover both the possible target
locations. This implies that the cue modulated also the size of
the focus of attention, as suggested by studies showing that the
size of the attentional focus is automatically adjusted to the size
of the cue (e.g., Eriksen and St. James, 1986; Turatto et al., 2000;
Ronconi et al., 2014). Thus, in the neutral condition, attention
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was spread out over a portion of the visual field that was approx-
imately twice the target string length. What is the consequence of
this broader focus for the processing of visual words? Processing
gradient models of eye movements, such as SWIFT (Engbert et al.,
2002, 2005; Schad and Engbert, 2012) assume that allocation of
attention can extend over fixated word to support parallel process-
ing of several words at a time. When the orthographic stimulus is
not familiar, as in LFW processing or PW decoding, the foveal load
is high and the perceptual span (i.e., the visual region of effectively
processed information) includes only the fixated word. In contrast,
processing familiar stimuli like HFWs implies low foveal load and
therefore a wider perceptual span that extends over several neigh-
boring words (e.g., LaBerge and Brown, 1989; Henderson and
Ferreira, 1990). The notion that the size of the attentional window
during visual word processing might be broader than the length
of target words is also supported by the eye movements literature
(e.g., Kennedy and Pynte, 2005; Kliegl et al., 2006, 2007; Wang
et al., 2009; Dare and Shillcock, 2013; Kennedy et al., 2013) and by
the finding that lateral information can affect the processing of a
centrally presented target as a function of its familiarity (e.g., Lee
and Kim, 2009; Waechter et al., 2011; Khelifi et al., 2012).

Therefore, HFWs, due to their overlearned representation,
can provide a strong feedback signal toward lower areas of
the visual system allowing fast identification of the string. The
low perceptual load, due to this stronger top-down support,
allows the distribution of attentional resources on a broader
region of space (e.g., Brand-D’Abrescia and Lavie, 2007; see for
a review Lavie, 2005). Notably, this top-down support might
also compensate for the slower bottom-up processing implied
by a broader focus of attention (as assumed in the zoom-lens
model).

Given that a broad distribution of attention appears to be
the default mode during processing of HFWs (e.g., Kliegl et al.,
2006; Brand-D’Abrescia and Lavie, 2007; Schad and Engbert, 2012;
Ghahghaei et al., 2013), it is conceivable that the identification of
HFWs in the present study was better in the neutral condition
because the cue triggered a broader attentional focus. Indeed,
the attention literature shows that optimal performance in per-
ceptual identification is obtained with an adequate allocation of
attentional resources and that too much focused attention may
be not beneficial (Yeshurun and Carrasco, 1998). Focused spa-
tial attention is necessary to obtain spatial detail (e.g., Yeshurun
and Carrasco, 1999; Ho et al., 2002; Hochstein and Ahissar, 2002;
see Anton-Erxleben and Carrasco, 2013 for a review), whereas
recognition of HFWs might be facilitated by a more global pro-
cessing. Dehaene et al. (2005) suggested a neuronal model of
word recognition that, in order to solve the problem of loca-
tion and size invariance, postulates increasingly broader and more
abstract local combination detectors (LCD model). Written words
are encoded by a hierarchy of neurons with increasingly larger
receptive fields, successively tuned to increasingly complex word
fragments (McCandliss et al., 2003; Dehaene et al., 2005; Dehaene
and Cohen, 2011). At the highest levels of this hierarchy, detec-
tors presumably are responsive to whole words and their broad
receptive field allow to respond with spatial invariance across a
large part of the visual field (also see Di Bono and Zorzi, 2013).
HFWs have an overlearned orthographic representation, probably

located in the left ventral occipito-temporal cortex, the “visual
word form area” (e.g., Glezer et al., 2009 see Dehaene and Cohen,
2011).

Although the previous data of Ducrot and Grainger (2007)
brought to different conclusions, three main differences between
their study and ours might explain the discordant findings. First,
target duration in their study was 30 ms shorter (i.e., 50 vs. 80
ms). The deployment of attention along the whole letter string
is a process that takes time (Ghahghaei et al., 2013). Therefore, it
is possible that 50 ms of target duration are not enough to detect
fine modulations of the attentional focus. Benso et al. (1998) stud-
ied the time course of attentional focusing with a standard spatial
cue-size paradigm. While they showed that the focus of attention
requires 33–66 ms to adjust to object size in the fovea, they found
that the control of the attentional focus in the periphery took
place only when the interval between the cue and the stimulus was
between 300 and 400 msec. Summing together cue duration, delay
time and target duration in our paradigm results in an overall
time of 160 ms during which the size of the focus might be modu-
lated, an intermediate value that seems suitable for our parafoveal
stimuli. A second difference is that the stimuli of Ducrot and
Grainger (2007) did not include PWs. There is growing evidence
that reading is context dependent even at the single word level (e.g.,
Reynolds and Besner, 2005; O’Malley and Besner, 2008; Reynolds
et al., 2010). For example, O’Malley and Besner (2008) showed that
the presence of PWs in the list composition changed the effect of
stimulus degradation on the modulation of the frequency effect. In
the same vein, it seems likely that the presence of PWs in our study
promoted a more flexible shaping of the attentional focus. Finally,
the cuing paradigm of Ducrot and Grainger (2007) did not include
the invalid condition. The presence of an invalid condition in our
study is likely to have induced a stronger cueing effects and in turn
a more effective modulation of the deployment of spatial attention.
It could be argued that the lateralized spatial cues in Ducrot and
Grainger’s (2007) study were highly informative because they per-
fectly predicted the location of the letter string (unlike our study,
in which they were uninformative). However, it is unlikely that
this discrepancy implies a different type of attentional orienting,
because cue-target stimulus onset asynchrony (SOA) in their study
was too short (i.e., 80 ms) to allow voluntary deployment. That is,
attention orienting was stimulus-driven both in their study and in
ours.

In conclusion, we found that the manipulation of spatial atten-
tion affects string processing and this influence was modulated by
the type of string, as predicted by the CDP+ model of reading
(Perry et al., 2007) as well as by processing gradient models (e.g.,
LaBerge and Brown, 1989; Henderson and Ferreira, 1990; Schad
and Engbert, 2012). Processing of unfamiliar strings, such as LFW
and PW, is affected by directing attention to a different location
and it is facilitated by attentional focusing. Conversely, identifica-
tion of HFWs was enhanced in a condition promoting distributed
attention, an attentional set that appears to be the default mode
during reading of familiar words and is likely to optimally engage
the broad receptive fields of the highest detectors in the hierarchi-
cal system for visual word recognition. However, the explanation
of this novel finding is speculative and it therefore warrants further
investigation.
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