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Hippocampal neurons in dissociated cell cultures were exposed to the trivalent cation
lanthanum for short periods (15–30 min) and prepared for electron microscopy (EM),
to evaluate the stimulatory effects of this cation on synaptic ultrastructure. Not only
were characteristic ultrastructural changes of exaggerated synaptic vesicle turnover
seen within the presynapses of these cultures—including synaptic vesicle depletion
and proliferation of vesicle-recycling structures—but the overall architecture of a large
proportion of the synapses in the cultures was dramatically altered, due to large
postsynaptic “bulges” or herniations into the presynapses. Moreover, in most cases,
these postsynaptic herniations or protrusions produced by lanthanum were seen by EM
to distort or break or “perforate” the so-called postsynaptic densities (PSDs) that harbor
receptors and recognition molecules essential for synaptic function. These dramatic EM
observations lead us to postulate that such PSD breakages or “perforations” could very
possibly create essential substrates or “tags” for synaptic growth, simply by creating
fragmented free edges around the PSDs, into which new receptors and recognition
molecules could be recruited more easily, and thus, they could represent the physical
substrate for the important synaptic growth process known as “long-term potentiation”
(LTP). All of this was created simply in hippocampal dissociated cell cultures, and simply
by pushing synaptic vesicle recycling way beyond its normal limits with the trivalent
cation lanthanum, but we argued in this report that such fundamental changes in
synaptic architecture—given that they can occur at all—could also occur at the extremes
of normal neuronal activity, which are presumed to lead to learning and memory.

Keywords: hippocampal synapses, synaptic vesicle, endocytosis, lanthanum, long-term potentiation,
postsynaptic densities (PSDs)

INTRODUCTION

Of all the important structural features of the synapse that have been viewed in the
electron microscope over the decades, a feature that has been the most correlated with long-
term potentiation (LTP), especially in the context of electron microscopy (EM) preparations
generated from hippocampal tissues that were experimentally manipulated into LTP conditions,
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would have to be the perforated postsynaptic density (or
perforated PSD).

It was the research work of one of the leading electron
microscopists of the hippocampus, Yuri Geinesman, to establish
this correlation (Geinisman et al., 1986, 1987a,b, 1991, 1992a,b,
1993, 1994, 1996; Geinisman, 1993, 2000). Another top electron
microscopist of the hippocampus, Kirsten Harris, reported
perforated PSD’s almost as often, but remained more agnostic
about their role in hippocampal LTP (Harris and Stevens, 1989;
Chicurel and Harris, 1992; Spacek and Harris, 1997; Sorra et al.,
1998; Fiala et al., 2002; Harris et al., 2003; Spacek and Harris,
2004; Bourne and Harris, 2011; Bailey et al., 2015; Watson
et al., 2016). Likewise, two other top EM labs that published a
lot on the hippocampus, Michael Stewart’s in Milton Keynes,
England (Dhanrajan et al., 2004; Popov et al., 2004; Stewart
et al., 2005a,b; Medvedev et al., 2010), and Dominique Muller’s
in Geneva, Switzerland (Stoppini et al., 1991; Toni et al., 1999,
2001; Luscher et al., 2000), reported finding perforated PSDs in
a lot of publications and also made outstanding contributions
toward understanding how these might be involved in LTP or
“synaptic learning” (Stoppini et al., 1991; Toni et al., 1999, 2001;
Luscher et al., 2000; Dhanrajan et al., 2004; Popov et al., 2004;
Stewart et al., 2005a,b; Medvedev et al., 2010). All this history
culminated with the later, outstandingly beautiful cryo-EM work
on this same topic, which came from Michael Frotscher’s lab in
Freiberg, Germany (Zhao et al., 2012a,b,c). Along the way, and
right up to the present day, many other EM labs have weighed
in with valuable correlative data and their own ideas on how LTP
might come about (Tarrant and Routtenberg, 1977; Calverley and
Jones, 1987a,b; Petit et al., 1989; Markus et al., 1994; Neuhoff
et al., 1999; Kennedy, 2016, 2018; Sun et al., 2021), and numerous
reviews of perforated synapses have been published (although
without any serious attempt to correlate them with learning or
memory) (Petralia et al., 2015, 2016, 2017, 2018, 2021).

At hippocampal synapses, the postsynaptic densities or PSDs
are ordinarily disk-shaped entities that are generally located
directly across from presynaptic neurotransmitter release sites
(Gray, 1959, 1976; Blomberg et al., 1977; Cohen et al., 1977;
Cohen and Siekevitz, 1978; Carlin et al., 1980; Dosemeci et al.,
2001; Tao-Cheng et al., 2009; High et al., 2015). They generally
appear almost continuous in thickness and density across the
breadth of the disk, and even though recent close inspections have
begun to suggest that each PSD disk may have a sub-structure,
and may be composed of sub-modules or “nanomodules”
(MacGillavry et al., 2013; Broadhead et al., 2016; Zeng et al.,
2016; Biederer et al., 2017; Chen et al., 2018, 2020; Crosby et al.,
2019; Trotter et al., 2019; Obashi et al., 2021; Ramsey et al.,
2021; Wegner et al., 2022), these PSD components pack closely
enough together to create the general impression in the EM of a
continuous plaque or a disk.

“Perforated” PSDs, in contrast, are variable in outline. They
look more like irregular and discontinuous patches in the EM, but
they are presumed to be composed of the same components that
are found in the more normal, continuous PSD disks. Reviewing
the aforementioned references, one can find a wide range of
thoughts about them, everything from conclusions that such
“perforated” PSDs are in the process of division of one plaque

into two (ultimately to form two different postsynaptic spines, in
some of the bolder claims), to conclusions that they are simply
a by-product of synaptic activity. But overall, “perforated” PSDs
have generally been interpreted as synapses-in-augmentation, as
would be expected if they were the structural correlates of the
synaptic enhancement that is presumed by everyone to be the
fundamental basis of LTP (Bliss and Gardner-Medwin, 1973; Bliss
and Lomo, 1973; Carlin and Siekevitz, 1983; Lømo, 2003, 2018;
Bailey et al., 2015).

In this report, we presented serendipitous observations that
could help to explain exactly how “bursts” of presynaptic
activity could cause perforated PSDs to form, in the first place.
Specifically, we argued that these bursts of presynaptic activity
could create delays in the process of synaptic vesicle recycling,
which could make the presynapse expand in surface area, and
do in such a manner that it could actually strain and break the
normal plaque-like PSD into a “perforated” PSD.

Our EM images were obtained from primary (dissociated cell)
hippocampal cultures prepared by classical techniques (Skrede
and Westgaard, 1971; Schwartzkroin and Wester, 1975; Ransom
et al., 1977; Mayer et al., 1989; Lu et al., 1998; Scott et al.,
2001; Blanpied et al., 2002). These were chemically stimulated
via direct application of low doses (0.1 mM) of the trivalent
cation, lanthanum (La + + +). This magical trivalent cation
has been used to stimulate spontaneous neurosecretion in many
different preparations over the past half century (Miledi, 1971;
Curtis et al., 1986; Coniglio et al., 1993; Powis et al., 1994; Powis
and Clark, 1996; Lerner et al., 2006; Chung et al., 2008; Wasser
and Kavalali, 2009; Ramirez and Kavalali, 2011), but still, no one
knows exactly how or why it does so, especially because it is
generally considered to be a “super calcium” that actually blocks
most calcium channels, and thus blocks most calcium-evoked
neurosecretory phenomena, it does not stimulate them (dos
Remedios, 1981; Lansman, 1990; Reichling and MacDermott,
1991; Meir et al., 1998).

When we first faced this conundrum 50 years ago (the
conundrum of why lanthanum blocks calcium-induced
neurosecretion but hugely stimulates spontaneous transmitter
release, in the form of huge bursts of miniature endplate
potentials or “m.e.p.p.’s” at the NMJ), we simply could not
explain it, but nevertheless we “used” the phenomenon to
deplete synaptic vesicles from frog neuromuscular junctions,
and thus to expose for the first time the resultant membranous
transformations that turned out to represent synaptic vesicle
recycling (Heuser and Miledi, 1971; Heuser, 1976, 1989a,b).
Our scientific colleagues in those days quickly followed suit,
and also used lanthanum to show that a dramatic expansion of
the presynaptic membrane can accompany this spontaneous
lanthanum-induced transmitter discharge, due to a slowdown of
synaptic vesicle recycling and accumulation of vesicle membrane
on the presynaptic surface (von Wedel et al., 1981; Jones
et al., 1982; Segal et al., 1985; Robitaille and Tremblay, 1987;
Torri-Tarelli et al., 1987, 1990; Valtorta et al., 1988). In fact, we
intend to show here—by classical thin-section EM—that it is this
presynaptic expansion, which is most dramatic in hippocampal
cultures, and furthermore, that the unique distortion(s) which
this expansion creates on the postsynaptic side of hippocampal
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synapses can greatly help to explain how and why their PSDs can
become perforated during enhanced synaptic activity.

RESULTS

Structural Evidence of Lanthanum’s
Stimulatory Effects
A total of 57 separate experiments were performed with
lanthanum on hippocampal cultures, adjusting the time of
exposure (5–30 min), the dose of lanthanum (0.1–1 mM),
the level of calcium counter ions (0–1 mM), and the method
of fixation for EM (glutaraldehyde in cacodylate buffer vs.
in Hepes buffer). Such classical dissociated cell hippocampal
cultures invariably display a huge range of synaptic types, only
vaguely reflecting the characteristic and stereotypical forms of
synapses observed in the intact hippocampus or in hippocampal
slices (Skrede and Westgaard, 1971; Schwartzkroin and Wester,
1975; Ransom et al., 1977; Mayer et al., 1989; Lu et al., 1998;
Scott et al., 2001; Blanpied et al., 2002). Nevertheless, most of
the synapses that manage to reform in such dissociated cell
cultures fall into two major categories: bouton-like (e.g., onto
dendritic protrusions that are generally described as primitive
“spines”), and plague-like (e.g., directly onto the shafts of the
primitive, disoriented dendrites in such cultures). The former
types of synapses typically have single PSD plagues that are
generally considered to be “excitatory.” These are the so-called
“asymmetric” synapses, due to their relatively thick PSDs. The
latter typically display 2 or 3 adjacent plaques in the dendritic
shaft and are generally considered “inhibitory.” These are the so-
called “symmetric” synapses, due to their relatively thin and often
barely perceptible PSDs (Gray, 1959, 1976; Blomberg et al., 1977;
Cohen et al., 1977; Cohen and Siekevitz, 1978; Carlin et al., 1980;
Dosemeci et al., 2001; Tao-Cheng et al., 2009; High et al., 2015).

Lanthanum promptly changes the appearance of both bouton-
like and plaque-like presynaptic terminals, replacing many of
their synaptic vesicles with clathrin-coated vesicles, even in the
first 5–10 min after application, and at later times, leaves many
of these presynaptic terminals almost empty, or at best, partially
filled with irregular membrane forms (as well as residual clathrin-
coated vesicles and “empty cages”) (Figures 1–6). Essentially,
these are the structural changes that we observed originally at
the frog NMJ (Heuser and Miledi, 1971; Heuser, 1976, 1989a,b),
which initiated the whole idea that synaptic vesicle membrane
could be recycled, and that we have recently been able to observe
in mammalian NMJs as well (Heuser and Tenkova, 2020).

Consequences of Lanthanum’s
Stimulatory Effects Projected Onto the
Postsynapse
Most unexpected, however, was the dramatic change in the
overall configuration of these cultured synapses, a configuration
that began to appear in lanthanum at 10 min, and peaked in
abundance at 20 min (and seemed to die down by 30 min). This
was manifested as a discrete “bulge” of the postsynapse, directly
into the midst of the presynaptic terminal (Figures 1–6).

Generally, the postsynaptic protrusions observed in
lanthanum occupy a considerable portion of the presynaptic
cytoplasm, and draw a considerable mass of postsynaptic
cytoplasm into them. In the EM, this bolus of cytoplasm
generally appears featureless, or appears finely mesh-like in
appearance. It does not look like an active, actin-based growth
from the postsynapse, but more like a passive inclusion,
only occasionally containing any recognizable postsynaptic
membranous organelle.

It is important to consider one clue as to how or why
these protrusions form in the first place. This comes from
closely examining the membrane of the presynapse that forms
the protrusion (or we could say in the invagination, when
considered from the presynaptic side). It typically displays
all the “spikes” and “clathrin cage fragments” seen in other
regions of the presynapse that are undergoing rapid and
abundant clathrin-coated vesicle formation. That is, it looks
in the EM as if the presynaptic membrane is “committed to
endocytosis” in these involutions, or is “trying” to perform
endocytosis in the regions that have been drawn inwards into
the protrusion.

Unique Positioning of the Postsynaptic
Protrusions and Distortions
Perhaps the most important aspect of these postsynaptic
protrusions in the present context, however,—that of considering
their possible role in LTP—is that they typically occur right in
the midst of the PSD. As a consequence, they occasionally drag
portions of the PSD inward as they form, depositing these PSD
fragments along the “necks” of the invaginations. More often,
however, PSD components appear to be excluded from these
invaginations—to somehow “hang back”—such that the PSD
becomes perforated or partitioned by the invagination.

How or why these invaginations form right in the midst
of the PSD—rather than around its edges, for example, where
one might imagine the membranes to be more “flexible”—is
one of the great mysteries that emerges from this study, and
remains to be answered.

DISCUSSION

Clues About How and Why the
Postsynaptic Protrusions Develop
The hypothesis that emerges from these observations is
that overly exuberant presynaptic expansion and attempts at
endocytosis are “deforming” their active zones and producing
the inward membrane bulges that perforate the PSD (Figure 7).
Support for this hypothesis came from our attempts to duplicate
the effects of lanthanum on these cultures with other sorts
of chemical stimulation of them (either by the applying the
excitatory neurotransmitter NMDA, or by elevating potassium
to depolarize all the cells in the culture). But neither of
these forms of stimulation induced any such protrusions or
inward invaginations of their postsynapses, but the most they
showed was the slight change in PSD curvature that has
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FIGURE 1 | Upper panel shows a prototypical spine synapse from a control hippocampal culture, a culture not stimulated at all. Abundant synaptic vesicles are
collected on the presynaptic side, converging on a solid, disk or plaque-like postsynaptic density (highlighted in red, inside the postsynapse, which is highlighted in
blue in this and all subsequent figures). Only a few clathrin-coated vesicles are present (highlighted in yellow), and only at the periphery of the vesicle cluster. Lower
panel shows, by way of contrast, a dramatically different spine synapse from a hippocampal culture exposed to 0.1 mM La + + + for 20 min at 37◦C. Synaptic
vesicles are severely depleted, clathrin-coated vesicles (yellow) are unusually abundant, and the postsynapse (highlighted in blue) has “protruded” into the
presynapse at several places, dragging along only fragments of the PSD (highlighted in red).
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FIGURE 2 | Examples of dendritic shaft synapses in hippocampal cultures exposed to 0.1 mM La + + + for 10–20 min at 37◦C. Synaptic vesicles are more or less
depleted, but in all cases, clathrin-coated vesicles (presumably involved in the recycling of synaptic vesicle membrane) are increased in abundance, especially along
the borders of the postsynaptic “protrusions” (highlighted in blue). Being shaft synapses (thus presumably inhibitory or Gray’s type II), the PSDs are not prominent in
these fields and thus are not highlighted in red.

been reported earlier (Dyson and Jones, 1980; Markus and
Petit, 1989; Petit et al., 1989; Markus et al., 1994; Tao-Cheng
et al., 2007; Tao-Cheng, 2019). We would argue that this
was probably because the synapses in these NMDA or K+ -
stimulated cultures were not driven out of their “comfort zones,”
the zones where they could adequately compensate for their
enhanced transmitter release (and their enhanced synaptic vesicle
exocytosis) by commensurately accelerating their membrane
recycling processes, so that they stayed effectively “in balance,”
and did not develop any net accumulation of synaptic vesicle
membrane on their surfaces, and thus did not expand in surface
area (and consequently, did not attempt to “embrace” the
postsynapse or support any postsynaptic protrusions).

Indeed, we may learn someday that the most important reason
for why lanthanum stimulation is so effective at expanding the
surfaces of nerve terminals and bringing out signs of synaptic
vesicle recycling is that it somehow slows down this membrane
recycling, at the same time that it stimulates transmitter release,
itself. This may someday be explained by several different
mechanisms: for example, by some sort of “stiffening” of the
presynaptic membrane or by La+++ tending to “glue” the
presynaptic membrane to the extracellular matrix, or possibly
by blocking sodium and calcium entry through the presynaptic
membrane, which may in some way directly slow down some
aspect of the recycling process. Indeed, there is a large body of
evidence, which suggests that clathrin-coated vesicle formation
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FIGURE 3 | Montage of several different postsynaptic “protrusions” (or presynaptic “hugs,” depending on one’s vantage point) in hippocampal cultures exposed to
0.1 mM La +++ for 10–20 min at 37◦C. Synaptic vesicles are more or less depleted, and clathrin-coated vesicles (again highlighted in yellow) are relatively abundant,
and PSDs (highlighted in red) are hanging back or are fragmented and “holding on” to the edges of the postsynaptic protrusions.

and/or synaptic vesicle recycling is somehow dependent on
intracellular Ca++ being at just the right level (Henkel and Betz,
1995; Neale et al., 1999; Vogel et al., 1999; Teng and Wilkinson,
2003; Zefirov et al., 2006; Yao et al., 2009; Morton et al., 2015;
Miyano et al., 2019; Bourgeois-Jaarsma et al., 2021; Jiang et al.,
2021). In any case, it is abundantly clear from the present
observations and from the past work that lanthanum somehow
creates a greater imbalance between exocytosis and endocytosis

than any other form of synaptic stimulation, and consequently,
produces the most enhanced accumulation of synaptic vesicle
membrane on the presynaptic surface, and thus, the greatest
expansion of the presynaptic membrane.

In this respect, these synaptic perturbations in lanthanum-
stimulated hippocampal cultures show a remarkable parallel
with the abundant, multiple, and florid invaginations of the
presynaptic membrane that were seen so many decades ago in
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FIGURE 4 | Montage of cross sections of several other postsynaptic “protrusions” or presynaptic “hugs,” from the same hippocampal cultures as in Figure 3
(exposed to 0.1 mM La +++ for 10–20 min at 37◦C). Again, it is quite apparent that synaptic vesicles are more or less depleted, compared with the relative
abundance of clathrin-coated vesicles (highlighted in yellow). Again, PSDs (highlighted in red) appear to be relatively fragmented or absent from these deeper regions
of the postsynaptic involutions.
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FIGURE 5 | Lower magnification survey views of hippocampal cultures exposed to 0.1 mM La + + + for 10–20 min at 37◦C), where only the particular dendrites
that are involuting into their apposed synapses are highlighted in blue (other dendrites are also present in these fields). These views were chosen specifically to
demonstrate the old adage that George Palade, the great “founder” of biological electron microscopy, always stressed: namely, that if a structural feature could be
found two or more times in one and the same field of view in the electron microscope, then it must be generally present, and must be not an artifact. Two
postsynaptic “protrusions” are indicated by asterisks in each field.

frog NMJs treated with lanthanum (Heuser and Miledi, 1971;
Heuser, 1976, 1989a,b). These were also studded with endocytic
profiles, and the thinking at that time was the same as today—
that lanthanum caused such an unremitting stimulation of the
NMJ that endocytosis became exhausted and “blocked” at that
point, or at least greatly slowed down, such that it left much of
the discharged synaptic vesicle membrane on the surface of the
presynaptic terminal, and thereby expanding that surface. A lot
of good immunocytochemistry was done in the ensuing decades,
which entirely supported this view (von Wedel et al., 1981; Jones
et al., 1982; Segal et al., 1985; Robitaille and Tremblay, 1987;
Torri-Tarelli et al., 1987, 1990; Valtorta et al., 1988).

The important difference between the changes seen here, in
lanthanum-stimulated hippocampal synapses, compared with the
old NMJ observations, is that the postsynapse proper is pulled
into the presynapse. This cannot happen at the NMJ, where
the presynapse is separated from the postsynapse by a thick

and rigid basal lamina. Instead, at the NMJ, the surrounding
Schwann cell gets pulled into the invaginations—or one could
say, the Schwann cell ends up “protruding” into the presynaptic
terminal. (In this regard, it is worth noting that we observed no
such “drawing inward” of surrounding glial processes in any of
our lanthanum-stimulated hippocampal cultures. This at least
partly due to the simple fact that there are not very many glial
processes around the synapses in our cultures, in the first place;
and the few glial cells that do happen to be there may have very
little “give.”) Quite different is the situation at all NMJs, where
Schwann cells totally embrace the whole nerve terminal, except
at its immediate contact with the muscle, and where the Schwann
cells are highly redundant and “plastic,” so they actively fill in any
convolutions of the presynaptic membrane that develop during
stimulation. Interestingly, in the primary neuron cultures from
the De Camilli lab, their endocytosis-inhibited genotypes show
both glial and postsynaptic involutions when the synapses are
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FIGURE 6 | “Anaglyph” 3D views of additional synapses in hippocampal cultures exposed to 0.1 mM La +++ for 10–20 min at 37◦C), from plastic blocks that were
cut thicker (at 120–150 nm), and photographed at +20◦ and –20◦ of tilt in the EM, then superimposed to make the 3–D “anaglyphs”. These require red/green
“anaglyph” glasses to fully appreciate, but even without, it is still readily apparent that synaptic vesicles are relatively depleted, coated vesicles are relatively abundant
(yellow), and postsynaptic densities are relatively fragmented (PSDs highlighted in red, and dendrites highlighted in blue).
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FIGURE 7 | Diagrammatic summary of the observations, interpretations, and hypotheses presented in this study, presented as “twelve steps”, to paraphrase a term
from popular culture. The diagram is self-explanatory, but many steps will need to be validated or explained mechanistically by future work, especially the idea that
enhanced endocytosis can cause a “break” in the presynaptic active zone (AZ), and that this break can propagate to the PSD to begin the process of perforation or
intrusion or spinule formation.

stimulated (Hayashi et al., 2008, Milosevic et al., 2011, Wu et al.,
2014).

Comparing Classical Postsynaptic
“Spinules” With the Protrusions and
Distortions Seen Here in Lanthanum
There is no good reason to think that the so-called synaptic
“spinules” described in many previous studies of hippocampal
synapses (referenced in paragraph 1, above) can or should be
differentiated from the fatter postsynaptic protrusions into the
presynapse that we described here, as being the consequences
of lanthanum stimulation. Neither type of invagination contains
any postsynaptic structure that would suggest they were “active”
invasions into the presynapse. In other words, neither type
contains any signs of actin, nor any other cytoskeletal component
might suggest that they actively push their way into the
presynapse. Instead, the EMs presented here show clearly that
both “spinules” and their fatter counterparts invade regions of the

presynapse that show all the signs of being engaged in clathrin-
mediated endocytosis. As explained above, this dedication to
endocytosis is reason enough to understand why the presynapse
should be involuted at those sites. But it also suggests that
the spinules and their fatter counterparts, the postsynaptic
protrusions, are not actively splitting the PSDs as they invade the
presynapse. Again, their lack of contractile/propulsive machinery
would seem to rule this out. Instead, this PSD splitting appears
to be a passive process, almost an inadvertent consequence of the
presynaptic involution, itself (inadvertent, except that it perhaps
was selected by nature to be the fundamental “growth” event of
LTP!!).

It is worth stressing here that both “spinules” and the fatter
protrusions display uniformly close approximations of pre- and
post-membranes, in their midst—the important point being
that these are closer approximations than those observed at
the AZ/PSD differentiations of the synapse per se, where so
many spanning and attachment molecules are known to be
located (and are known to be so abundant and strong that
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they can even hold the pre- and post-membranes together
during homogenization of nervous tissue) (Blomberg et al.,
1977; Cohen et al., 1977; Cohen and Siekevitz, 1978; Carlin
et al., 1980; Dosemeci et al., 2001). All these specific synaptic
attachment proteins have spanning lengths of∼15–20 nm, which
are greater than the pre-to-post-membrane separation seen at the
protrusions/involutions under question (∼10 nm). Indeed, this
10 nm separation distance that we observed in all the protrusion
sites is the normal “minimum” found everywhere in the neuropil
of our hippocampal cultures, e.g., between glia and neuronal
elements, and between undifferentiated neural elements and each
other. (Of course, this “minimum” is not nearly close enough to
suggest electrical coupling, or anything of that sort.) In any case,
this is one more indication that the protrusions are not pulling
in the PSDs and their associated attachment proteins with them;
rather, they are splitting the PSDs, and leaving these attachment
proteins behind.

Here, we should add the qualification that despite the obvious
structural parallels between synaptic spinules and their fatter
counterparts displayed here, nothing in our studies to date would
suggest that a precursor/product relationship exists between
them. While both seem clearly to be exacerbated or accentuated
by synaptic stimulation, the timing of this stimulation varies
over several orders of magnitude (from just a few minutes in
the present study of acute, ongoing chemical stimulation) to
hours or longer, in previous studies characterizing the long-term
aftereffects of LTP induction, as listed above. In other words,
it is not (yet) possible to suggest that spinules grow into fatter
protrusions as they invade, or that fat protrusions shrink down
to spinules as they withdraw. These possibilities await further
experimental discussion and analysis.

CONCLUSION AND FUTURE
PERSPECTIVES

The simple observations and interpretations offered here provide
a rationale for why such discontinuous or broken-apart PSDs
could very likely represent the physical substrate of the temporary
“tagging” of synapses that is generally thought to be so important
for initiating the whole process of LTP (Frey and Morris, 1997,
1998a,b; Martin and Kosik, 2002; Redondo and Morris, 2011;
Shires et al., 2012; Evans et al., 2021). This initiation is thought
to prepare the synapse for later, long-term enhancement via
new protein synthesis, which is presumed by all to be the
consolidating event that culminates LTP (Bliss and Gardner-
Medwin, 1973; Bliss and Lomo, 1973; Carlin and Siekevitz, 1983;
Lømo, 2003, 2018; Bailey et al., 2015).

The rationale would be that the breakup of solid plaques
or disks of PSD would create new edges where “modules”
or molecular components of postsynaptic receptors, channels,
and signaling molecules could be added, to enlarge or even
create completely new PSD plaques. In other words, that the
discontinuities and irregularities in the PSD created by the act of
perforation, due to the exacerbation of synaptic vesicle recycling
in the presynapse, would create additional (and new) free edges
around the plaques—which originally had, by the simple fact

that they were disk-like—had the minimum number of free edges
possible, for a given collection of receptors (Figure 7).

The logical conclusion to draw from this seems to be that
newly generated PSD “free edges” represent the synaptic “tags”
that initiate LTP (Frey and Morris, 1997, 1998a,b; Martin and
Kosik, 2002; Redondo and Morris, 2011; Shires et al., 2012; Evans
et al., 2021). Although we did not attempt in this study to provide
the complete structural evidence for this hypothesis, we predict
that it should soon become available from many of the new
LM and EM methods that are being developed to “tag” various
presynaptic and postsynaptic proteins and protein complexes
(MacGillavry et al., 2013; Broadhead et al., 2016; Zeng et al.,
2016; Biederer et al., 2017; Chen et al., 2018, 2020; Crosby et al.,
2019; Trotter et al., 2019; Obashi et al., 2021; Ramsey et al., 2021;
Wegner et al., 2022). Here, we focused only on providing direct
EM images that demonstrated how (and why) enhanced bursts
of presynaptic secretory activity apparently create or cause the
perforation of otherwise plaque-like postsynaptic densities, in
the first place.

MATERIALS AND METHODS

Cell Culture
Dissociated cell hippocampal cultures were prepared from
papain-dissociated hippocampi, which were harvested from
embryonic day 20 rat fetuses, then plated onto confluent glial
feeder cultures on 22 mm glass coverslips, and grown for
3–4 weeks before use. Throughout this growth period, the
culture medium was half-exchanged 3 × weekly with fresh
medium containing MEM (with Earle’s salts, 6 g/L glucose,
and 3.7 g/L sodium bicarbonate) supplemented with 5% (v/v)
heat-inactivated horse serum, 2% (v/v) fetal bovine serum,
and 2 mM Glutamax (all from Life Technologies), along with
136 µM uridine and 54 µM 2-deoxy-5-fluoro-uridine (from
Sigma), plus N3 supplement from Sigma (which contains BSA,
apotransferrin, putrescine, selenium, T3, insulin, progesterone,
and corticosterone) (for further details, see Ransom et al., 1977;
Mayer et al., 1989). Throughout this time, the coverslips were
maintained in P35 culture dishes in a 36◦C incubator with
10% CO2.

Culture Treatments
To conduct the experiments, the culture dishes containing
the coverslips were removed from the CO2 incubator and
immediately washed with a bicarbonate and phosphate-free
“Ringers” solution. [removing bicarbonate so that the cultures
did not alkalinize in room air, with its low CO2, and removing
phosphate so that the subsequent application of lanthanum
did not just precipitate as La(PO4)3]. Henceforth, they were
maintained on a rotating platform in a 37◦C water bath. After
three more washes in HCO3 and PO4-free “Ringers,” for a total
time of 12 min, the cultures were then exposed to a “Ringers”
solution containing 0.1 mM LaCl3 (with its usual CaCl2 reduced
from the usual 2 mM CaCl2 to only 1 mM, to minimize any
competition of Ca + + with the La + + +. Alternatively,
cultures were treated for 5–15 min at 37◦C with high K+ [a

Frontiers in Cellular Neuroscience | www.frontiersin.org 11 August 2022 | Volume 16 | Article 920360

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-920360 July 26, 2022 Time: 19:4 # 12

Heuser Lanthanum-Induced Hippocampal Synapse Remodeling

“Ringers” containing 90 mM KCl (whose osmolarity had been
compensated by reducing the concentration of NaCl)], or treated
for 5–10 min at 37◦C with 50–60 µM of N-methyl-D-aspartic
acid (NMDA) in normal HCO3-free “Ringers,” but containing
our usual 2 mM of CaCl2 and 3 mM of NaH2PO4.

Fixation and Processing
Primary fixation was accomplished by replacing the Ringers
solution in the culture dishes with 2% glutaraldehyde, freshly
dissolved from a 50% stock (from EMS, Inc.) into a “substitute
Ringer’s,” where the normal 5 mM Hepes buffer concentration
was increased 6× for fixation purposes (and NaCl was decreased
commensurately, to keep the solution isotonic). Most important
at this point was to wash away the La + + + and restore
the normal 2 mM calcium in the medium, to prevent any
La+ + + precipitates in the extracellular spaces of the cultures.
(Indeed, this 2 mM calcium is maintained throughout primary
fixation and postfixation, because we believe that it helps to
minimize cellular membrane deterioration).

Immediately after the exchange into the glutaraldehyde, the
culture dishes were placed on a vigorously rotating table, and
the fixative was exchanged one or two more times, to ensure
rapid and uniform fixation. (Even though this aldehyde fixation
was probably complete in just a few minutes, we still left the
cultures in fixative for another 1–2 h, or even overnight, before
initiating postfixation).

The sequence of postfixation was as follows. (This was all
done at room temperature, because we believe that cooling
biological membranes to 4◦C at any time during fixation damages
cellular membranes.) First, the glutaraldehyde and Hepes buffer
was washed away with 100 mM cacodylate buffer, with two
exchanges over a period of at least 15–30 min. (This buffer always
contained the same 2 mM Ca + +, in this and all subsequent
steps, so it will henceforth be termed “Cacodylate-Ca”). Next, the
cultures were postfixed with 0.25% OsO4 and 0.25% potassium
ferocyanide in Cacodylate-Ca buffer (made fresh, by mixing 0.5%
OsO4 with 0.5% KFeCN6 immediately before use) for exactly
30 min, no longer. Then, after washing away the OsO4 with
fresh Cacodylate-Ca buffer (for 5–10 min), the cultures were
“mordanted” with 0.5% tannic acid (mw 1,700) in Cacodylate-
Ca buffer (making sure to use a batch of tannic acid from EMS
or from Polysciences that did not precipitate over time), for
30 min only, no longer. Finally, after washing away the tannate
with fresh Cacodylate-Ca buffer, the pH over the cultures was
dropped by a brief wash in 100 mM acetate buffer at pH 5.2,
to prepare them for “block-staining” with 0.5% uranyl acetate
in this acetate buffer (pH 5.2 being the natural pH of dissolved
UA, anyway). Then, after this block-staining, they were very
briefly washed again in acetate buffer to remove the UA, and
finally progressively dehydrated with ethanol in the usual manner
(sequential 5–10 min rinses in 50, 75, 95, and 100% ethanol).

Epoxy Embedding and Thin-Sectioning
Thereafter, the coverslips were removed from the P35 culture
dishes to polypropylene bottles, where they could be embedded
in Araldite 502 epoxy resin (the old “English Araldite”), via an
intermediate transfer from ethanol into propylene oxide, then

into two-thirds of Araldite and one-third of propylene oxide.
(The bottles were needed because the propylene oxide would
have dissolved in the original P35 culture dishes). Finally, the
fully infiltrated cultures still in their polypropylene bottles were
covered with a 10–12 mm deep layer of freshly prepared Araldite
502 epoxy resin and vacuum-embedded in a 70◦C vacuum oven,
using a strong mechanical pump to draw off all air until the
Araldite formed small bubbles (from release of residual propylene
oxide and ethanol), and after readmission of air, were left for
24–48 h to fully polymerize.

When fully hardened, the polypropylene bottles were removed
from the oven, broken with pliers to release the Araldite
blocks, and the blocks were cut with a jeweler’s saw into pieces
appropriate for mounting at the desired orientation of the
ultramicrotome. Finally, the original glass coverslips on which
the cultures were grown were dissolved off of the Araldite by a
brief (5–10) min dip into full-strength hydrofluoric acid (47%
HF), followed by a number of washes.

Blocks were initially sectioned at 0.5–1.0 µm and stained with
1% toluidine blue and 1% sodium borate in water for 15 s on a hot
plate, to examine in the LM and to orient further block-trimming
for thin-sectioning.

Electron Microscopy
Thin sections were cut at 40 nm to obtain the crispest views of
membranes, at 90 nm for best general overviews, and at 150–
200 nm to obtain 3D information about the overall deployment
of synapses in the cultures. Thin sections were picked up on high-
transmission fine hexagonal 200-mesh copper grids (made in
England by Guilder, Ltd., and sold in the US by Ladd Industries,
cat. no. G200HHC), after the grids had been coated with a
silver thin film of Formvar, and then carbon-coated by 10 s
of vacuum-evaporated carbon, for maximum specimen stability.
Finally, sections were stained for 5 min drops of 1% lead citrate
(in a closed dish with NaOH pellets around to prevent CO2
precipitation of the lead).

They were then examined in a standard TEM operated
at 80 kV and mounted with the smallest available objective
aperture, for maximum contrast (and maximum removal of
chromatic aberration from the thicker sections). They were
photographed with the highest resolution digital camera possible,
regardless of sensitivity, as such Araldite sections were essentially
indestructible and could tolerate endless electron bombardment.
(We generally used the AMT “BioSprint” 29 Megapixel Camera,
due to its many superior operating features, as well as its
very clear 6.5k × 4.5k images). The final digital images
were processed and colorized with Photoshop, taking special
advantage of its “high-pass” filter when very dark features
happened to be located next to very light areas in the images,
which made details hard to see. (We typically set the high-pass
filter at 40 pixels for our 6,500 × 4,500 pixel AMT images,
and layered this filtered image on top of the original image,
at 50% density).

Postscript
We find it absolutely marvelous that over 45 years ago, Sally
Tarrant and Aryeh Routtenberg, from Northwestern University’s
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Neuroscience Laboratory in Chicago, had the prescience and
foresight to add the following tiny and obscure footnote to
their fine study, a study in which they described and discussed
“synaptic spinules” in the brains of rats they had prepped for
EM by perfusion with Karnovsky’s fixative. The footnote was
as follows:

P.S. “It is also possible that the ’synaptic spinule’ represents an
active synapse and that the presynaptic invagination represents
the coalescence of synaptic vesicles and the coated vesicle a device
for membrane recycling (Heuser and Reese, 1973). The spine
apparatus might contribute to the postsynaptic membrane as it
protrudes into the presynaptic membrane invagination." Tarrant
and Routtenberg (1977).
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