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Dopamine transporter (DAT) SPECT imaging is increasingly utilized for diagnostic purposes in suspected Parkin-
sonian syndromes. We performed a cross-sectional study to investigate whether assessment of texture in DAT
SPECT radiotracer uptake enables enhanced correlations with severity of motor and cognitive symptoms in
Parkinson's disease (PD), with the long-term goal of enabling clinical utility of DAT SPECT imaging, beyond
standard diagnostic tasks, to tracking of progression in PD. Quantitative analysis in routine DAT SPECT imaging,
if performed at all, has been restricted to assessment of mean regional uptake. We applied a frameworkwherein
textural features were extracted from the images. Notably, the framework did not require registration to a com-
mon template, andworked in the subject-native space. Image analysis included registration of SPECT imagesonto
corresponding MRI images, automatic region-of-interest (ROI) extraction on the MRI images, followed by
computation of Haralick texture features.We analyzed 141 subjects from the Parkinson's ProgressiveMarker Ini-
tiative (PPMI) database, including 85 PD and 56 healthy controls (HC) (baseline scans with accompanying 3 T
MRI images). We performed univariate andmultivariate regression analyses between the quantitative met-
rics and different clinical measures, namely (i) the UPDRS (part III - motor) score, disease duration as mea-
sured from (ii) time of diagnosis (DD-diag.) and (iii) time of appearance of symptoms (DD-sympt.), as well
as (iv) the Montreal Cognitive Assessment (MoCA) score. For conventional mean uptake analysis in the pu-
tamen, we showed significant correlations with clinical measures only when both HC and PD were included
(Pearson correlation r = −0.74, p-value b 0.001). However, this was not significant when applied to PD
subjects only (r=−0.19, p-value = 0.084), and no such correlations were observed in the caudate. By con-
trast, for the PD subjects, significant correlations were observed in the caudate when including texture met-
rics, with (i) UPDRS (p-values b 0.01), (ii) DD-diag. (p-values b 0.001), (iii) DD-sympt (p-values b 0.05), and
(iv) MoCA (p-values b 0.01), while no correlations were observed for conventional analysis (p-values =
0.94, 0.34, 0.88 and 0.96, respectively). Our results demonstrated the ability to capture valuable information
using advanced texture metrics from striatal DAT SPECT, enabling significant correlations of striatal DAT
binding with clinical, motor and cognitive outcomes, and suggesting that textural features hold potential
as biomarkers of PD severity and progression.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Imaging of the dopaminergic system with SPECT has become wide-
spread in Europe and has entered a new active phase in the US since
, 601 N. Caroline St., Baltimore,

. This is an open access article under
123I-ioflupane-dopamine transporter (DAT) SPECT was approved by
the FDA in 2011 (Catafau and Tolosa, 2004; Grachev et al., 2012;
Kupsch et al., 2012).

For diagnosis, visual interpretation of DAT SPECT images has been
the common assessment approach (Catafau and Tolosa, 2004; Grachev
et al., 2012; Kupsch et al., 2012).Meanwhile, more objective assessment
can be performed with quantitative analysis (Djang et al., 2012) involv-
ingmanual or automated ROI drawing and analysis of mean-ROI uptake
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(Badiavas et al., 2011; Koch et al., 2005). Quantitative analysis may be
more sensitive to detecting the early stages of disease and to better
track disease progression. Such an effort is also consistent with the
aim of the Parkinson's Progressive Marker Initiative (PPMI) (Parkinson
Progression Marker, 2011) to identity biomarkers of PD progression, a
critical step in the development of novel and enhanced treatments for
PD.

In the present work, we perform a cross-sectional study to investi-
gatewhether use of advanced textural features enables enhanced corre-
lations with clinical assessments. This is a step towards the long-term
goal of enabling clinical utility of DAT SPECT imaging, beyond standard
diagnostic tasks, to tracking of progression in PD. Our proposed ap-
proach is based on the observation that SPECT and PET images convey
important information at the voxel level, whereas commonly used
regions-of-interest (ROI) mean uptake analysis may oversimplify the
available spatial uptake information.We aim to explore a texture quan-
tification paradigm applied to SPECT neurochemical imaging. The pres-
entwork includes assessment of bothmotor and non-motor symptoms,
since it has been shown that a number of neuropsychiatric symptoms
and cognitive disorders are more common in PD compared to the
general population and contribute to the disability associated with the
illness (de la Riva et al., 2014; Gustafsson et al., 2015).

There is emerging literature on the use of advanced metrics that
quantify tumor uptake heterogeneity and their enhanced prediction of
treatment response and survival outcome in different cancers (Aerts
et al., 2014; Asselin et al., 2012; Chicklore et al., 2013; Eary et al.,
2008; El Naqa et al., 2009; Hatt et al., 2015; Kumar et al., 2012;
Lambin et al., 2012; Rahmim et al., 2016; Tixier et al., 2014; Tixier
et al., 2011; van Velden et al., 2011; Vriens et al., 2012). We have, in
the past, investigated advanced texture analysis in the context of
quantitative brain PET imaging, in studies of PD (Gonzalez et al., 2013;
Klyuzhin et al., 2015; Sossi et al., 2012) and neuroinflammation
(Rahmim et al., 2012). These techniques have the advantage of not re-
quiring normalization/registration of ROIs to a common structure. In
the present work, we focus on DAT SPECT imaging, given its increasing-
ly popular clinical usage. Furthermore, we have strong evidence that
application of texture metrics from the higher resolution spectrum of
PET images to lower resolution imaging in the domain of SPECT can re-
tain significant information (Blinder et al., 2014).

PD is a progressive, degenerativemovement disorder. It is character-
ized by dopaminergic neuron loss in the substantia nigrawith the loss of
neuron terminals in basal ganglia structures, particularly the dorsal stri-
atum (composedmainly of the putamen and dorsal part of the caudate)
(Brooks et al., 1990; Garnett et al., 1987; Stoessl et al., 2011). Pathophys-
iologic studies of dopamine loss have in fact clearly indicated highly
heterogeneous uptake (primarily in the form of sharp rostrocaudal
and dorsoventral gradients) in the caudate and the putamen (see
Fig. 1 in Kish et al., 1988). We hypothesize that application of textural
features will improve the ability to capture state of disease as manifest-
ed in the form of uneven loss of tracer uptake within these structures.
Textural information, we postulate, can thus provide improved correla-
tions with motor and non-motor outcomes in PD patients.
2. Materials and methods

2.1. DAT SPECT images

Weanalyzed DAT scan images from the PPMI database (www.ppmi-
info.org/data) (Initiative, 2012; Parkinson Progression Marker, 2011).
All scans selected were performed at baseline. For consistency our anal-
ysis only included participants who had SPECT data acquired on similar
kinds of scanner (Siemens, 2-headed ECAM or Symbia systems), and
who had additionally undergone a high-resolution 3 T MRI scan. With
these selection criteria, we arrived at 141 subjects, which included 85
PD and 56 HC.
The subjects in the database were imaged 4 ± 0.5 h following injec-
tion of 111-185 MBq of DAT SPECT (123I-Ioflupane). Subjects were
pretreated with saturated iodine solution (10 drops in water) or per-
chlorate (1000 mg) prior to the injection to block thyroid update. Raw
projection data were acquired into a 128 × 128 matrix stepping each
3 deg. for a total of 120 projections into two 20% symmetric
photopeak windows centered on 159 keV and 122 keV with a total
scan duration of approximately 30–45 min. The SPECT raw projec-
tion data were imported to a HERMES (Hermes Medical Solutions,
Stockholm, Sweden) system for iterative OSEM reconstruction. This
was done for all studies to ensure consistency of the reconstruction
method.

The reconstructed files were then transferred to PMOD (PMOD
Technologies, Zurich, Switzerland) for subsequent processing. Attenua-
tion correction ellipses where drawn on the images and Chang 0 atten-
uation correction was applied to the images utilizing a site specific mu
that was empirically derived from phantom data acquired during site
initiation for the trial. Once attenuation correction was completed, a
standard 3D Gaussian filter (6.0 mm FWHM) was applied.

2.2. Image analysis and quantification paradigm

We first segmented the high-resolution MRI images to obtain the
boundaries of the caudate and putamen (both left and right), as well
as the occipital cortex (used as a reference region), utilizing a multi-
atlas segmentation method (Tang et al., 2013). We also resampled
each SPECT image onto the corresponding MRI grid performing rigid
mapping, using the FSL utility FLIRT (Jenkinson and Smith, 2001).

We subsequently computedmean radiotracer concentration in each
ROI anddivided it by the concentration in the reference region, to obtain
an approximate estimate of the distribution volume ratio, conventional-
ly used as a quantitative outcome (Badiavas et al., 2011; Djang et al.,
2012; Koch et al., 2005). Since PD typically affects the striata in an asym-
metric fashion, the more and less affected sides were considered sepa-
rately in subsequent analysis.

For our proposed analysis, we performed Haralick analysis, which
has found increasing utility in the field of radiomics and heterogeneity
quantification. This is especially because Haralick analysis captures
valuable local information, and at the same time, some of its metrics
have been shown to depict very good robustness to segmentation
(Echegaray et al., 2015) and overall test–retest reproducibility
(Grkovski et al., 2015; Leijenaar et al., 2013), even outperforming con-
ventional mean uptake analysis (Tixier et al., 2012; van Velden et al.,
2016), which we presumed would be advantageous for tracking of
disease progression.We computed and evaluated thirteen Haralick tex-
ture measures: (1) energy, (2) entropy, (3) correlation, (4) contrast
(also known as inertia (Conners and Harlow, 1980; Oh et al., 1999)),
(5) variance, (6) sum mean, (7) agreement (Parkkinen et al., 1990)
(also known as Cohen's kappa (Cohen, 1960)), (8) cluster shade,
(9) cluster tendency (or prominence), (10) homogeneity, (11) max
probability, (12) inverse variance, and (13) dissimilarity.

We note here that Martinez-Murcia et al. (2014) utilized 11 of these
Haralick texture features (excluding agreement and dissimilarity) in a
recent study. However, that study only focused on automated diagnosis
of PD, i.e. the ability of a metric to discriminate between control and af-
fected subjects, unlike the present work, which significantly changes
focus to correlating imaging measures with motor and non-motor
symptoms. Furthermore, comparisons with conventional analysis
were not reported by the authors. Here, we aim to identify the added
value of imaging measures with respect to conventional analysis, in
a completely different paradigm of correlation with clinical assess-
ments, aiming ultimately to identify imaging biomarkers of disease
progression.

As prerequisite for computation of Haralick metrics, we extracted
the gray-level co-occurrence matrix (GLCM) (Conners et al., 1984;
Haralick et al., 1973). A 32 Gy-level quantization was utilized, and 13
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spatial directions in 3Dwere considered, with voxels separated by a dis-
tance of 1, and the 13 matrices averaged and subsequently normalized.
Modifying quantization bins and distance was not seen to significantly
alter relative performance of metrics, with the exception of inverse var-
iance that was highly modulated.

2.3. Correlation with clinical measures

We performed Pearson correlation analysis between the above-
mentioned image-based metrics and the following clinical measures:
(i) The unified Parkinson's disease rating scale (UPDRS) – part III
(motor). (ii, iii) Disease duration (DD), taken with respect to time of
diagnosis (DD-diag.) as well as time of appearance of symptoms (DD-
sympt.). Finally, we performed analysis involving a non-motor, cogni-
tive outcome, specifically (iv) the Montreal Cognitive Assessment
(MoCA).

2.4. Statistical analysis

Univariate correlation was first performed (Pearson correlation).
Correction for multiple testing of different features (metrics) was per-
formed using the false discovery rate (FDR) Benjamini–Hochberg (BH)
step-up procedure. This procedure works as follows: (i) We order the
k = 1… m tested variables according to their p-values in increasing
order (denoted P(1)… P(m)). (ii) For a given α (we set, α = 0.05), we
find the largest k satisfying PðkÞ≤ k

mα. (iii) Positive discoveries are de-
clared for tested variables corresponding to P(1)… P(k).

Following univariate analysis, multivariate stepwise linear regres-
sion analysis was also performed to identify independent factors. Met-
rics were entered sequentially (if p-value b 0.10) and then removed if
they became non-significant (if p-value N 0.05). In addition to conven-
tional and proposed textural features, subject age was also included
within the analysis to take into account any confounding effects.

3. Results

Fig. 1 shows example SPECT images for HC and PD subjects, and an
overlaid MR-based segmentation, following SPECT-MRI registration as
described in the Materials and methods section.

When bothHC andPD subjectswere included in correlation analysis,
conventional normalized mean uptake approach resulted in significant
correlationswith clinicalmeasures. For instance, Fig. 2(A) depicts signif-
icant correlation (Pearson correlation r = −0.74, p-value b 0.001) be-
tween mean uptake and UPDRS score for the more affected putamen
Fig. 1. Examples of transaxial, coronal and sagittal slices through the DaT SPECT images for a HC
side. However, we found that the correlation became insignificant
when HCs were removed from the dataset as clearly shown in
Fig. 2(B) (r = −0.19, p-value = 0.084). For further confirmation, we
also utilized conventionalmeanuptake valueswithin the PPMI database
(generated using a different image analysis pipeline than ours), and
made similar observations of no significant correlation in the PD-only
case (r =−0.20, p-value = 0.065). Furthermore, very similar patterns
were observed when correlating against disease duration (both DD-
diag. And DD-sympt.) (not shown).

Our key finding in this work has been that some of the advanced tex-
tural features, that are also pronounced in emerging radiomics/texture-
analysis research in cancer imaging (Hatt et al., 2015), depict significantly
enhanced correlations with clinical measures within the PD population
compared to traditional measures. Interestingly, the caudate was seen
to exhibit the highest correlation with severity of motor and cognitive
symptoms (see also Discussion section). Fig. 3 shows correlation patterns
against UPDRS for a number of metrics in the caudate (more affected
side). Conventional mean uptake depicted no correlation (p-value =
0.94) (as we also observed using the PPMI database image analysis pipe-
line; p-value=0.75; not shown). By contrast, when utilizing entropy, ho-
mogeneity, agreement, dissimilarity and contrast, p-values of 0.0092,
b0.001, b0.001, 0.0022 and 0.0085 were obtained, respectively, as
shown in the figure. Pearson correlations (r) are also reported in the
plot caption. The signs of the correlations for the 5 texture metrics
(+,−,−,+,+ respectively) were all consistent with their specific defini-
tions, since the metrics homogeneity and agreement decrease in value
with increasing heterogeneity in tracer uptake, unlike entropy, dissimilar-
ity, and contrast. Following correction for multiple testing (FDR adjust-
ments), all five metrics retained statistical significance (Table 1).

When correlating against disease duration asmeasured from time of
diagnosis (DD-diag.), as shown in Fig. 4, even more pronounced effects
were observed. Unlike conventional analysis (p-value=0.88), the same
features as in Fig. 3, i.e. entropy, homogeneity, agreement and dissimi-
larity, and contrast, depicted very significant p-values (0.0027, b0.001,
0.0012, b0.001 and b0.001), all of which were also statistically signifi-
cant after FDR adjustments (Table 1).

Similar patterns were observed when considering disease duration
as measured from time of appearance of symptoms (DD-sympt.), as
shown in Fig. 5. Specifically, as before, conventional mean uptake
depicted no correlation (p-value= 0.34), whereas fourmetrics (homo-
geneity, agreement, dissimilarity and contrast) exhibited significant
correlations, with p-values of 0.019, 0.029, 0.021 and 0.040 respectively,
though they were not retained after FDR adjustments. The signs of the
correlations for texture metrics both Figs. 4 and 5 were again consistent
with metric interpretations as in Fig. 3.
subject (A) and a PD subject (B), also showing segmentation for caudate and putamen (B).

Image of Fig. 1


Fig. 2. Plots of normalized mean ROI uptake (y-axis) vs. UPDRS, when including both PD (n = 85; blue ‘o’) and HC (n = 56; orange) (A), and when only including PD subjects (B). The
results are shown for the more affected putamen side.
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Fig. 6 depicts correlations against the cognitive MoCA scale in PD
subjects. Again, it was seen that conventional mean uptake did not
show correlations (p-value = 0.96). At the same time, a distinct set of
Haralick textural metrics, than those that were related to disease dura-
tion ormotor scores,were seen to show significant correlationswith the
cognitive scale. Specifically, correlation, variance and cluster tendency
depicted p-values of 0.0021, b0.001, and 0.0034 respectively, while
entropy depicted p-value of 0.0053, all of which were statistically
significant after FDR adjustments. This finding also implies that the
texture metrics are not merely disease-sensitive, but may also have
specificity towards tracking of particular neuropsychological function
that is impaired and associated with striatal dopamine degeneration.
We also note that the fact that lower MoCA scores indicate poorer per-
formance is consistent with the observed correlations with increased
heterogeneity in tracer uptake. All the various p-values are summarized
in Table 1.

Next, to extract independent factors, we performed multivariate
analysis (as described in Section 2.4), and the results are also
Fig. 3. Plots of metric values vs. UPDRS, for conventionalmean uptake (A), aswell as five Haralic
0.28. The more affected caudate side is shown, for PD subjects (n = 85).
summarized in Table 1. In multivariate analysis of correlation against
UPDRS scores, the Haralick textural feature agreement was retained as
statistically significant (p-value b 0.001). In analysis of disease duration,
depending on analysis of DD-diag. vs. DD-sympt., the single feature
retained was contrast (p-value b 0.001) vs. homogeneity (p-value =
0.019), respectively. In the case of MoCA, variance was retained
(p-value b 0.001), while age (which was not significant in univariate
analysis; p = 0.076) became significant (p-value = 0.012).

Overall, it is worth noting that in multivariate analysis, only one
of the texture features retains significance (even in the case of
MoCA, the other significant predictor is age, not another texture
metric). This we believe is related to the correlated nature of sub-
sets of Haralick texture measures: similarly, in some oncology lit-
erature, there appears convergence towards the use of very few
Haralick texture measures such as entropy and dissimilarity (e.g.
(Hatt et al., 2015)). Our exploratory study here, first of its kind,
also suggests that use of one or two Haralick texture measures
can be sufficient, homogeneity or agreement, when correlating
k texturemetrics (B-F). The correlation valueswere−0.008, 0.28,−0.36,−0.37, 0.33 and

Image of &INS id=
Image of Fig. 3


Table 1
Univariate (U) and multivariate (M) analysis of correlation between textural features and clinical scores in the More affected caudate.

Parameters p-values

UPDRS III DD-diag. DD-sympt. MoCA

U M U M U M U M

Conventional 0.94a 0.88a 0.34a 0.96a

Entropy 0.0092 0.0027 – 0.0053
Homogeneity b0.001 b0.001 0.019b 0.019 –
Agreement b0.001 b0.001 0.0012 0.029b –
Dissimilarity 0.0022 b0.001 0.021b –
Contrast 0.0085 b0.001 b0.001 0.040b –
Energy 0.031b 0.037b – 0.041b

MaxProbability 0.029b – – –
SumMean – – – 0.029b

Correlation – – – 0.0021
Variance – – – b0.001 b0.001
Cluster Tend. – – – 0.0034
Age – – – – 0.012

Notes:
(1) Two other Haralick features (cluster shade, inverse variance) were also included in the analyses, but had insignificant contributions, and thus are not shown in this table.
(2) We report p-values in the table, while those in univariate analysis that become non-significant after correction for multiple testing (FDR) are indicated using b (see below).

a p-Values for conventional normalized mean uptake were insignificant.
b p-Value b 0.05 but not significant after correction for multiple testing (p-values N 0.05 are not shown except for conventional analysis).
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against UPDRS or disease duration (both DD-diag. And DD-sympt.),
and variance when correlating against MoCA, in addition to age.

4. Discussion

The proposed framework can have important implications.
Potentially enhanced sensitivity to track subtle neurochemical
changes can provide novel insights into the relationship between
dopaminergic alterations and PD clinical manifestations, while
extending the clinical usefulness of this imaging technique. Further-
more, since there is strong evidence that DAT binding is reduced in
the prodromal stage of PD (Nandhagopal et al., 2008; Sossi et al.,
Fig. 4. Plots of metric values vs. DD (from diagnosis), for conventional mean uptake (A), as we
−0.35, 0.44 and 0.47. The more affected caudate side is shown, for PD subjects (n = 85).
2010), these techniques can be applied to images from subjects at
increased risk of PD (e.g. mutation carriers or subjects with rapid-
eye-movement sleep behavior disorder) in an attempt to discern
dopaminergic patterns that might be involved in pathogenesis
and to assess the impact of novel disease modifying therapies. Im-
portantly, the correlations between clinical, motor and neuropsy-
chological measures are enhanced by applying the proposed
methodology.

An exponential decline of tracer uptake in PD has been reported
(Nandhagopal et al., 2009; Nandhagopal et al., 2011) for radiotracers
of presynaptic dopaminergic integrity, including methylphenidate
(MP), a PET marker for the membrane dopamine transporter (DAT) as
ll as five Haralick texture metrics (B-F). The correlation values were−0.016, 0.32,−0.39,

Image of Fig. 4


Fig. 5. Plots of metric values vs. DD (from symptoms), for conventional mean uptake (A), as well as four Haralick texture metrics (B–E). The correlation values were 0.11,−0.25,−0.24,
0.25 and 0.22. The more affected caudate side is shown, for PD subjects (n = 85).
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also targeted in DAT SPECT. However, this was for an extensive time
span from healthy state to PD. At the same time, to track state of disease
within PD, a narrower, linear range is likely sufficient. In fact, our
Fig. 6. Plots of metric values vs. MoCA, for conventional mean uptake (A), as well as four Hara
−0.31. The more affected caudate side is shown, for PD subjects (n = 85).
application of logarithmic operation to tracer uptake, or use of alterna-
tive correlations (e.g. Spearman) did not provide enhanced correlation
with motor and cognitive symptoms.
lick texture metrics (B-D). The correlation values were −0.005, 0.33, −0.36, −0.31 and

Image of &INS id=
Image of Fig. 6


e7A. Rahmim et al. / NeuroImage: Clinical 12 (2016) e1–e9
To enhance conventional analysis, we also explored application of
the concept of laterality (Salimpour and Shadmehr, 2014), utilized in
the present work to assess asymmetry in tracer uptake. We quantified
laterality via the definition |R-L|/((R + L)/2), wherein mean uptake in-
formation from the right (R) and left (L) sides of the structure of interest
were utilized. However, this information, though useful for diagnostic
purposes, did not enhance correlations with disease progression, rela-
tive to our proposed framework.

We found the caudate to provide significantly greater correlation
of image-based texture metrics with clinical measures, compared to
the putamen. Pathophysiologic studies of dopamine loss have clearly
indicated rostrocaudal and dorsoventral gradients in the caudate and
the putamen (see Fig. 1 in Kish et al., 1988). However, since dopa-
mine loss is significantly greater in the putamen, which renders it
suitable for classification/diagnosis, use of the caudate instead may
be a valuable choice for enhanced tracking of disease, especially as
combined with texture metrics that capture variations in the higher
uptake caudate region. An analogous argument may be applied to
prefer the use of the less affected putamen for tracking of disease,
since following initial asymmetric loss of uptake in PD, it can provide
a wider dynamic range (e.g. see Figs. 2–3 in (Nandhagopal et al.,
2009)). We detected some improvements in performance when uti-
lizing the less affected side of the putamen than the more affected
side, though only for DD-sympt. and MoCA (not shown). However,
these were significantly overshadowed by the strong findings in
the caudate, wherein we found the more affected side to provide
the greatest correlations with clinical measures, especially DD-diag.
and MoCA.

The difficulties and uncertainties with PD diagnosis and disease
metrics are well known and considerable. Early disease diagnosis re-
mains a major challenge, since early symptoms may be subtle and
nonspecific. The insidiousness of the onset is also responsible for
why patients' ability to detect the first symptoms is greatly varied
– affected by personality, level of education and professional back-
ground, the type of initial symptom (e.g. tremor versus bradykine-
sia), and likely a number of additional factors. The somewhat
subjective nature of UPDRS evaluation makes this scale also prone
to inter-rater variability. There have been multiple attempts to im-
prove the reliability and accuracy of disease metrics and establishing
early diagnosis, such as feature extraction algorithms using MRI data
(Noh et al., 2015; Singh and Samavedham, 2015), population-based
modeling using a combination of genetic and clinical data (Nalls
et al., 2015) or combination of DAT SPECT and clinical data (Suwijn
et al., 2015). Despite this, though we recognize uncertainties associ-
ated with onset (both time of diagnosis and time of first reported
symptom) and disease metrics, the present framework with image-
driven textural features had to rely on standard and validated data
such as UPDRS and best available date of first symptom/diagnosis. In
any case, it was observed for these metrics that significantly enhanced
correlations were obtained with image-driven textural features in our
proposed framework.

We are presently extending our investigation in a number of direc-
tions. Patterns of dopamine depletion in the basal ganglia are heteroge-
neous and more pronounced in the posterior putamen, whichmight be
related to asymmetric impairment of dopaminergic neurons in the
substantia nigra (Kish et al., 1988). For the caudate nucleus as well,
the depletion of dopamine is heterogeneous, with more reduction in
the most dorsal rostral region (Kish et al., 1988). PD also involves de-
creased connectivity from themore affected putamen to the cerebellum
and contralateral putamen (Piggott et al., 1999), and the impaired
striatum-cerebellar connection is likely a reflection of abnormal signals
from the basal ganglia to influence cerebellar function (Bostan et al.,
2010). We are investigating (Salimpour et al., 2015) application of a
non-rigid normalization framework, wherein all structures of interest
as imaged usingDAT SPECT are registered to a common template via ac-
companyingMRI data, enabling further investigation as to the extent by
which different sub-regionswithin the putamen and caudate are corre-
lated with and linked to different clinical symptoms.

This work included analysis of baseline scans in the PPMI dataset
(first visit scans). Our ongoing efforts also include extension of this
work to longitudinal scans. One issue to note is that the advanced met-
rics used in this work achieved significant correlations in themore diffi-
cult case of using cross-sectional data (since in longitudinal analysis,
each subject is in a sense used to normalize itself and to compensate
for inter-subject confounding factors). It is interesting to investigate to
what extent intra-subject longitudinal analysis improves applicability
of textural features to track progression of disease at an individual sub-
ject level.

Finally, we plan to extend our analysis of texture features (radiomics)
to radiogenomics (also known as imaging genomics) (Hariri and
Weinberger, 2003; Kerns et al., 2014; Medland et al., 2014), in
which genetic information is additionally incorporated along with
image-based textural features to find inter-relationships and to enable
enhanced tracking of disease progression.

5. Conclusion

A number of Haralick textural features considered to characterize
tracer uptake inDAT SPECTwere found to depict significant correlations
with clinical measures of UPDRS and disease duration. A different set of
metrics was also seen to depict correlations with the cognitive MoCA
scale. Overall, our results demonstrated ability to capture valuable infor-
mation using advanced texture metrics, beyond conventional mean up-
take analysis. Textural features as suchmay hold considerable potential
as biomarkers of PD progression. Further longitudinal studies are need-
ed to substantiate these findings.
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