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Abstract: The potential of artificial intelligence (AI) applied to clinical
data from electronic health records (EHRs) to improve early detection for
pancreatic and other cancers remains underexplored. The Kenner Family
Research Fund, in collaboration with the Cancer Biomarker Research
Group at the National Cancer Institute, organized the workshop entitled:
“Early Detection of Pancreatic Cancer: Opportunities and Challenges in
Utilizing Electronic Health Records (EHR)” inMarch 2021. Theworkshop
included a select group of panelists with expertise in pancreatic cancer,
EHR data mining, and AI-based modeling. This review article reflects
the findings from the workshop and assesses the feasibility of AI-based
data extraction and modeling applied to EHRs. It highlights the increasing
role of data sharing networks and common data models in improving the
secondary use of EHR data. Current efforts using EHR data for AI-based
modeling to enhance early detection of pancreatic cancer show promise.
Specific challenges (biology, limited data, standards, compatibility, legal,
quality, AI chasm, incentives) are identified, with mitigation strategies
summarized and next steps identified.
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P rogress remains painstakingly slow in early detection of pan-
creatic cancer, and rigorous prevention and identification strat-

egies are lacking. The most prevalent form of pancreatic cancer is
pancreatic ductal adenocarcinoma (PDAC), which involves the
malignant transformation of the exocrine duct cells. The cancer
is more common with age and slightly more common in men than
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women. Both racial and socioeconomic disparities have been
identified in the diagnosis, treatment, and prognosis of this can-
cer.1 Genetic/familial factors contribute to 10% to 20% of those
diagnosed. Although only 3.2% of all new cancers in the United
States are PDAC, the disease contributes to a substantial portion
of cancer deaths. Recent statistics indicate that PDAC has the third
highest number of cancer deaths after lung/bronchial and colorec-
tal cancers. Importantly, data suggest that an estimated 60,430
new cases will be diagnosed in 2021, and more than 48,000 indi-
viduals will die of the disease within the year.1

The onset of PDAC is often asymptomatic, and many late-
stage signs are nonspecific. Reported symptoms include stomach
and/or backache, changes in bowels, jaundice, new onset of diabe-
tes, and emotional variability.2 Such symptoms could be due to
multiple etiologies, where a busy general practitioner may not
have the time or experience to connect the dots leading to further
evaluation and a timely pancreatic cancer diagnosis. Although the
progression of the disease is thought to silently take place over
multiple years, most patients are diagnosed at a late stage.3 As a
result, early-stage PDAC is frequently under-identified. This is a
missed opportunity for timely, effective treatment. When a malignant
lesion is detected early and at a resectable stage, potentially curative
treatment options are available to the patient. In other words, early de-
tection saves lives, but current risk assessment and screening tools are
failing to capture this opportunity.2

Early detection is critical to maximizing the number of peo-
ple who survive PDAC.4,5 A singular opportunity arises from
identifying and monitoring high-risk individuals. Inherent in this
is a stage shift, where more individuals are diagnosed at a local
stage versus a distant stage. On the other hand, intensive surveil-
lance may raise concerns about overtesting, particularly for older
patients who tend to have additional comorbidities, making testing
itself a potential risk. These concerns highlight the need for better
discernment of who should or should not be monitored for the
first signs of PDAC. Such triaging could contribute to meaningful
and cost-effective screening or early detection programs.6–8

To enhance early detection of pancreatic cancer, researchers
are increasingly turning to advanced computational approaches
for risk assessment and stratification. Recently, artificial intelli-
gence (AI) has emerged as a state-of-the-art tool for early detection
of cancer and other diseases.9–12 Artificial intelligence algorithms
have been applied to detect imaging abnormalities, extract relevant
information from EHR files, identify patients who need intensive
care unit care, and prevent medication errors. In cancer research,
AI-based algorithms have been instrumental in facilitating bio-
marker discovery, improving diagnostic imaging workflows, and
accelerating drug development.13

As noted by Thomas J. Fuchs, DSC, Dean of Artificial Intel-
ligence and Human Health at Icahn School of Medicine at Mount
Sinai, NewYork, NY, “Without a doubt, the impact of artificial in-
telligence will eclipse that of the Industrial Revolution, personal
computing, and the internet combined. In medicine, it's just getting
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started.”14 Could this technology be applied to risk assessment
and stratification for early detection of pancreatic cancer? Could
AI mitigate the continuous diagnostic challenges and speed the
tempo of early detection?
ELECTRONIC HEALTH RECORDS
Although AI and its subfield, machine learning (ML), are in-

creasingly applied to imaging data to improve early detection for
pancreatic and other cancers, clinical data from electronic health
records (EHRs) remain underexplored. Only a handful of research
studies have usedML to build predictive models with EHR data in
this field.11,15,16 These studies have demonstrated that by leverag-
ing AI/ML and EHRs, subpopulations at high risk for PDAC can
be identified 1 to 2 years before diagnosis. Such efforts also high-
light specific challenges and opportunities for improving the sec-
ondary use of EHR data with AI and innovative data science
solutions. Combined with natural language processing (NLP), an-
other subfield of AI, ML algorithms can greatly facilitate process-
ing and analyzing information from EHRs. The growth of health
data sharing networks and AI techniques has provided new oppor-
tunities to improve early detection of cancers.15 This availability
of longitudinal data for a large swath of patient populations is par-
ticularly promising for cancers with relatively low incidence rates
such as PDAC.

Discussion at the recent AI and Early Detection of Pancreatic
Cancer 2020 Summit organized by Kenner Family Research Fund
and the American Pancreatic Association indicated that a singular
opportunity might exist in data found in EHRs to improve risk
stratification for this cancer.13 As a follow-up to the Summit,
Kenner Family Research Fund, in collaboration with the Can-
cer Biomarker Research Group at the National Cancer Institute
(NCI), Bethesda, Md, presented the “Early Detection of Pancre-
atic Cancer: Opportunities and Challenges in Utilizing Electronic
Health Records (EHR)” in March 2021 (workshop: https://www.
kennerfamilyresearchfund.org/early-detection-of-pancreatic-
cancer-electronic-health-records/ and workshop videos: https://
www.kennerfamilyresearchfund.org/videos-opportunities-and-
challenges-in-utilizing-electronic-health-records/). The workshop
included a select group of panelists with expertise in PDAC, EHR
data mining, and AI-based modeling. Experts shared their experi-
ences using different common datamodels (CDMs) and data shar-
ing networks for AI-based data extraction and predictive risk
modeling. Also discussed were strategies used by these networks
to mitigate challenges inherent to the use of EHR data, including
protection of patient privacy and confidentiality, data transfer agree-
ments, consideration of racial/ethnicity diversity, ongoing updates
in institutional EHR systems, and funding. A partial list of networks
is presented in Table 1.

There is a growing interest in applying AI-based risk stratifi-
cation models to pancreatic cancer. Limor Appelbaum from Beth
Israel Deaconess Medical Center, Boston, Mass, and colleagues
from Martin Rinard's laboratory at Massachusetts Institute of
Technology's Computer Science and Artificial Intelligence Labo-
ratory, Cambridge, Mass, developed and validated a prediction
model that can identify individuals at high risk for PDAC up to
1 year before diagnosis through diagnostic codes extracted from
EHRs.15 More recently, they were able to improve the model's per-
formance using an independent, multicenter data set, and additional
laboratory test features.26 Instead of using predefined feature sets for
model development, they used multiple indicators to mitigate the
potential risk of overfitting. The risk stratification models based on
concatenated laboratory test and diagnostic feature sets outperformed
diagnostic-based and laboratory test–based models for early pre-
diction of PDAC development.
© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
Appelbaum and her colleagues15,17 are now deploying PDAC
risk models in a federated manner using TriNetX, Cambridge,
Mass, a global federated network. According to Matvey Palchuk,
Vice President of Informatics at TriNetX, this growing network
enables access to patient clinical data (eg, demographics, encoun-
ters, diagnoses, procedures, medications, laboratory test results,
vital signs, etc) from more than a hundred health care organizations
across the globe, of which 70 are in the United States. Palchuk be-
lieves in using “just the right amount” of federation and aggregation
to ensure privacy protection while enabling creative problem solv-
ing. Merging data sets across institutions and countries not only in-
creases power but also reduces the possibility of bias. In federated
learning, the models are trained separately on the different data sets
and then merged. The data can be stored locally with a federated
layer applied on top to ensure site-agnostic training, validation,
and deployment.

Studies are made possible owing to increased availability of
EHR-derived clinical data on millions of patients accumulated
by health data sharing networks and development of CDMs fo-
cused on using clinical patient data for research. Examples of such
CDMs are the Informatics for Integrating Biology and the Bed-
side (i2b2),27 The Observational Medical Outcomes Partnership
(OMOP),28 National Patient-Centered Clinical Research Network
(PCORnet),29 All of Us Research,30 and others. TriNetX is also
such a CDM, albeit based on public-private partnerships instead
of being grant-funded.

Clinical data from EHRs are part of real-world data, defined
as any data collected at the point of care and outside of the context
of a clinical trial, and can also include sources such as disease reg-
istries, claims databases, and wearables. Recently, secondary use
of EHR data has emerged as a critical component of clinical re-
search studies, as research involving EHR is frequently exempt
from institutional review board (IRB) review. This has resulted
in a patchwork of health data sharing networks, most of which
use different CDMs.31 Each network was designed to enable data
sharing among participating organizations but not between net-
works. Sometimesmappings are available between CDMs (eg, be-
tween i2b2 and OMOP), a characteristic that may simplify the
harmonization process for CDMs developed and used by various
networks. Latest work by the National Coronavirus Disease of
2019 (COVID-19) Cohort Collaborative32,33 led to development
and deployment of mappings from i2b2/ACT, PCORnet, and
TriNetX to OMOP as part of their aggregated data enclave to
study patients with COVID-19.

In addition, multiple efforts have been underway for over a
decade to bridge the gap between health and clinical research data
standards, but the process is still in its early stages.31 The US Food
and Drug Administration (FDA) led a project, funded by the
PCORTrust Fund, aiming to harmonize CDMs with the Biomed-
ical Research Integrated Domain Group (BRIDG) domain infor-
mation model.34 The BRIDG model can guide transfer of EHR
data generated by clinical trials into electronic data capture sys-
tems and links biomedicine and health care concepts in the areas
of clinical imaging and pathology. The FDA also supports adop-
tion of the Fast Healthcare Interoperability Resources, as the data
standard for exchanging EHRs.35,36

Michael Rosenthal from Dana-Farber Cancer Center, Boston,
Mass, introduced a conceptual framework based on risk factors as
indirect and direct signs of pancreatic disease, on a continuum over
time (Fig. 1). These factors could be amenable to advanced compu-
tational techniques such as AI/ML and integrated into a cumulative
assessment of risk or a screening program. However, successful ap-
plication of AI/ML techniques to EHRs requires CDMs to enable
effective data extraction and analysis across populations and sites.
Currently, EHR-based studies face many challenges starting with
www.pancreasjournal.com 917
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TABLE 1. Health Data Networks and CDMs

Network/Funders CDM Reference and/or URL

TriNetX TriNetX 17

https://trinetx.com
OHDSI/Reagan-Udal Foundation,
FDA, PhARMA, FNIH

OMOP https://www.ohdsi.org

Cleveland Clinic UMLS-based 18

i2b2/NIH NCBC i2b2/ACT 19,20

https://www.i2b2.org
MSK Cancer Center MSK-specific 21–23

PCORI PCORNet https://pcornet.org
REP REP-specific 24

Cancer Research Network Consortium/NCI VDW 25

http://www.hcsrn.org/crn/en/
VSD/CDC CDC-specific https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vsd/index.html
Sentinel Data Partners/ FDA Sentinel https://www.sentinelinitiative.org

ACT indicates the Accrual to Clinical Trials project; CDC, the Centers for Disease Control and Prevention; FNIH, the Foundation for the National In-
stitutes of Health; NCBC, the National Centers for Biomedical Computing; NIH, the National Institutes of Health; OHDSI, the Occupational Health Data
Sciences and Informatics group; PhARMA, the Pharmaceutical Research andManufacturers of America; PCORNet, the National Patient-Centered Clinical
Research Network; URL, Uniform Resource Locator; VDW, the Virtual Data Warehouse; VSD, the Vaccine Safety Datalink project.
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ambiguous definitions, custom Current Procedural Terminology
codes, accurately excluding negative diagnoses, and navigating
third-party systems that load legacy data into EHRwithout updating.
In other work, many health systems have gone through different
versions of EPIC, contributing to a Tower of Babel situation,
according to Rosenthal.

Rosenthal shared his experience using the OMOP CDMs for
multicenter research.37 This model has been adopted by the Occu-
pational Health Data Sciences and Informatics group, which devel-
oped a suite of open-source tools to support CDM implementation
and use. Current data models can improve accessibility of data,
uniformity of data fields, and data encoding consistency. The main
advantage of using OMOP is the ability to include multiple data
sources from collaborators, who can adapt the same CDM. This
approach is also compatible with federated learning, in which all
Patient Health Information stays local, and just the models move
around, addressing privacy and confidentiality concerns. In addi-
tion, new sites can be added with veryminimal centralwork. A dis-
advantage of the OMOPmodel, according to Rosenthal, includes a
FIGURE 1. Early detection conceptual framework. Courtesy of Michael R
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lack of integrated high-level conceptual mappings as in the Unified
Medical Language System (UMLS).

Alex Milinovich from the Cleveland Clinic Health System,
Cleveland, Ohio, discussed his approach to EHR data extraction
based on the UMLS unique concept identifiers.38 With 9 million
patients, Cleveland Clinic has one of the largest EHR systems in
the world. It hosts 17,000 tables in the database and 5 billion lab-
oratory results. The system supports 260,000 users, with 68,000
users entering data currently. To enable secondary use of these
data, Milinovich and his team applied a 4-step mapping process
to normalize health data from multiple sources into a UMLS-
based CDM. The UMLS system combines more than 100 differ-
ent medical vocabularies and thousands of term concepts.38 The
process uses classic data mining and NLP techniques to extract
data from the EHR data and map it to UMLS concept identifiers.
As a result, all data collected over the years is stored in a research-
ready repository. Given the barriers frequently associated with
data ascertainment, having repositories like this is a significant step
toward meeting research goals.
osenthal.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 2. Challenges, Potential Mitigation Strategies, and Next Steps

Challenge Mitigation Strategy Next Steps

Complex PDAC
biology

Tracking multiple potential
predictors over time

Observational, natural history
studies

• Develop better understanding of interrelationship between PDAC and other diseases
of the pancreas

• Apply AI-based modeling to improve early detection of PDAC and diseases with
similar etiology or symptoms

Limited availability of
longitudinal data for
AI-based risk
modeling

Secondary use of EHR and
other relevant patient data
collected and harmonized
by clinical data sharing
networks

• Facilitate retrospective cohort discovery by leveraging centralized and federated EHR
data repositories compiled by data sharing networks

• Incentivize multinetwork partnerships to extract data from EHRs relevant to PDAC
risk modeling

• Extend AI-based risk modeling to diseases with similar signs and symptoms
Gap between health data
standards and clinical
research data
standards

Fast Healthcare
Interoperability Resource
and related efforts

• Incentivize common adoption of standards by clinical and research communities
• Incentivize interoperability of EHR and electronic data capture systems
• Exploring EHRs as an alternative to eCRFs
• Encourage the use of IT products certified by the ONC Health IT Certification
program

Incompatible CDMs
used by health care
systems

Data sharing networks, which
normalize EHRs using
network specific CDMs

• Extend CDM mappings relevant to PDAC
• Incentivize data sharing networks to develop more interoperable CDMs
• Facilitate multinetwork partnerships focused on specific use cases such as AI-based
risk modeling for PDAC

Legal, intellectual
property, privacy
related, data sharing
barriers across
organizations and
networks

Develop privacy-protecting
data sharing approaches like
federated learning and other
private-sector innovations

• Validate and leverage federated learning and other private-sector innovations in data
sharing for risk modeling of PDAC

• Expand privacy-preserving methods for linking multi-modal patient records
• Incentivize data sharing networks to extract data from EHRs relevant to PDAC and
other diseases of the pancreas

• Encourage health systems to engage in patient care optimization and building a
learning health system focused on disease prevention and population health
management

Insufficient data quality
and reliability

Approaches for validation of
data reliability and quality
developed by data sharing
networks

• Develop shared criteria for evaluating data reliability and quality
• Develop shared criteria for validation of the approaches
• Encourage adoption of best practices for data extraction by clinical centers
participating in PDAC research

• Developing methods for normalizing unstructured data, such as clinician's notes
• Incentivizing use of standardize software for diagnostic codes
• Expanding standardized vocabularies for oncology and PDAC

AI chasm: poor
clinical utility and
generalizability of AI
systems

Transparency of validation,
benchmarking competitions
and possibly other
certification process (ie,
FDA, NCCN, USPSTF)

• Incentivize interdisciplinary partnerships andAI validation and benchmarking efforts
• Establish predefined validity specific to use cases and the endpoints of interest
• Incentivize external validation of AI systems on external multi-institutional data sets
• Expand the development of multimodal AI-based risk models by combining EHRs
with imaging, omics, and other data

• Private-public partnerships for software benchmarking competitions
Lack of incentives for
efforts focused on
precision prevention
of PDAC and public
health management

Multidisease partnerships and
collaborations to build a
virtual network of
researchers and clinicians

• Leverage existing networks to promote academic-industry partnerships
• Facilitate multi-network partnerships focused on specific AI use cases relevant to
PDAC and related conditions or diseases

eCRFs indicates electronic case report forms; IT, information technology; NCCN, the National Comprehensive Cancer Network; ONC, the Office of the
National Coordinator for Health Information Technology; USPSTF, the US Preventive Services Task Force.
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Aside from data extraction and normalization, secondary use
of EHRs requires de-identification and review by the IRB. Like
many other health systems, the Cleveland Clinic strongly prefers
keeping the patient data private while providing researchers with
summary statistics for building prediction models. Milinovich's
team pulls the data and completes the analysis, which obviates
the need for de-identification. However, many projects involve clini-
cians' notes, and de-identifying notes is complicated and time-
consuming. In addition, it is challenging to obtain an IRB approval
for such collaborative multisite studies, given the waiver of consent
that research like this often requires.39

Another challenge involves validation of the diagnoses that
are annotated in the record in EHR systems. For example, elec-
tronically identifying patients with new-onset diabetes is not al-
ways straightforward given the variable diagnostic approaches
© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
and definition of diabetes used by clinicians. Some institutions
may have 50 codes for measuring blood glucose levels. Some pa-
tients are fasting, and some are not. Some are in the emergency
department, some are inpatient, some are at home using a Blood
Sugar Fingerprint Scanner. ShawnMurphy fromHarvardMedical
School, Boston, Mass, illustrated how his team tackled this prob-
lem. They developed the i2b2 system, which allows investigators
at Mass General Brigham, Boston, Mass, to manage project-
related clinical research data.19,27 To improve accuracy and enable
validation, Murphy and his team applied NLP to match data from
multiple sources, including doctors' notes and billing data.

The i2b2 system enables fast access to aggregate numbers for
diverse patient cohorts across hospital systems without needing an
IRB approval. However, detailed data only stay where the patients
receive services, and therefore, IRB can approve these requests.
www.pancreasjournal.com 919
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TheMass General Brigham system contains records for more than
6.7 million patients, including 3.5 billion searchable facts: diagno-
ses, medications, genomics, procedures, and so forth. Access to
the system is authorized by a person's faculty status, and collabo-
rators are authorized by faculty to use this tool at Mass General
Brigham. The i2b2 software is broadly distributed along with
demonstration data and allows many organizations to extend its
modular framework.20 There are multiple i2b2 implementations
across the United States and internationally as well.

In cancer research, there is an additional challenge in knowl-
edge extraction from EHRs involving the “oncology phenotype
gap.” Electronic health record data alone cannot provide sufficient
information to explain the variation and treatment outcomes or
guide precision prevention strategies for cancer patients. Peter
Stetson from Memorial Sloan Kettering (MSK), New York, NY,
talked about the MSK Cancer Center approach to closing this
gap via augmentation of EHRs with multimodal phenotyping of
the whole human. The MSK platform is based on information ex-
change “among patients foremost and then on strategic relation-
ships with specific partners.”21

Memorial Sloan Kettering collects patient-reported data for
clinical and research purposes, including MSK Engage, an elec-
tronic questionnaire tool enabling the collection and visualization
of patient-generated health data. Another platform, Precision In-
sight Support Engine (PRECISE), was designed to match patients
to investigational therapies based on molecular and clinical criteria.22

The MSK toolset also includes the Memorial Sloan Kettering-
Integrated Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT) system, which stores information on genetic alterations
implicated in cancer predisposition syndromes.23 These platforms
are used to extract a key set of core cancer data elements that come
from OMOP, Nasser (a tumor registry data standard), and the
Minimal Common Oncology Data Elements often referred to as
mCODE. Some challenges remain, such as extensions of OMOP
for oncology or further automation of data extraction with NLP.

Jason Block from the HarvardMedical School shared his ex-
perience of leveraging PCORnet for epidemiologic studies fo-
cused on obesity and chronic disease. This extensive, distributed
network was funded by the Patient-Centered Outcomes Institute
(PCORI) to serve as the infrastructure to support comparative ef-
fectiveness research.40 PCORnet uses a CDM, which has similar-
ities to OMOP and the FDA Sentinel CDM used for health plan
claims data. The FDA has been working with PCORI to advance
their postmarketing surveillance research enterprise called the
Sentinel program. PCORnet includes diagnoses, laboratory re-
sults, demographics, procedures, and medications for a relatively
diverse population with robust longitudinal data. According to
Block, PCORnet shares many of the challenges common to other
networks and aims to address them with advanced computing
techniques. For example, NLP is increasingly being used to bring
in unstructured data.

Many risk modeling projects involve linking back to the full
text of the medical records. For that reason, full de-identification
of the data for research purposes is not always feasible. Jennifer
St. Sauver at Mayo Clinic, Rochester, Minn, talked about her ap-
proach to this challenge. She is co-principal investigator of the Na-
tional Institutes of Health–funded Rochester Epidemiology Project
(REP), which aggregates information from medical care available
to residents of southeast Minnesota and southwest Wisconsin.41

The REP initiative involves a dynamic platform for EHR and AI re-
search, which includes a comprehensive medical record linkage
system, going back for nearly half a century. The project intends
to help researchers optimally define and identify specific study pop-
ulations and follow them over time. Various NLP algorithms have
been developed to facilitate information extraction for poorly coded
920 www.pancreasjournal.com
conditions in the medical record. For example, one project aims
to develop an algorithm to identify persons with delirium.42

The data are structured in models like those of other large groups
such PCORnet and the Cleveland Clinic, so there is some degree
of interoperability.

DISCUSSION
The final portion of the workshop was dedicated to various

discussions, and a potential roadmap was summarized by Suresh
Chari, TheUniversity of TexasMDAndersonCancerCenter,Houston,
Tex, and Sudhir Srivastava, Cancer Biomarkers Research Group,
Division of Cancer Prevention, NCI, Bethesda, Md. Dr Srivastava
remarked, “Electronic health records are a goldmine with many
clinical as well as biological parameters that can help” predict prog-
ress in pancreatic cancer or any other cancer type in the future, im-
prove data accuracy, and promote clinical trial efficiency.

Current efforts of AI in the pancreatic cancer space are pri-
marily used in imaging with some limited application in tissue
and liquid biomarker assays. The use of AI in the analysis of pa-
tient characteristics (ie, EMR analysis, social media, pharmacy,
and insurance claim records, lifestyle) is in the development stage.13

Most current studies use classical techniques of AI rather than
more advanced tools that may eventually yield better performance
and improved insights. Although current AI technologies may not
be able to demonstrate a causal relationship, they may effectively
flag predictors of high risk, prompting further investigation and
earlier detection.

The AI bias challenge is particularly relevant to pancreatic
cancer owing to its heterogeneity and relatively low prevalence
in the general population. Federated learning and CDMs are ex-
pected to help overcome the data scarcity and mitigate this bias,
which in turn may motivate AI developers to focus on early detec-
tion of cancer instead of the next Twitter optimization algorithm.

To expand efforts in this area, close collaboration across dis-
ciplines and between AI experts and pancreatic cancer researchers
is critical. There is a need for a mechanism that links people in
clinical pancreatic research with the AI community to bring
modern techniques into the analytic processes of very established
groups and to initiate interactions that smooth theway for efficient
and effective collaborations across institutions. In addition, a
central source for information on data sources and AI efforts
in PDAC is essential.

FUTURE DIRECTIONS
Research efforts, including studies presented at the 2021 work-

shop, demonstrate that longitudinal patient records offer a singular
opportunity for improving risk assessment and stratification for
pancreatic cancer in presymptomatic people. Some longitudinal
information can be obtained from observational cohort studies
such as the New Onset Diabetes study sponsored by the NCI
and the National Institute of Diabetes and Digestive and Kidney
Diseases. However, EHRs and other records obtained in routine
health care represent a significant resource, which can transform
predictive risk modeling for pancreatic cancer.43,44

Advancements in AI and data science continue to accelerate
both data extraction and risk modeling based on longitudinal pa-
tient data. Because of heterogeneity and size, EHR data are partic-
ularly amenable to cutting-edge AI techniques such as ML/DL
and NLP. However, there are several key challenges to using these
techniques on EHR data to improve risk assessment or stratifica-
tion of pancreatic cancer. These challenges include sample size
requirements, need for CDMs, and an acceptable level of data
quality, among others. Furthermore, clinical relevance and gener-
alizability of AI models, multisite collaborations or partnerships,
© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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and incentives for prevention research are critical to developing
trustworthy and unbiased AI systems (Table 2).

Research has implemented multiple creative solutions to the
challenges in applying AI to EHRs. To take these promising de-
velopments further, appropriate measures need to be put in place
to ensure successful use of promising strategies to improve risk as-
sessment and stratification for PDAC. Lastly, a concerted effort
similar to the effort initiated by the Alliance of Pancreatic Cancer
Consortia toward AI for prediagnostic imaging of pancreatic can-
cer45 is necessary to properly address these challenges, use miti-
gating strategies, and initiate next steps.

CONCLUSIONS
Applying AI techniques to population data can benefit both

patients and society at large. However, no single entity can achieve
success in this area alone. It will require a diverse group of stake-
holders and experts to make this possible. The potential benefits
of AI for early detection stand a better chance of success if all part-
ners and stakeholders are aligned and take part in developing the
plan. Government and industry collaboration in these endeavors
should be encouraged. Likewise, patient advocacy groups play
an essential role as they serve as the hub between patients, govern-
ment agencies, private sectors, and academia. Time is of the es-
sence with this disease. The frustration level of patients, their
families, and medical practitioners linked to the absence of an ear-
lier detection protocol cannot be underestimated.

I am reminded that our work in science is meant not
just to enrich the scientific literature & culture—but
to serve the improvement of human lives—even when
that is hard and takes time to come to fruition. One is
humbled by the challenge.

Chris Sander, April 9, 2021
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