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The First Clinical Medical College, Lanzhou University, Lanzhou, China

Intermittent fasting (IF) is gaining popularity as a therapeutic dietary strategy that
regulates metabolism and can alter the development of metabolic disorders. An
increasing amount of research has connected ocular diseases to IF and discovered that
it has a direct and indirect effect on the eye’s physiological structure and pathological
alterations. This article summarizes the progress of research on IF in regulating the
physiological structures of the ocular vasculature, the anterior segment of the eye, the
retina, and the choroid. We explored the therapeutic potential of IF for various common
ocular diseases. In the future, a comprehensive study into the fundamental processes
of IF will provide a direct and rigorous approach to eye disease prevention and therapy.

Keywords: intermittent fasting, energy metabolism, eye, inflammatory response, eye diseases

INTRODUCTION

Intermittent fasting (IF), also known as intermittent energy restriction (IER), is a new type of
fasting therapy that alternates casual eating with restrictive eating for a set time, aiming to affect
organism metabolism through dietary interventions. This easy-to-follow food restriction diet has
been demonstrated to have numerous health benefits, including disease prevention and the slowing
of aging. Dating back to 1997, Weindruch and Sohal showed that calorie restriction strategies
might prolong lifespan by reducing body weight and oxidative stress (1). Subsequent studies have
extended its beneficial effects to other aspects, such as diabetes, cardiovascular disease, cancer, and
neurodegenerative diseases (2).

Currently, major IF diets include alternate-day fasting, periodic fasting, time-restricted fasting,
and religion-related fasting. Alternate-day fasting is a form of fasting in which a day of normal
eating alternates with a day of fasting, during which adequate water intake is ensured. It is currently

Abbreviations: IF, intermittent fasting; IER, intermittent energy restriction; FGF21, fibroblast growth factor 21; PGC-
1α, peroxisome proliferator-activated receptor γ coactivator 1 α; NAD, nicotinamide adenine dinucleotide; PARP1,
polyadenosine diphosphate ribose polymerase 1; CD38, ADP-ribose cyclase; LEPR, leptin receptor; PRDM1, PR/SET
structural domain 1; IGFBP-1, insulin-like growth factor binding protein-1; BDNF, brain-derived neurotrophic factor;
HNF4α, hepatocyte nuclear factor 4α; ND, no data; CH, corneal hysteresis; CRF, corneal resistance factor; CT, choroidal
thickness; CCT, central corneal thickness; ACD, anterior chamber depth; ACV, anterior chamber volume; CD, corneal density;
LD, lens density; IOP, intraocular pressure; IOP-GAT, IOP with Goldmann applanation tonometer; IOPg, goldman-correlated
IOP; CFT, central foveal thickness; SFCT, subfoveal choroidal thickness; LDL, low-density lipoprotein; HDL, high-density
lipoprotein; Apo, apolipoprotein; DR, diabetic retinopathy; RECs, retinal endothelial cells; TUDCA, taurodeoxycholate;
GPBAR1, G protein-coupled bile acid receptor 1; MMPs, matrix metalloproteinases; EAU, experimental autoimmune
uveoretinitis; AMD, age-related macular degeneration (AMD).
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the most common form of IF. Periodic fasting is a diet that
involves fasting for 1 or 2 days per week and regularly eating the
rest of the time. The 5:2 light fasting method is the most typical
form of periodic fasting, where only 2 days of a week restrict
dietary intake. During the time-limited fasting, participants
fasted only at specific times of the day. Religion-related fasting
is a prevalent form of IF based on religious beliefs. Ramadan
fasting entails abstaining from all food and water from dawn to
sunset for over a month, and abstaining from drugs, smoking,
and sexual activity (3). Most eye-related population studies have
been conducted around Ramadan fasting (4–7).

The eye is a vital sensory organ that receives most information
from the external environment. With lifestyle changes, eye
diseases and ocular complications of metabolic disorders, such as
diabetes and hypertension, are consistently increasing. Chronic
ocular diseases affect patients’ quality of life and impose
a heavy economic burden on families and society. Dietary
interventions have shown potential for prevention and adjunctive
treatment in ocular pathologies due to its ease of acceptance and
implementation. Nevertheless, there is a lack of evidence about
IF and ocular disease. IF can alter a variety of ocular biological
parameters and significantly impact some ocular surface diseases,
retinopathies, etc. It is essential to understand the effects of IF
on physical parameters and pathological changes in the eye.
This review summarizes the benefits of IF on the eye and the
prevention of ocular diseases by describing the effects of IF on
various biological parameters of the eye and discusses possible
physiological mechanisms of the effects of IF on the eye.

INTERMITTENT FASTING AND OCULAR
BIOLOGICAL PARAMETERS

As a new dietary pattern, IF has an important role in the
body’s metabolism. At the same time, IF can also alter the
sympathetic and parasympathetic tone and insulin sensitivity,
improve blood circulation and flow patency, and thus alter ocular
blood circulation, choroidal and retinal thickness, intraocular
pressure (IOP), and the anterior segment of the eye. It has an
important effect on the local metabolism and structure of the eye.
This case is depicted in Figure 1 and Table 1.

Intermittent Fasting and Ocular Blood
Distribution
Intermittent Fasting Lowers Blood Pressure and
Improves the Ocular Blood Supply
Hypertension plays a vital role in ocular blood perfusion and
vascular distribution. The retina and other peripheral organs such
as the brain and kidneys have similar vascular structures and
physiological properties (8). When blood pressure rises, extensive
retinal small artery stenosis and localized arteriovenous stenosis
also occur, resulting in reduced retinal perfusion (9). If blood
pressure remains high for an extended time, the blood-retinal
barrier will be destroyed, leading to an exudative phase. Retinal
hemorrhages and cotton wool spots appear during this period,
leading to optic disc edema and macular edema (10). In addition,
Hua et al. reported a significant decrease in vascular density in

patients with a 5–10-year history of hypertension, a change which
is likely related to the chronic effects of hypertension (11).

During early IF, systolic and diastolic blood pressure may
be reduced without weight loss in obese men with prediabetes.
This improvement in blood pressure is likely related to reducing
insulin levels during fasting (12). It has been shown that both
systolic and diastolic blood pressure decrease in hypertensive
patients during prolonged IF (13, 14). Under the same conditions,
there was no significant change in overall blood pressure
between the fasting and non-fasting healthy groups. Still, peak
systolic velocity in the ophthalmic artery, central retinal artery,
and temporal short posterior ciliary artery were decreased by
approximately 19.18, 43.60, and 13.92%, respectively (15). This
decrease in blood pressure improves ocular vascular structure
and density and maintains normal ocular perfusion (15).

In addition, during IF, the sympathetic tone of the organism
decreases, while the parasympathetic tone increases (16). Patients
with hypertension have a problem with their autonomic function,
which means their parasympathetic tone drops, and sympathetic
nerves take over (17). This is because sympathetic nerves make
immune cells produce proinflammatory factors, which send a
signal to the brain that causes more sympathetic excitatory output
(18, 19). On the other hand, sympathetic nerves can control how
many hypertension-specific memory effector cells build up in the
body (20). Under these effects, the blood vessels in the body are
further constricted, and the blood pressure is further increased.
In contrast, IF stimulates the vagus nerve, which innervates
the heart and produces the opposite of sympathetic excitation,
slowing cardiac conduction velocity, decreasing myocardial
contractility, slowing heart rate, slowing heartbeat volume, and
dilation of peripheral blood vessels, lowering blood pressure (17).
Thus, IF can affect blood pressure by affecting sympathetic and
parasympathetic tone affecting ocular blood flow. This case is
depicted in Figure 2.

Intermittent Fasting Lowers Blood Glucose and
Improves the Ocular Blood Supply
Chronic metabolic diseases such as diabetes can also affect blood
flow to the eye. Normally, the avascular zone in the center of
the foveal center is round or oval. This area is not bordered by
gaps or breakdowns in the superficial or deep capillary plexus.
In diabetic patients, both superficial and deep capillary plexuses
show an increase in the size of the avascular zone in the central
retinal notch (21). Multiple transcription factors are active in the
early stages of diabetes. Increased pro-inflammatory chemicals
in the retina trigger a low-grade inflammatory response that
kills endothelial and pericytes, increases vascular permeability,
disrupts the blood-retinal barrier, causes retinal edema, and
worsens retinal ischemia over time (22). Chronic hyperglycemia
can aggravate the condition by causing oxidative stress in
the body and causing further damage to the microvascular
endothelium (22).

Intermittent fasting can reduce insulin levels and increase the
body’s sensitivity to insulin in healthy individuals (12). In the
case of prediabetic and type 2 diabetic patients, IF can effectively
reduce the glycated hemoglobin ratio, insulin levels, and insulin
resistance (12). Through IF, it is possible to reduce blood glucose
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FIGURE 1 | The physiological role of intermittent fasting. IF, intermittent fasting; CT, choroidal thickness.

levels and improve end microvascular permeability in diabetic
individuals, thus ensuring the integrity of the blood-retinal
barrier and playing an essential role in the normal perfusion of
ocular blood flow (23).

Intermittent Fasting and Retinal and
Choroidal Thickness
The retina is short for the optic part of the retina, a visual
sensory organ that lies immediately within the inner layer of
the choroid. The choroid is a highly vascularized tissue found
between the retina and the sclera that gives appropriate oxygen
and nutrients to the retina and is engaged in a range of retina-
related functions (24).

An investigation has found no substantial changes in retinal
thickness during IF (25), which might be due to a stringent
self-regulatory system in the retina when perfusion pressures
fluctuate dramatically (26, 27). Previously, animal studies found
that retinal blood flow self-regulates in a similar manner (28).
A similar phenomenon is observed in the human body (29).
Unlike the retina, IF can cause choroid thickening (30).

The choroid’s self-regulation may cause a significant negative
relationship between choroidal thickness and systolic blood
pressure in the sub choroid (31, 32), and IF may thicken
the choroid by lowering systolic blood pressure. In addition,
there is a connection between neuromodulation and sub
choroidal thickness. During IF, blood pressure drops, cardiac
blood flow drops (33), and choroidal thickness under fovea
increases when sympathetic tone drops and parasympathetic
tone rises (16, 25). The choroidal thickness under the fovea
increased by nearly 3% during the fasting period compared to
the non-fasting period (25). Insulin sensitivity may influence
the thickness of the choroidal layer at IF (34). There is a
substantial thinning of choroidal thickness in diabetic patients
and diabetic retinopathy (DR) patients (35). The nearly 37%
reduction in choroidal thickness in the subcentral retinal
recess compared to healthy subjects suggests that choroidal
thickness is a great early predictor of DR. As a result, increased
insulin sensitivity is expected to have a role in choroidal
thickness change. Furthermore, nitric oxide levels in the body
are greatly elevated during Ramadan (36). This stimulation of
endothelial dilatation and intravascular material leakage may
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TABLE 1 | Effects of intermittent fasting on ocular biologic parameters.

Study title Duration Subjects Projection Results

Eye microcirculation and blood pressure

Gokmen and Ozgur
(25)

At least 10 days Healthy male and female volunteers
over the age of 18 with no known
systemic disease, and who fasted

regularly during Ramadan

Ramadan fasting. Healthy subjects
were measured at the same time each

day (1:30 P.M.–2:00 P.M.)

There was no significant difference in
superficial and deep vascular density

index between fasting and non-fasting
period

Inan et al (15) 1 month 28 eyes of 28 normal subjects without
ocular disease

Ramadan fasting after 14 h. The first
measurements were performed in the
fasting conditions and blood pressure,

heart rate, and intraocular pressure
were measured by color Doppler

presentation after 1 month.

Non-fasting people had higher peak
systolic velocity in the ophthalmic
artery, central retinal artery, and

temporal short posterior ciliary artery
than fasting-healthy volunteers. The
central retinal artery’s peak diastolic

velocity was similarly higher in
non-fasting people. Non-fasting

individuals had a higher ophthalmic
artery resistive index.

Retinal and choroidal thickness

Uyar et al. (114) 1 month A single eye of 87 healthy individuals Ramadan fasting. Eyes were
evaluated twice a day around 8.00

a.m. and 4.00 p.m. during Ramadan.
Evaluations were repeated at the
same time of the day, 1 month

following Ramadan on the same
subjects.

During fasting, temporal CT at 8 a.m.
and foveal, temporal, and nasal CTs at

4 p.m. were significantly reduced.
During fasting, the diurnal fluctuations

in foveal and temporal CTs were
significantly higher than the controls.

In all segments measured at 4.00
p.m., retinal thicknesses were

considerably decreased after fasting
compared to controls.

Gokmen and Ozgur
(25)

At least 10 days Healthy male and female volunteers
over the age of 18 with no known
systemic disease, and who fasted

regularly during Ramadan

Ramadan fasting. Healthy subjects
were measured at the same time each

day (1:30 P.M.–2:00 P.M.)

The choroidal thickness under the
fovea center was found to be higher in

the fasting period than in the
non-fasting period. The mean total

choroidal thickness was found to be
reduced in the non-fasting period,

although not to a statistically
significant degree.

Ersan et al (30) At least 20 days 42 healthy subjects with no
ophthalmic or systemic disease

Ramadan fasting. Measured within
12 h after 21 consecutive days of

fasting

CFT values were similar for fasting
period and non-fasting period. The
SFCT was significantly higher after

consecutive fasting days toward the
end of Ramadan, compared to the
SFCT after 1 month of no fasting
(1 month after Ramadan ended).

Intraocular pressure

Kerimoglu et al. (42) 1 month 31 healthy subjects Ramadan fasting. Measurements were
taken at 0800 and 1600 h during
Ramadan fasting and at 1 month

during non-fasting periods.

Comparison of measurements
between fasting and non-fasting

periods at 0800 h revealed
significantly higher values for IOP.
Conversely at 1600 h, IOP was
significantly lower during fasting.

Beyoğlu et al. (34) ND 50 healthy fasting individuals in
Ramadan (study group) and 50

healthy non-fasting subjects (control
group)

Ramadan fasting. All measurement
procedures are done between 16:00

and 17:00

There was a significant difference
between Ramadan morning and

control month morning. There was a
significant difference between morning
and afternoon of Ramadan. There was

no significant difference between
afternoon and dusk (after breaking

one’s fast) in Ramadan.

Oltulu et al. (43) ND Seventy-two eyes of 72 fasting
subjects (study group), and 62 eyes of
62 non-fasting subjects (control group)

Ramadan fasting. The participants of
the control group were asked to

consume daily meals of breakfast and
lunch with adequate liquid on the day

of ocular response analyzer (ORA)
measurements. Measurements were

taken between 17:00 and 18:00,
approximately 14 h after the end of

the fast

While fasting did not lead to any
change in LD and CCT, it caused a

small decrease in ACD and ACV, and
a significant decrease in CD values.

Uysal et al. (44) 1 month 36 healthy fasting male subjects Ramadan fasting. All measurements
were recorded at 8:00 am and 4:00
p.m. during Ramadan and during a

1-month follow-up after Ramadan was
over.

There was statistically significant
difference within the two groups in

IOPg and IOPcc.

(Continued)
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TABLE 1 | (Continued)

Study title Duration Subjects Projection Results

Preoptic biological parameters

Beyoğlu et al (34) ND 50 healthy fasting individuals in
Ramadan (study group) and 50

healthy non-fasting subjects (control
group)

Ramadan fasting. All measurement
procedures are done between 16:00

and 17:00

The difference of IOP between the two
groups was statistically significant, and
the IOP value decreased significantly

Oltulu et al. (43) ND Seventy-two eyes of 72 fasting
subjects (study group), and 62 eyes of
62 non-fasting subjects (control group)

Ramadan fasting. The participants of
the control group were asked to

consume daily meals of breakfast and
lunch with adequate liquid on the day

of ocular response analyzer (ORA)
measurements. Measurements were

taken between 17:00 and 18:00,
approximately 14 h after the end of

the fast

CH and CRF significantly decreased in
fasting periods compared with

non-fasting periods.

Uysal et al. (44) 1 month 36 healthy fasting male subjects Ramadan fasting. All measurements
were recorded at 8:00 am and 4:00
p.m. during Ramadan and during a

1-month follow-up after Ramadan was
over.

No difference in the ORA
measurements including CH and CRF;
CCT and CV values between fasting
and non-fasting periods or within a

single day (diurnal changes).

ND, no data; CH, corneal hysteresis; CRF, corneal resistance factor; CT, choroidal thickness; CCT, central corneal thickness; ACD, anterior chamber depth; ACV,
anterior chamber volume; CD, corneal density; LD, lens density; IOP-GAT, IOP with Goldmann applanation tonometer; IOPg, Goldman-correlated IOP; CFT, central foveal
thickness; SFCT, subfoveal choroidal thickness; Ramadan fasting: after sunrise, no food and no water until sunset.

contribute to the increased choroidal thickness under the eye
fossa (30).

Intermittent Fasting and Intraocular
Pressure
The pressure created by the interplay of the eye’s contents on
the eye’s wall and the contents of the eye is known as IOP.
The intraocular contents include the lens, vitreous humor, and
aqueous humor, of which the aqueous humor is the most critical
factor affecting IOP. A balance between aqueous intake and
outflow is required to maintain normal IOP. Any factor that
interferes with the proper functioning of the aqueous humor
circulation pathway may obstruct aqueous humor return and
increase IOP. This case is depicted in Figure 3.

Previous studies have reached different conclusions. Some
studies comparing the difference between IOP during fasting
and non-fasting periods did not significantly change (11,
37). However, IF decreases insulin secretion and increases
glucagon levels and sympathetic tone, which increases
free fatty acid formation and thus increases local blood
flow (38). Norepinephrine and cortisol produced during
sympathetic excitation are elevated, and resistance to atrial
outflow increases, causing IOP to rise. However, most studies
have shown a significant decrease in IOP values during
IF (34, 39–44). Kerimoglu et al. (42) found that in the
Ramadan fasting population, IOP tended to be higher in
the morning (fasting vs. non-fasting: 14.19 ± 3.53 mmHg vs.
12.03 ± 2.99 mmHg) and lower in the afternoon (fasting vs.
non-fasting: 11.74 ± 2.39 mmHg vs. 13.13 ± 2.39 mmHg).
This phenomenon may be related to dietary habits during
Ramadan fasting (42). Fasting people intentionally consume
more food and water before sunrise to tolerate hunger and
thirst during the day (40), and in the morning, they drink more
water, have an abundance of body fluids, and average aqueous
humor production; in the afternoon, they become dehydrated

because they have not drunk water for a long time, their
plasma osmolality rises relatively, and the amount of aqueous
humor obtained by ultrafiltration decreases relatively, with a
disadvantage. Another study evaluated IOP during fasting in
patients with open-angle glaucoma, and these patients showed
an IOP decrease of approximately 26–32% at various times
compared to the non-fasted state (45).

It has been shown that during IF, low-density lipoprotein
(LDL) and apolipoprotein (Apo) B levels decrease, and
low-density lipoprotein (HDL) and Apo A-1 levels increase
significantly (46). The depletion of lipid stores during this period
may reduce prostaglandin secretion, which leads to a decrease in
IOP (45). In addition, IOP reduction may also be associated with
increased body dehydration, neuro-endocrine system function,
and inflammatory mediators in the uveoscleral channels (34).

Studies in recent years have favored IF to reduce IOP,
and most of the periods measured were distributed across the
period of IF with high reliability. However, further studies with
more samples need to be selected to confirm the relationship
between IOP and IF.

Intermittent Fasting and Preoptic
Biological Parameters
The anterior segment of the eye includes the anterior
chamber, posterior chamber, lens suspensory ligament,
atrial angle, conjunctiva, tear film, and other structures
in front of the lens. Some parameters commonly used in
clinical practice include anterior chamber depth, anterior
chamber volume, central corneal thickness (CCT), corneal
curvature, etc. These parameters play an essential role
in the screening and diagnosis of ophthalmic diseases in
clinical practice.

Intermittent fasting alters anterior chamber depth and
volume, which is mostly due to dehydration This difference
may be noticed in both fasting and non-fasting groups, and at

Frontiers in Medicine | www.frontiersin.org 5 May 2022 | Volume 9 | Article 867624

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-867624 May 20, 2022 Time: 9:39 # 6

Feng et al. Intermittent Fasting in the Eyes

FIGURE 2 | Normal blood circulation, eye structure, and retinal structure.

various moments during the fasting period. Compared to the
non-fasting group, anterior chamber depth and axial length were
dramatically reduced in the fasted group (34, 47). Furthermore,
during IF, the depth and volume of the anterior chamber
were variable at different times of the day. According to
Nowroozzadeh et al. (48), anterior chamber depth increased
substantially during Ramadan, with nearly 26% compared to

non-fasting periods. The anterior chamber depth values were
greater in the morning than in the evening (P = 0.01), but
the axial length of the eyes did not show such a significant
change (48). Other studies with similar results have also been
conducted (40). Furthermore, because there is a link between
anterior chamber depth and IOP, with lower IOP being linked
to deeper anterior chamber depth (48, 49), it is hypothesized
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FIGURE 3 | Aqueous humor circulation pathway.

that IF might change the magnitude of anterior chamber depth
by affecting IOP.

In addition, Beyoğlu et al. (34) evaluated corneal density and
lens density changes in IF During IF, subjects were found to have
a decrease in corneal density (fasting vs. non-fasting: right/left
eye: 12.81 ± 0.76/12.73 ± 0.73 vs. 13.28 ± 1.01/13.07 ± 0.77)
(34), an expression likely due to changes in corneal inflammatory
mediators and increased osmolarity as a result of dehydration (50,
51). However, lens density did not differ significantly between
the fasting and non-fasting groups (34), probably because of lens
microcirculatory water channels (52), which maintain a more
stable density even during longer periods of dehydration.

The tear film is a crucial medium for maintaining lubrication
between the cornea and the conjunctiva and keeping harmful
substances such as bacteria from entering the eye. An aqueous
layer, a lipid layer, and a mucin layer make up the typical tear
film. Tear secretion levels were substantially lower during IF
(42). The assessment of tear break-up time (TBUT) did not
change significantly between fasting and non-fasting periods (50).
In addition, the activity of several enzymes, such as lysozyme,
lactoferrin, and alpha-amylase, was reduced throughout the
fasting period in the fasted population (53).

INTERMITTENT FASTING AND EYE
DISEASE

Intermittent Fasting and Diabetic
Retinopathy
Diabetic retinopathy (DR) is a major cause of low vision and
blindness in adults today (54, 55) and is one of the microvascular
complications caused by diabetes. The primary pathogenic
alterations are retinal ischemia, aberrant neovascularization,
retinal inflammation, increased vascular permeability, and
neuronal and glial abnormalities (56). The current treatment
of DR is mainly retinal laser photocoagulation, vitreous cavity
injection, and vitrectomy. However, it is still unable to manage

the condition of DR (57), and this therapy is mostly used on
patients with advanced DR, with early prevention focusing on
food and lifestyle modifications to prevent the disease from
progressing further.

Intermittent Fasting Suppresses the Diabetic
Retinopathy Inflammatory Response
The inflammatory response is a crucial pathophysiology of DR.
Inflammatory variables such as intraretinal IL-1β, TNF-α, and
C-reactive protein are considerably enhanced in DR in previous
studies (58). Further research discovered that exposing retinal
endothelial cells (RECs) to the inflammatory cytokines IL-1β

and TNF-α increased glucose consumption while also causing
oxidative damage to the cells. High glucose levels promote the
mobility of leukocytes and the activation of proinflammatory
molecules, which increases the synthesis of VEGF and TGF-
1 in RECs (59) and can cause direct damage to RECs (60).
Furthermore, lipid dysregulation is involved in the inflammatory
response in DR. REC dysregulation is an early indication of DR.
Lowering cholesterol and ceramide levels in the endothelium can
decrease the progression of DR (61).

By lowering blood glucose and cholesterol levels, decreasing
the generation of late glycosylation final products and
inflammatory cytokines, boosting the release of heat shock
proteins and adiponectin, and speeding up cellular self-
phagocytosis, IF can reduce the inflammatory response in DR
(62, 63).

Sirtuin 1 (SIRT1) is a nutrient-sensing deacetylase that
becomes activated in low-nutrient states. SIRT1 activation
boosts insulin secretion, reduces insulin resistance and weight
loss, and controls inflammation (64, 65). SIRT1 activation
inhibits NF-κB, [ADP-ribose] polymerase (PARP-1), and
matrix-metallopeptidase 9 (MMP-9) activation (66–68).
It decreases histone acetylation of the DNA (cytosine-
5)-methyltransferase 1 (DNMT1) promoter, preventing
inflammation and mitochondrial damage. In contrast, in
the diabetic retina, increased DNA methylation of the SIRT1
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FIGURE 4 | Effect of body metabolism on the eye under intermittent fasting.

promoter leads to transcriptional repression (69). SIRT1
expression and activity are both reduced, leading to reduced LXR
signaling and dysregulation of retinal cholesterol metabolism,
as well as increased production of proinflammatory cytokines
(69). IF increased Sirt1 mRNA expression in the liver and retina
and significantly increased SIRT1 activity in the retina of mice
compared to non-fasted animals. The increased deacetylase
activity led to increased LXRα activity, and LXRα activation
inhibited NF-κB-dependent proinflammatory gene upregulation
in retinal cells (69). Thus, IF activates SIRT1/LXR signaling and
provides vigorous support for the treatment of DR.

Intermittent Fasting Inhibits Abnormal Capillary
Neogenesis in Diabetic Retinopathy
The destruction or decrease of pericytes, abnormal callogenesis,
and disruption of the blood-retinal barrier are all important
symptoms of early DR (70). Pericytes share a stromal sheath
with the endothelial cells of retinal capillaries. Hypertension,
hyperglycemia, the production of late glycation end products, and
hypoxia may disrupt the barrier function between pericytes and

endothelial cells, causing pericytes to apoptose and endothelial
cells to generate additional capillaries owing to a lack of
proliferative control (71). In DR, a reduction in the ratio of
pericytes to capillary endothelial cells might lead to capillary
degeneration and hence worsen hypoxia (72). Furthermore, the
NF-κB pathway is activated, resulting in elevated levels of the
intercellular adhesion factor ICAM-1 and vascular VCAM-1,
which contribute to aberrant angiogenesis (73, 74). By reducing
blood glucose and limiting the generation of proinflammatory
molecules, IF can minimize retinal neovascularization and
enhance retinal microcirculation (22, 56, 60). Based on the above,
IF can be utilized as an additive force in treating DR that is
anti-inflammatory and anti-vascularization in the near future.

Intermittent Fasting Improves Diabetic Retinopathy
Glial Abnormalities
Müller cells, as the main glial cells of the retina, have a nutritional
and supportive role in the retina (75). High glucose and hypoxic
environments can lead to Müller cell inflammation and edema
(70). Tu et al. (76) also showed an increase in oxidative stress

Frontiers in Medicine | www.frontiersin.org 8 May 2022 | Volume 9 | Article 867624

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-867624 May 20, 2022 Time: 9:39 # 9

Feng et al. Intermittent Fasting in the Eyes

and inflammatory responses in Müller cells in a diabetic model
and decreased their protective paracrine factor secretion, which
promotes retinal inflammation. Due to the lack of therapy
options other than glycemic management, the prognosis of
patients with DR is typically dismal before the onset of the
proliferative phase (77). By enhancing insulin sensitivity and
reducing blood glucose, IF can prevent aberrant alterations in
Müller cells, implying that we may utilize it as an adjuvant
treatment to prevent the beginning of DR, and postpone its
development, give patients a favorable prognosis.

No specific treatment has been developed in the early stages
of DR because there is no treatment other than glycemic control
until the proliferative phase develops, therefore, patient prognosis
is generally poor (77). IF prevents abnormal changes in Müller
cells by improving insulin sensitivity and lowering blood glucose,
which suggests that we can gain insight into the function of
Müller cells and their role in the pathogenesis of DR and that
using IF as an adjuvant therapy may prevent the onset of DR,
delay the progression of DR, and provide a possibility for a good
prognosis for patients.

Intermittent Fasting and Dry Eye
Syndrome and Ocular Surface
Inflammation
The frequency and length of eye use have increased dramatically
in modern society, as has the incidence of ocular surface illnesses.
Dry eye is a multifactorial ocular surface disease defined by a
tear film homeostasis problem, mainly associated with increased
tear film instability, increased tear osmolarity and ocular surface
inflammation development (78).

Diabetes is a systemic risk factor for dry eye, with more
than half of type 2 diabetes patients experiencing dry eye
symptoms (79). A sustained hyperglycemic condition damages
the corneal epithelium directly, resulting in corneal ulcers and
chronic corneal epithelial abnormalities (80). Hyperglycemia
causes a decrease in conjunctival goblet cell density, a decrease
in mucin density, and a decrease in tear film stability,
in addition to direct epithelial damage; at the same time,
hyperglycemia causes an increase in tear osmolarity, which
causes mucin denaturation, a decrease in tear film stability,
and yet another increase in osmolarity, creating a vicious
cycle. A hyperglycemic environment can damage corneal
neurons and impair neurotrophic function, which leads to
the breakdown of corneal barrier integrity, decreased corneal
sensitivity, decreased ocular surface gland production and
blink frequency, and increased the advancement of dry eye
(78, 81).

In diabetic patients, IF can effectively control blood glucose
levels (82), resist the stress response, reduce autophagy,
downregulate inflammatory expression (63), and reduce the
damage caused by diabetes to the lacrimal vascular system and
corneal autonomic nerves (80), resulting in corneal protection.
On the other hand, a reduction in CD4 T cells has been observed
to treat dry eyes in Sjogren’s syndrome, an autoimmune condition
(83, 84). CD3, CD4 T cells, and CD19 B cells are all reduced
by IF (85). This might potentially how IF helps with dry eye

problems. In conclusion, IF may help diabetic individuals with
dry eye symptoms and other ocular surface diseases.

However, IF might induce or worsen dry eye problems.
Dehydration and decreased tear production can occur while
fasting, resulting in dry eye symptoms. There are also substantial
changes in tear composition, such as changes in tear film
proteins and increased osmolarity (42, 50, 53), which can trigger
the production of ocular surface proinflammatory cytokines,
chemokines, and matrix metalloproteinases (MMPs) (8, 9, 30),
thereby aggravating dry eye. As a result, the effects of IF on dry
eye need to be investigated further, and its therapeutic benefits
must be considered holistically.

Intermittent Fasting and Glaucoma
Glaucoma, a progressive optic neuropathy defined by the loss of
retinal ganglion cells, is the most prevalent neurodegenerative
disease globally and results in permanent blindness (86).
IOP that is pathologically raised is a significant risk factor
for glaucoma. Glaucoma is caused by a disturbance of the
aqueous circulation’s dynamic balance: a few cases are caused
by excessive aqueous humor production, while the majority
are caused by restricted aqueous outflows, such as constriction
or even closure of the anterior chamber angle and trabecular
sclerosis. Elevated IOP damages the visual nerve in two ways:
mechanical compression and ischemia of the optic nerve. The
greater the length of IOP increase, the more serious the
visual function degradation (87). Current glaucoma therapy
is still centered on reducing IOP. However, effectiveness
is insufficient, and the condition might worsen even after
the goal IOP is attained, which may be associated with
progressive neuropathy.

By modifying the body’s metabolism, IF has been
demonstrated to prevent aging and neurodegeneration (88,
89). Additionally, it can successfully reduce IOP and is critical
in preventing the development of glaucoma. Although IF
has been demonstrated to be advantageous in pathological
neuropathy (90), there are minimal clinical data addressing
retinal neurodegeneration, notably in glaucoma. Fasting for
48 h dramatically decreased acute IOP elevation-induced
retinal ganglion cell loss, according to a recent study (86).
The most plausible explanation for this phenomenon is that
fasting regimens promote neuroprotection by inhibiting mTOR
activity and activating cellular autophagy (91). Autophagy is
the process of cytoplasmic breakdown and recycling via the
autophagosomal-lysosomal pathway, which allows neurons to
adapt to stressful environments and survive and is vital for
neuronal homeostasis (91). Autophagic activity is inversely
correlated with the activation state of the mammalian target of
rapamycin (mTOR) and mTOR complex 1 (mTORC1) formation
(92, 93). Activated mTOR inhibits the Unc51-like kinase 1
(ULK1) complex through phosphorylation, which inhibits
autophagy (92, 93). In contrast, serine/threonine AMP-activated
kinase (AMPK) is activated under low energy conditions and
promotes autophagy by inhibiting mTORC1 and activating
ULK1 (92, 94, 95). The study found a substantial drop in p-ULK1
in the fasting group of mice, indicating that IF can reduce the
neurological damage caused by pathologically increased IOP
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in glaucoma by activating AMPK and thereby blocking mTOR
signaling to promote autophagy.

At the same time, in EAAC1-deficient mice (a normal-
tension glaucoma animal model), IF administered every other
day for 7 weeks increased neurotrophic factor expression. It
lowered oxidative stress levels, preventing retinal ganglion cell
degeneration and improving visual impairment (91). Along with
promoting neuronal cell survival, IF stimulates retinal glial cells
and protects against damage induced by pro-inflammatory factor
release. A calorie-restricted feeding regimen reduced ischemia-
induced retinal damage and suppressed reactive gliosis in elderly
rats (96).

The biochemical mechanisms underpinning the effects of IF
on retinal nerve cells and glaucoma remain unknown. There are
no conclusive clinical trials establishing a definite link between
IF and glaucoma. Further research on the physiological effects of
IF on the retina and genetic variables is critical for glaucoma and
other ocular illness therapies.

Intermittent Fasting and Other Eye
Diseases
Other visual illnesses, such as autoimmune uveitis, age-related
macular degeneration (AMD), and refractive error, may also be
affected by IF. However, whether IF may definitively alter the
onset and course of certain ocular illnesses is unknown.

Animals with provoked autoimmune uveitis had altered
intestinal flora structure (97). As uveitis disease progressed, the
experimental group of mice developed an increasingly distinct
intestinal flora from controls, as well as an increase in the
number of Treg cells in the retina, a decrease in cytokine levels,
and the number of effector T cells in peripheral lymphoid
tissues, and a decrease in the severity of uveitis following
oral antibiotics. Further research (98) confirmed lymphocyte
movement between the gut and the eye in uveitis, emphasizing
the critical role of the intestinal flora composition in ocular
illness. The above phenomenon may be explained by the
concept of the intestinal-ocular axis, whereby the eye as a target
organ is regulated by inflammatory factors and metabolites
produced by flora in the intestine, such as TNF-α, bile acids,
and SCFAs. Janowitz et al. (99) discovered that experimental
autoimmune uveitis (EAU) mice exhibited lower intestinal α

diversity than unimmunized animals before the beginning of
ocular inflammation at the most severe stage of uveitis. The
intestinal flora of EAU mice comprised Prevotella, Lactobacillus,
Anaerobes, Parabacteroides, Firmicutes, and Clostridium, and
an increase in the ileum. Intestinal microecology is a new
aspect of the metabolic regulatory role of IF, and several studies
have shown the potential of IF to alter flora composition.
Pinto et al. (100) recently published a systematic review on the
role of IF in remodeling the gut microbiota in humans and
rats/mice. In this study, the authors found that both alternate-
day fasting and time-restricted fasting regimens altered the
ratio of intestinal flora, mainly the Firmicutes/Bacteroidetes
ratio and Lactobacillus spp abundance. All these findings
indicate that intestinal flora plays a role in the development
and progression of autoimmune uveitis and that IF may

impact disease progression by altering the makeup of the
intestinal flora.

Age-related macular degeneration (AMD) is the leading cause
of blindness in adults over 50 in developed countries (101) and
ranks highly among ocular illnesses. Admas et al. investigated
the impact of high and low glycemic index meals on the
progression of AMD (102). Aged rats fed a high glycemic index
diet developed retinal lesions like those associated with AMD,
including hyperpigmentation, atrophy, lipofuscin deposition in
the retinal pigment epithelium, and photoreceptor degeneration,
whereas mice fed a low glycemic index diet did not. The AMD
phenotype was reduced and even reversed in mice fed a high
glycemic index diet. A low glycemic diet developed through IF
may have the same impact on AMD prevention and therapy.

Refractive errors (RE), which encompasses myopia, hyperopia,
astigmatism, refractive error, and presbyopia, is one of the most
prevalent ocular illnesses affecting individuals of all ages (103).
External parallel light traveling through the eye’s refractive system
(the cornea, atrium, lens, and vitreous fluid) at rest does not
concentrate on the central depression to generate a clear image.
Previous research on IF and refractive error is limited, and the
results are inconsistent. Some studies show (38) that Ramadan
has no discernible effect on human vision or refractive error.
However, several studies (38) discovered a modest difference in
the CCT of fasting participants before and after Ramadan. In
comparison, Gonen et al. (47) discovered that when fasting, the
eye’s axial length was slightly shorter, the corneal thickness was
thinner at night, indicating diurnal fluctuation, and the anterior
chamber depth decreased throughout the night. Blurred vision
during hyperglycemia has been the consequence of temporary
refractive alterations produced by lens modifications (104),
although it might also be caused by retinal abnormalities. The
degree of retinal thickness is connected with visual acuity (105,
106), and can also cause changes in the length of the eye axis,
which can result in refractive errors (104). As a result, we may
speculate about the role of IF in altering changes in certain ocular
biological parameters or reducing refractive errors in diabetic and
hyperglycemic conditions through blood glucose control.

CONCLUSION

Intermittent fasting improves the body’s metabolism and the
local microenvironment of the eyes, hence preventing the
development of some eye illnesses. IF affects the availability of
nutrients. Limited nutrient intake drives the glucose-ketogenic
metabolic switch in the body. Large amounts of endogenous
ketone bodies replace glucose as an important energy source
for the brain, muscles, eyes, and other organs (107). On the
one hand, IF mitigates retinal neurovascular damage from
sustained high glucose. On the other hand, ketone bodies
serve as a better fuel to reduce ocular inflammation and
oxidative stress (108, 109). Multiple metabolism-related hormone
levels are upregulated in response to altered nutritional status,
including increased ghrelin and adiponectin and decreased
insulin and leptin (110). The secretion of these intestinal
hormones regulates satiety, adapts to energy deficiency, and
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suppresses inflammation. Furthermore, this shift in eating
patterns altered the body’s lipid metabolism, resulting in weight
loss and decreased total cholesterol, triglycerides, and LDL
cholesterol concentrations. On the other hand, IF increased
cellular sensitivity to insulin, increased glucose uptake by cells
in diabetic patients, decreased inflammatory factor production,
inhibited neutrophil and other cell adhesion, and decreased
platelet aggregation. In addition to its direct effect on nutrient
intake, moderate hunger also influences the systemic and local
stress state and inflammation levels. Fasting-mimicking therapy
stimulated SIRT1/LXR signaling in retinal arteries and neurons
in mice, resulting in lower expression of various inflammatory
markers than controls (69). In summary, IF attenuates oxidative
damage and the inflammatory response in the eye in multiple
ways, which is common in primary and secondary eye damage.
This case is depicted in Figure 4.

The favorable benefits of IF have also been demonstrated in the
prevention of hypertension, where IF increased BDNF factors,
activated the parasympathetic nervous system, decreased heart
rate, and acted as a vasodilator on blood vessels, resulting in a
drop in systolic and diastolic blood pressure. During IF, the body’s
nitric oxide level increases dramatically, driving endothelial
dilatation and intravascular material leakage, reducing blood
pressure and alterations in choroidal thickness.

Intermittent fasting is used in various fields, including
endocrine, cardiovascular, and tumor treatments, and it also
has several beneficial effects on the body. However, this diet
is not appropriate for everyone, particularly those who are
underweight, pregnant, or nursing. Notably, the most immediate
risk of IF is hypoglycemia in patients taking hypoglycemic
medications, particularly insulin (both postprandial and basal)
and sulfonylureas (including short-acting metronidazole), and
caution should be exercised when administering IF to this group
of patients (111). Intriguingly, IF regimens of different durations
may have distinct or even opposite effects. Cerqueira et al. showed
that a long-term calorie restriction strategy (32 weeks) induced
glucose intolerance (112). Therefore, the selection of the period
of IF protocol is a topic worthy of study.

Numerous investigations on the impact of IF on different
ocular biological parameters have been conducted. However,
research on ocular-related diseases such as glaucoma,
retinopathy, and ocular surface diseases is still limited. Further

research is needed to determine whether IF can enhance the local
ocular environment and treat ocular diseases. The intestinal-
ocular axis has a vital function in the eye, not only for gut bacteria
but also for the makeup of ocular microorganisms, which play
a critical role in ocular metabolism and illness. However, the
existence of ocular surface microbiota remains a concern, and
the effect of IF on ocular microorganisms is unknown. This may
provide a new direction for IF study. Meanwhile, due to the lack
of evidence for the advantages of IF alone and the low compliance
of IF participants, most fasting therapies now employed in clinical
practice are confined to diseases with established effectiveness,
such as diabetes. If used for other ocular disorders, IF also
searches for medications or chemicals that may be used in place
of IF to lower calorie intakes, such as metformin, resveratrol, or
rapamycin (113), or that can be used to complement in-hospital
therapy with IF regimens. Thus, in addition to investigating
changes in fundus parameters and IF for ophthalmology, we
should also investigate changes in the body’s inflammatory
response, metabolism, and gut flora and look for more effective
therapies by integrating several therapeutic techniques.
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