
1. Introduction
Yellow Fever (YF) is a mosquito-borne viral disease endemic to Latin America and sub-Saharan Africa. It is 
spread by multiple genera of mosquito, including urban-dwelling Aedes mosquitoes as well as forest-dwelling 
Haemagogus and Sabethes mosquitoes in South America, and infects both humans and non-human primates 
(Litvoc et al., 2018; World Health Organization, 2018). Symptomatic cases of YF typically present flu-like symp-
toms such as fever, nausea, and body aches, which typically persist for less than a week (Litvoc et al., 2018). A 
subset of these cases then become severe, with symptoms including jaundice and hemorrhaging, and approxi-
mately 40% of severe cases are fatal due to organ damage (Johansson et al., 2014; Monath & Vasconcelos, 2015; 
Servadio et  al.,  2021; World Health Organization,  2018). Though there are no treatments for YF (Collins & 
Barrett, 2017), human cases can be prevented through a safe and effective vaccine (Gardner & Ryman, 2010).

Abstract Yellow Fever (YF), a mosquito-borne disease, requires ongoing surveillance and prevention 
due to its persistence and ability to cause major epidemics, including one that began in Brazil in 2016. 
Forecasting based on factors influencing YF risk can improve efficiency in prevention. This study aimed 
to produce weekly forecasts of YF occurrence and incidence in Brazil using weekly meteorological and 
ecohydrological conditions. Occurrence was forecast as the probability of observing any cases, and incidence 
was forecast to represent morbidity if YF occurs. We fit gamma hurdle models, selecting predictors from 
several meteorological and ecohydrological factors, based on forecast accuracy defined by receiver operator 
characteristic curves and mean absolute error. We fit separate models for data before and after the start of the 
2016 outbreak, forecasting occurrence and incidence for all municipalities of Brazil weekly. Different predictor 
sets were found to produce most accurate forecasts in each time period, and forecast accuracy was high for 
both time periods. Temperature, precipitation, and previous YF burden were most influential predictors among 
models. Minimum, maximum, mean, and range of weekly temperature, precipitation, and humidity contributed 
to forecasts, with optimal lag times of 2, 6, and 7 weeks depending on time period. Results from this study 
show the use of environmental predictors in providing regular forecasts of YF burden and producing nationwide 
forecasts. Weekly forecasts, which can be produced using the forecast model developed in this study, are 
beneficial for informing immediate preparedness measures.

Plain Language Summary Yellow Fever (YF) is a persistent mosquito-borne disease affecting 
much of the tropics with zoonotic reservoirs. Its persistence, emphasized by a major epidemic affecting Brazil 
in 2016 and 2017, highlights the importance of predictions of when and where future disease burden will be 
seen. This study aimed to create a statistical model that can provide regular, weekly forecasts of YF burden in 
Brazil. Because YF, like many mosquito-borne diseases, is known to relate to environmental conditions, various 
static ecohydrological and dynamic meteorological conditions such as temperature, humidity, elevation, and 
vegetation were included as potential model predictors. The model was developed to forecast both a probability 
for whether YF cases will occur as well as an estimated number of cases if the disease does occur. The resulting 
forecast model can produce regular weekly forecasts, with the most accurate forecasts using conditions 2, 6, or 
7 weeks prior across models. Use of the forecasting model developed in this study can inform locations within 
Brazil that are at greatest risk of high YF burden each week, allowing preventative measures to be targeted 
where and when they are most needed.
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Because YF cannot be eradicated, preventative measures such as vaccination campaigns, mosquito control, or 
public health message are needed to reduce morbidity and mortality. In recent decades, tens of thousands of YF 
cases have been reported globally, particularly in the countries that are endemic for YF, including 13 in North 
and South America (World Health Organization, 2021). Due to common underreporting of cases (Monath & 
Vasconcelos, 2015), actual burden of YF is likely even higher than reported.

In order to prioritize immediate responses to YF risk, forecasts for YF risk are needed a short time into the 
future, such as several weeks. Among arthropod-borne viruses, it is common for studies to project burden 
more than 10 years into the future (World Health Organization, 2013), primarily with a focus on the effects 
of global climate change (Semenza & Suk,  2018), rather than forecasts weeks to months into the future. 
Forecasts weeks to months into the future are typically more common for human-to-human communicable 
diseases (Chae et al., 2018; Lutz et al., 2019), particularly during an epidemic or pandemic (Roosa et al., 2020; 
Shanafelt et al., 2018), though there exist some examples of studies aiming to forecast more immediate risk 
of mosquito-borne diseases (Chen, Chu, Chen, & Cook,  2018; Chen, Ong, et  al.,  2018). Providing disease 
forecasts weeks in advance instead of projections years in advance motivates immediate decisions for preven-
tion of new cases by targeting locations in greatest need (Chen, Ong, et al., 2018; Fischer et al., 2016), which 
can be particularly beneficial in resource constrained settings. Simply tracking human cases is inadequate for 
future preparedness, as delays in reporting of cases that have occurred and have been detected lag current new 
infections.

One group of mechanisms affecting risk of YF and other mosquito-borne diseases includes environmental 
patterns (Chen, Chu, et al., 2018). Multiple environmental factors, including meteorological conditions such as 
temperature and precipitation as well as ecohydrological conditions such as ecological biomes and elevation, have 
been shown to relate to risk of different mosquito-borne diseases (Ruiz et al., 2006; Servadio et al., 2018; Tesla 
et al., 2018), including YF (Hamlet et al., 2018; Hamrick et al., 2017; Servadio et al., 2022). Environmental factors 
can affect risk of YF as they relate to mosquito populations through life cycles (Bayoh & Lindsay, 2003) and 
pathogen incubation (Gage et al., 2008), nonhuman primates through habitat suitability (Aristizabal et al., 2018), 
and humans through behavioral adjustments (Aspvik et al., 2018) and mobility patterns. Some of these factors, 
such as elevation and ecological biomes, are not expected to fluctuate over short periods of time such as days 
or weeks, while others, such as temperature and precipitation, do experience such fluctuations. These are likely 
to have differing effects on the urban-dwelling Aedes mosquitoes as compared to the sylvatic Haemagogus and 
Sabethes mosquitoes (Servadio et al., 2022). These factors are of particular interest to informing YF prepared-
ness compared to other mosquito-borne diseases due to zoonotic spillover from non-human primates through 
mosquito vectors.

The need for preparation is highlighted by recent outbreaks of YF, which have occurred in nations across South 
America (Barros & Boecken, 1996; de Goes et al., 1976) and Africa (Addy et al., 1986; “Outbreak news. Yellow 
fever, Uganda,” 2011). A large outbreak was observed in Brazil beginning in December 2016 (Goldani, 2017; 
Moreira-Soto et  al.,  2018), following the Zika outbreak that previously impacted Eastern Brazil (Lowe 
et al., 2018a). In December 2016 and the 6 months that followed, Brazil observed more YF cases than had been 
observed over the previous decade. Outbreak cases were largely seen in southeastern Brazil, including Rio de 
Janeiro and São Paulo (Possas et al., 2018), which is in contrast to previous years where cases were primarily seen 
in Western Brazil, near the Amazon rainforest (Hamrick et al., 2017). These southeastern locations that experi-
enced the greatest burden were not previously recommended locations for YF vaccination prior to travel (Centers 
for Disease Control and Prevention, 2018). Following this outbreak, YF burden currently persists in much of the 
Americas, motivating continued surveillance and prevention.

This study aimed to evaluate the ability of meteorological and ecohydrological conditions to produce weekly 
forecasts of YF occurrence and incidence, using municipalities of Brazil as a case study. Statistical models 
were developed aiming to maximize the accuracy of forecasts using various meteorological and ecohydrolog-
ical conditions as predictors. The resulting models in this study produced municipality-level forecasts each 
week for the probability of YF occurrence and, if it occurs, the estimated incidence. Because the forecasts are 
expected to show different probabilities of disease occurrence and different estimated incidences across munic-
ipalities, those with highest probability of occurrence or estimated burden can be prioritized for preventative 
measures.
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2. Methods and Materials
2.1. Data Sources

2.1.1. Yellow Fever Incidence

This study focuses on forecasting in Brazil, the largest nation in South America by both land area and popula-
tion. It is subdivided into 26 states plus a federal district, containing 5,570 municipalities (Instituto Brasileiro de 
Geografia Estastistica, 2018). Laboratory-confirmed YF case data between January 2000 and March 2018 were 
provided by the Pan American Health Organization and the Brazilian Ministry of Health, with all cases having 
an associated municipality and date of report. While a small number of cases were identified as tourists, informa-
tion was unavailable regarding whether cases were associated with domestic or international travel and therefore 
imported. We aggregated case data by week and conducted all analyses by municipality-week. In total, 952 weeks 
of data were available, with week one corresponding to 3–9 January 2000 and week 952 corresponding to 26 
March to 1 April 2018.

Annual population data per municipality are publicly available through the Brazilian Institute for Geography and 
Statistics (Instituto Brasileiro de Geografia Estastistica, 2018) for each year between 2000 and 2018, with the 
exceptions of 2007 and 2010, for which we singly imputed using the arithmetic mean of the two adjacent years' 
populations. Using YF case data and annual population values, we calculated the incidence per 100,000 popula-
tion for each municipality each week. Previous weeks' occurrence and incidence were also considered as potential 
model predictors to account for potential temporal autocorrelation in YF occurrence and incidence. The terms 
“occurrence” and “incidence” in this study have distinct definitions: occurrence is defined as the binary outcome 
of observing any YF cases, and incidence is defined as YF cases per 100,000 population.

A safe and highly effective vaccine is available for YF that confers lifelong immunity (Gotuzzo et al., 2013). 
Vaccine coverage data were available from Shearer et al. (2018b), representing proportions of populations vacci-
nated by municipality for 2000, 2010, and 2016. For other years, we assigned the vaccine coverage of the nearest 
of the 3 available years. We considered vaccination as a potential predictor in producing forecasts.

2.1.2. Ecohydrological and Meteorological Predictors

We selected environmental determinants as potential predictors based on established relationships with YF dynam-
ics, whether through direct studies of YF and similar vector-borne diseases, connections to mosquito population 
dynamics, or connections to disease incubation (Table  1). Dynamic meteorological predictors considered for 
modeling include precipitation (Childs et al., 2019; de Almeida et al., 2019; Kaul et al., 2018; Zhao et al., 2018), 
temperature (Childs et al., 2019; Gage et al., 2008), and humidity (Dickens et al., 2018; Opayele  et al., 2017). 
Static ecohydrological predictors include water drainage (Hayes et al., 1976), elevation, vegetation, and ecologi-
cal biome (Hamrick et al., 2017).

Temperature, precipitation, and humidity data are publicly available from the Modern-Era Retrospective analysis 
for Research and Applications version 2 (MERRA-2) from the United States National Aeronautics and Space 
Administration (NASA) (Gelaro et al., 2017; Global Modeling and Assimilation Office (GMAO), 2015). This 
data set contains hourly temperature in Kelvin (degrees Celsius + 273.15), hourly precipitation in millimeters 
per hour, and hourly humidity in kilograms of water per kilogram of air worldwide in 0.5° by 0.625° grids 
(Gelaro et al., 2017; Global Modeling and Assimilation Office (GMAO), 2015). We aggregated the data from 
each grid into daily averages for temperature and humidity and daily cumulative totals for precipitation, and then 
the grids were matched to Brazilian municipalities through a spatial join in ArcGIS Pro version 2.2.0 (Environ-
mental Systems Research Institute (ESRI), 2018) using shapefiles for municipalities available from the Database 
of Global Administrative Areas version 3.6 (Database of Global Administrative Areas, 2018), providing daily 
averages (temperature, humidity) and totals (precipitation) for each municipality between 1 January 2000 and 31 
March 2018.

Previous studies have shown that meteorological conditions can affect YF incidence in several ways. Various 
studies have found associations between maxima (de Almeida et al., 2019; Servadio et al., 2018), minima (Laneri 
et al., 2019; Ogashawara et al., 2019), means (de Almeida et al., 2019), and ranges (Paaijmans et al., 2009) of 
meteorological conditions and mosquito-borne diseases. We considered all four in this study by using the mini-
mum, maximum, range between the two, and mean of the daily averages and totals described previously for each 
week. We used the same form (minimum, maximum, mean, range) within a model, favoring parsimony and 
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interpretability despite potential constraints on forecasting ability. Additionally, meteorological conditions have 
been found to show nonlinear associations with mosquito-borne disease. This can occur with temperature, with 
mosquito life cycles and virus incubation inhibited by cold or hot temperatures (Ciota & Keyel, 2019; Marinho 
et al., 2016), as well as with precipitation, where rainfall can create mosquito breeding grounds or wash away 
larval habitats (de Thoisy et al., 2020; Lowe et al., 2018b). Therefore, we considered both linear and quadratic 
terms for temperature, precipitation, and humidity to account for potential nonlinear effects.

Standing water creates opportunities for mosquito breeding (Centers for Disease Control and Prevention, n.d.), 
and river drainage can create opportunities for standing water to exist, therefore impacting risk of mosquito-borne 
diseases (Hayes et al., 1976). Drainage density was modeled for Brazil using elevation and hydrological char-
acteristics of the area as of 2017. Digital elevation model data from NASA Radar Shuttle Topographic Mission 
(Farr et al., 2007) were used to extract both drainage basins and water streams using routine hydrogeomorpho-
logical extraction (Tarboton et al., 1991). Drainage density is then defined as the ratio of the length of rivers and 
streams to total land area (Montgomery & Dietrich, 1989; Tarboton et al., 1992) associated with water basins 
with a minimum area of 1,000 km 2. The water basins were matched to municipalities in ArcGIS Pro in order to 
compute a spatially-weighted average drainage density for each municipality.

Previous research has shown that lower elevations can relate to increased risk of mosquito-borne diseases 
(Hamrick et al., 2017). Locations with high elevation have long periods of lower temperatures, making them less 
suitable for mosquito habitats (Watts et al., 2017). Elevation data are publicly available through the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer Digital Elevation model, from NASA  and Japan's 
Ministry of Economy, Trade, and Industry (NASA & Ministry of Economics, Trade, and Industry, 2019). These 
data are represented as the elevation above sea level in meters in 30-m by 30-m grids. These grids were matched 
to municipalities to represent each municipality's average elevation.

Vegetation serves as a proxy for urbanization and development as well as habitat opportunities for tree dwell-
ing mosquitoes (Hamlet et al., 2021). Vegetation data are available from NASA Moderate Resolution Imaging 
Spectroradiometer (MODIS) in the form of a normalized difference vegetation index (NDVI). These are acces-
sible from the R package “MODISTools” in the form of NDVI values per municipality for each month (Tuck 
et al., 2014).

Terrestrial biomes, which have been previously related to YF risk (Hamrick et al., 2017), are publicly available 
from the World Wildlife Foundation (Olson et al., 2001), which we matched to municipalities using a spatial join 
to represent the most prevalent biome within each municipality. Because the majority of YF cases were seen in 
only two biomes observed in Brazil (Tropical and subtropical moist broadleaf forests; and Tropical and subtropi-
cal grasslands, savannas, and shrublands), the remaining four biomes were collapsed into a single category.

2.1.3. Temporal Lags

We considered temporal lags for the three meteorological variables as well as the two variables for previous 
weeks' YF incidence and occurrence within each municipality to allow time between production of forecasts 
and implementation of potential prevention strategies as well as to consider delayed effects of meteorological 
changes. As expected for vector-borne diseases, the effects of meteorological events on mosquito populations, 
and therefore disease incidence, are assumed not to occur instantaneously (Choi et al., 2016; Kakarla et al., 2019). 
Temporal lags are defined as the number of weeks between the week associated with the observed data and the 
week being targeted for forecasting. For example, a lag period of l weeks means that, in order to produce a fore-
cast for week t, data from week t − l were used as predictors. We considered lag periods between 2 and 8 weeks, 
using the same lag period for the three weather variables and the two variables for previous YF for model parsi-
mony and interpretation. The choice of 2–8 weeks considered the time needed to respond to produced forecasts 
as well as forecasting within a window of time where responses are practical.

2.2. Model Fitting

In model fitting, we aimed to develop models that produce most accurate forecasts of weekly YF occurrence 
and incidence, using the previously described ecohydrological factors for each municipality-week as potential 
predictors (Table 1). We also considered month of forecast, collapsing June through November due to low occur-
rence. Including month as a potential predictor considers the possibility of including seasonal trends as well as 
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annual patterns that are not related to ecometeorological factors, which is a common consideration when creating 
prediction models for environmentally sensitive infectious diseases (Imai et al., 2015; Lowe et al., 2013). These 
can include school terms or vacations, tourism seasons, or human mobility for holidays.

Due to the outbreak that began in December 2016, we split the data into two time periods and analyzed them 
separately: January 2000 to November 2016 (referred to herein as the endemic time period) and December 2016 
to March 2018 (referred to herein as the epidemic time period). Splitting the full time series at the start of the 
epidemic allowed us to compare whether disease dynamics outside of and within an outbreak are explained by 
similar factors. Such differences have been noted in previous studies (Servadio et al., 2022). Additionally, because 
the majority (84%) of cases (and 77% of weeks with cases) were observed after December 2016, a single model 
for the entire time period carries the risk of being driven by fitting these later months well, while underrepre-
senting the earlier years. There also exist differences in locations where YF was seen; during the endemic period, 
cases were primarily observed in northwestern Brazil, and during the epidemic period, cases were primarily 
observed in southeastern Brazil.

For each time period, we split the data into training and testing data sets. During the endemic time period, the 
training data set spanned January 2000 to December 2013, and the testing data set spanned January 2014 to 
November 2016. The epidemic time period only spans 16 months, between December 2016 and March 2018, 
creating challenges in assigning a cutoff to separate a training and testing period that allows the testing period to 
cover more than one season. To preserve the ratio between testing and training times across the two time periods, 
we randomly selected 3 months for testing data: February 2017, November 2017, and March 2018.

Between Januay 2000 and March 2018, 466 municipalities reported at least one YF case. Of these, 462 are present 
among the 5,570 municipalities present in the Database of Global Administrative Areas and therefore able to be 
matched to environmental data; only these municipalities were included in model fitting. This was done for both 
the endemic and epidemic time periods in order to increase confidence that a lack of reported cases represented 
a true lack of cases rather than epidemiologic silence, in which cases may exist but were not detected (Doyle 
et al., 2002; Servadio et al., 2022). We then applied results of the fitted models to all ecometeorological data to 
produce forecasts nationwide.

The model form was a Gamma hurdle model (Anderson, 2014; Zuur & Ieno, 2016), which consists of two distinct 
steps. The first step, the binomial step, fits all the incidence data as a binary outcome for occurrence in a logis-
tic regression model with a logit link. The second step, the Gamma step, uses only the data where incidence is 
greater than zero in a Gamma regression model with a natural log link to predict incidence values. This model 
takes the  form

YF𝑚𝑚𝑚𝑚𝑚|YF𝑚𝑚𝑚𝑚𝑚 > 0 ∼ Gamma(𝑎𝑎𝑚 𝑎𝑎) 

logit
(
𝐸𝐸
[
𝑃𝑃 (YF𝑚𝑚𝑚𝑚𝑚 > 0)

])
= 𝛼𝛼 +

∑

𝑖𝑖

𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 

ln
(
𝐸𝐸
[
YF𝑚𝑚𝑚𝑚𝑚|YF𝑚𝑚𝑚𝑚𝑚 > 0

])
= 𝛾𝛾 +

∑

𝑗𝑗

𝛿𝛿𝑗𝑗𝑋𝑋𝑗𝑗𝑚𝑚𝑚∗𝑚𝑚𝑚∗ (1)

where YFm,t represents incidence of Yellow Fever per 100,000 population in municipality m at time t, α and γ 
represent the intercepts of the binomial and Gamma steps, respectively, β and δ represent the sets of coefficients 
corresponding to predictors denoted X, and m* and t* represent the subset of municipality and time combinations 
where YFm,t > 0. The interpretation of the output from Gamma model is predicted incidence under the condition 
that incidence is nonzero. Model fits from a Gamma hurdle model consist of two sets of predictors: one set of 
predictors from the binomial step, describing predictors' associations with observing nonzero incidence, and 
another set of predictors from the Gamma step, describing predictors' associations with observing higher YF 
incidence when incidence is nonzero. Similarly, the resulting forecasts from this model consist of two distinct 
values: (a) a probability of observing any YF occurrence and (b) an estimated incidence that will be seen if inci-
dence is nonzero.

We chose to use a hurdle model a priori due to the high percentage of municipality-weeks observing no YF cases, 
and we selected a Gamma model for the incidence step prior to model fitting because nonzero incidence values 
resemble a Gamma distribution by being continuous, strictly positive, and exhibiting a heavy right tail.
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The Gamma distribution, similarly defined to be positive and continuous, has been used previously to describe 
disease incidence (Servadio et  al.,  2020) and growth (Champredon & Dushoff,  2015; Chowell et  al.,  2016). 
Gamma hurdle models are not commonly used for disease incidence, but have been used in ecology applica-
tions (Saunders et al., 2019). The hurdle model in general has been used for infectious disease research previ-
ously for relating meteorological conditions to disease risk (Harris et al., 2019), and the motivations for using a 
hurdle model are conceptually similar to those for using a zero-inflated Poisson model (Imai et al., 2014; Wang 
et al., 2014).

We underwent model fitting and selection of the candidate predictors separately for the binomial and Gamma 
steps of the model, which allows the two steps of the same model to have distinct sets of predictors. This provides 
flexibility in predictor choice, ultimately allowing best forecasts. The form of the meteorological conditions 
(minimum, maximum, mean, range) and lag periods were also allowed to differ between the two steps. We 
considered all combinations of inclusion/exclusion of the previously described candidate predictors, exclud-
ing combinations that include quadratic terms without appropriate linear terms. We considered a total of 5,182 
combinations of parameters for each combination of meteorological variable form (minimum, maximum, mean, 
range) and lag period (2–8 weeks).

2.3. Model Evaluation

To determine the best-fitting model for forecasting, we evaluated forecasts from the model produced from the 
training data within the testing time period. We evaluated forecasts of the binomial step through Receiver Oper-
ator Characteristic curves and maximizing the associated area under the curve (AUC), where we compared 
forecasted probabilities of occurrence in the testing period to the observed occurrences. The AUC, constrained 
between zero and one, represents how reliably the binomial step can predict whether any YF cases will be seen.

We evaluated the Gamma step by minimizing the mean absolute error (MAE), comparing predicted nonzero 
forecasts in the testing period to the observed nonzero incidence values. The MAE is defined as

MAE =
1

∑
𝑦𝑦𝑚𝑚𝑚𝑚𝑚 > 0

∑
|�̂�𝑦𝑚𝑚𝑚𝑚𝑚𝑚>0 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚>0| (2)

where ym,w,>0 represents the observed incidence values in municipality m on week w among only those that greater 
than zero and 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚0 represent the corresponding fitted values for municipality m on week w from the model. The 
MAE represents the average difference, in cases per 100,000 population, between observed and predicted inci-
dence when the incidence is greater than zero. It is important to note that MAE only applies when any YF cases 
are seen because the Gamma step is conditioned on seeing incidence greater than zero. As a result, predicted 
incidence can only be compared to observed incidence when observed incidence is greater than zero. Previous 
works forecasting infectious diseases and examining environmental patterns relating to mosquito-borne diseases 
have used both AUC (Hamlet et al., 2018; Kaul et al., 2018; Liu et al., 2014) and MAE (Benedum et al., 2020; 
Mohamed et al., 2022; Patil & Pandya, 2021) as model diagnostics. All analyses were run using R version 4.0.3 
(R Core Team, 2019), with code and data available at (Servadio, 2023).

2.4. Producing Forecasts

After selecting best-fitting models for both time periods, we applied the fitted regression equations to the ecohy-
drological and meteorological data described previously to produce forecasts. For demonstrative purposes, we 
produced forecasts between February 2000 and April 2018, based on available data. Within forecasts, every 
municipality-week is assigned two forecasted values: a probability of any YF occurrence, and an estimated 
incidence if YF does occur. Because the two values are produced independently, forecasted incidence is not 
influenced by forecasted probability of occurrence, even if this probability is low. Mapping both values allows 
locations to be identified that are most likely to experience any YF burden and/or experience high burden.

3. Results
A total of 2,079 confirmed YF cases were seen between January 2000 and March 2018. The time series of weekly 
YF cases throughout the entire study period shows the severity of the 2016–2017 outbreak, having notably higher 
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case counts compared to previous years (Figure 1). Seasonal patterns of YF are also seen throughout all years 
of observation, with cases predominantly occurring during the early months of each year. Tables S1 and S2 in 
Supporting Information S1 show descriptive statistics of the YF incidence data and the predictors considered in 
the models for both the endemic and epidemic time periods.

Figure 1. Weekly Yellow Fever case counts across Brazil during the entire time period of observation, January 2000 to March 2018 (top panel); the endemic period, 
January 2000 to November 2016 (middle left panel); and the epidemic period, December 2016 to March 2018 (middle right panel). Vertical lines indicate the first week 
of each calendar year. Municipalities seeing cases during the endemic period (lower left) and epidemic period (lower right) are shown. Map source: base map is publicly 
available from the Database of Global Administrative Areas, license is available at gadm.org/license.html.

http://gadm.org/license.html
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3.1. Model Results

3.1.1. Endemic Time Period

In the best fitting hurdle model for the endemic time period, the binomial step included as predictors minimum 
temperature as a linear and quadratic term as well as previous incidence. A 6-week lag period was used. The AUC 
value was 0.851. The model shows a quadratic relationship between minimum temperature 6 weeks prior and risk 
of YF occurrence, with probability of occurrence maximized at a minimum temperature near 24.5°C. Increased 
incidence 6 weeks prior was associated with higher probability of observing YF occurrence (Table 2, Figure S1 
in Supporting Information S1).

The Gamma step for the endemic time period's model included as predictors maximum temperature as a linear 
and quadratic term, maximum precipitation, maximum humidity, month, previous occurrence of YF, eleva-
tion, biome, and proportion of the population vaccinated. A 7-week lag period was used. The MAE value for 
this model was 7.009. The quadratic relationship between temperature and incidence shows highest forecasted 
incidence when maximum weekly temperature is near 27°C. Higher maximum precipitation, lower maximum 
humidity, the months of June through November, observing no previous cases 7 weeks prior, higher elevation, 
belonging to broadleaf forest biome, and lower population vaccination were all associated with higher forecasted 
incidence of YF if any YF is to be seen (Table 2, Figure S2 in Supporting Information S1).

3.1.2. Epidemic Time Period

In the best fitting hurdle model for the epidemic time period, the binomial step included as predictors mean 
precipitation, mean humidity, month, previous YF occurrence, drainage density, and population vaccinated. A 
lag period of 2 weeks was used, and the AUC value was 0.902. Higher mean precipitation, lower mean humid-
ity, occurrence of YF 2 weeks prior, lower drainage density, and lower population vaccination were associated 
with higher forecasted probability of YF occurrence. Weeks in January had the highest forecasted probability 
compared to all other months, with weeks in December through April having higher forecasted probabilities 
compared to weeks between May and November (Table 3, Figure S3 in Supporting Information S1).

Binomial step Gamma step

Parameter Estimate 95% confidence interval Parameter Estimate 95% confidence interval

Intercept −35.618 [−45.946, −26.290] Intercept −41.095 [−64.372, −17.818]

Min Temp 2.377 [1.542, 3.212] Max Temp 3.45 [1.608, 5.292]

Min Temp 2 −0.049 [−0.067, −0.031] Max Temp 2 −0.064 [−0.099, −0.029]

Previous Incidence 0.059 [0.037, 0.081] Max Precipitation 20.491 [−1.328, 42.31]

Max Humidity −134.259 [−245.865, −22.653]

Lag period 6-week Month—February 0.101 [−0.438, 0.640]

Model fit AUC = 0.851 Month—March 0.219 [−0.253, 0.691]

Month—April 0.027 [−0.665, 0.719]

Month—May 0.284 [−0.565, 1.133]

Month—June–November 0.417 [−0.242, 1.076]

Month—December −0.203 [−0.903, 0.497]

Previous cases −0.027 [−1.374, 1.32]

Elevation 0.002 [0.002, 0.002]

Biome—Grasslands −0.315 [−0.683, 0.053]

Biome—Other −1.072 [−1.94, −0.204]

Proportion Vaccinated −0.201 [−0.303, −0.099]

Lag period 7-week

Model fit MAE = 7.009

Note. Lag period and model fit diagnostics are shown in the bottom rows.

Table 2 
Estimated Model Parameters for the Binomial and Gamma Steps of the Hurdle Model for the Endemic Time Period, January 2000 to November 2016
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The Gamma step for the epidemic period included as predictors range of temperature, range of precipitation as a 
linear and quadratic term, range of humidity as a linear and quadratic term, previous incidence, drainage density, 
and vegetation. A 2-week lag period was used, and the MAE value was 4.860. Parabolic relationships were seen 
between both precipitation and humidity and forecasted incidence, with forecasted incidence minimized when 
the range of precipitation was near 0.01 mm and maximized when the range of humidity was near 0.002 kg of 
water per kg of air. Lower range of temperature, higher YF incidence 2 weeks prior, higher drainage density, and 
higher vegetation were associated with a higher forecasted incidence of YF if YF occurs. Weeks located between 
December and May were associated with higher incidence compared to weeks found between June and November 
(Table 3, Figure S4 in Supporting Information S1).

The parameter estimates in Tables 2 and 3 and individual effects shown in Figures S1–S4 in Supporting Infor-
mation S1 are interpreted to show, based on the particular model, the individual effect of each predictor. The 
parameters, when combined, produce forecasts of future YF burden as described previously. Because the aim 
of model selection was accurate forecasts rather than identifying unconfounded effects of individual predictors, 
interpreting individual parameters is subject to Table 2 fallacy (Westreich & Greenland, 2013).

We compared the selected models, with the best fits, to a collection of the 50 best-fitting models for each time 
period as a robustness check. Tables S3 and S4 in Supporting Information S1 show the frequency at which differ-
ent predictors were retained within the best-fitting models for the endemic and epidemic periods respectively. In 
the endemic time period, the most commonly included predictors for the binomial step were mean temperature 
as a linear and quadratic term (26 times) and mean precipitation as a linear and quadratic term (26 times), with 
the most common lag period being 5 weeks (24 times); the most commonly included predictors for the Gamma 
step were month, biome, elevation (50 times each) and vaccine coverage (40 times), with the most common 
lag period being 7 weeks (39 times). In the epidemic time period, the most commonly included predictors for 
the binomial step were month, previous occurrence, and vaccine coverage (50 times each); the most commonly 
included predictors for the Gamma step were range of temperature (50 times), range of precipitation as a linear 
and quadratic term (49 and 42 times, respectively) previous incidence (43 times), and vegetation (50 times). All 
50 best-fitting models for both steps included a lag period of 2 weeks (Tables S3 and S4 in Supporting Informa-
tion S1). The directions of the parameter estimates were also largely consistent with those seen in Tables 2 and 3. 
Among the 50 worst-fitting models for both time periods, the only predictor from the selected models in Tables 2 
and 3 that was commonly included was vaccine coverage, which appeared in the 50 worst-fitting models for the 
Gamma step of the endemic period (Table S5 in Supporting Information S1).

To show the utility of the selected predictors in providing accurate forecasts, the selected models were compared 
to both the null and saturated models, containing no predictors and maximum number of predictors respectively. 
In the endemic period, the null model produces an AUC of 0.5 by definition and an MAE of 7.283, and the satu-
rated model produces an AUC of 0.618 and an MAE of 7.073. In the epidemic period, the null model produces 
an AUC of 0.5 and an MAE of 5.057, and the saturated model produces an AUC of 0.710 and an MAE of 5.166. 
Among the 50 best-fitting models in the endemic period, AUC values ranged between 0.835 and 0.851. And 
MAE values ranged between 7.009 and 7.053. Among the best-fitting models in the epidemic period, AUC 
values ranged between 0.897 and 0.902 and MAE values ranged between 4.860 and 4.879. All best-fitting models 
included at most 12 of the 14 possible predictors. Most of the binomial steps from the set of best fitting models 
consisted of 5–7 predictors (Table S3 in Supporting Information S1), and most of the Gamma steps consisted of 
8–11 predictors out of a maximum of 14 (Table S4 in Supporting Information S1).

3.2. Forecast Examples

We produced example forecasts by applying the models described in Tables 2 and 3 to the observed data through-
out Brazil. The forecasts show two numeric values for each municipality in each week: a forecasted probability 
of observing any YF cases and a forecasted number of cases per 100,000 population if any YF is seen. Because 
the binomial and Gamma steps of the models produce these forecasts separately, incidence forecasts are produced 
even when the forecasted probability of YF occurrence is low. The maps shown in Figure 2 are examples of 
maps that can be produced weekly in order to show locations that are at the greatest risk of observing YF cases 
or observing higher incidence compared to others in Brazil. These examples include a randomly selected week 
from the testing data that was used for model fitting as well as a week that occurs after the testing data to show 
a true forecast to a week that did not have data involved in the model fitting process. These weeks are the weeks 
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Figure 2.
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of 11–17 May 2015 (week 802, during the testing data for the endemic model); 5–11 December 2016 (week 883, 
following the testing data for the endemic model); 13–19 February 2017 (week 893, during the testing data for the 
epidemic model); and 2–8 April 2018 (week 953, following the testing data for the epidemic model).

The example forecasts show different spatial patterns between forecasted probability of occurrence and forecasted 
incidence due to the fact that different sets of parameters contributed to each forecast. Spatial trends in forecasted 
probability of occurrence and forecasted incidence can be seen in relation to the model predictors in Supporting 
Information S1 (Figures S5–S8 in Supporting Information S1). For example, Figure 2a shows higher probability 
of YF occurrence throughout the North and much of the Northwest and Center-West regions, with the exception 
of parts of Bahia, Piaui, Mato Grosso, and Mato Grosso do Sul states. These areas of high probability also show 
minimum temperatures near 24.5°C, the value indicating highest probability (Figures S1 and S5 in Supporting 
Information S1). Though most of the South and Southeast regions (Figure 2a) have lower probabilities of observ-
ing YF, much of the Southeast region, along with parts of Bahia state, contained municipalities with the highest 
forecasted incidence if YF occurs. Many of these areas have higher elevation or low population vaccination, both 
of which were associated with higher incidence (Figure S5 in Supporting Information S1). The trends seen in 
Figure 2 and Figures S5–S8 in Supporting Information S1, using the selected forecast models, are consistent with 
trends seen among the 50 best-fitting models (Figure S9 in Supporting Information S1).

To show both the trajectories of forecasts over time as well as the precision of forecasts, we selected 10 munici-
palities at random that represent 10 distinct states and displayed their forecasted probabilities of YF occurrence 
and forecasted incidence, along with 95% prediction intervals, over the entire testing time period of the endemic 
period and the entirety of the epidemic period (Figure 3). The time series plots show that seasonality can be seen 
in the forecasts, particularly in the forecasted incidence during the endemic period and in forecasted probability 
of occurrence during the epidemic period. Prediction intervals were generally narrow, through higher forecasted 
incidence values particularly showed less precision (Figure 3). Across the 50 best-fitting models, the longitudinal 
trajectories varied across models, with groups of models producing very similar forecasts (Figure S10 in Support-
ing Information S1). These differences among the 50 best-fitting models, however, were small. Larger differences 
in forecasts were seen comparing the selected best-fitting models to the set of worst-fitting models (Figure S11  in 
Supporting Information S1).

To assess accuracy of forecasts, we compared whether municipalities with high forecasted probability of occur-
rence did observe YF cases as well as whether forecasted incidence was more commonly an overestimate or 
underestimate. In the endemic time period, among the 258 municipality-weeks that observed any YF occur-
rence, 76 had forecasted probabilities above the 75th percentile. In the epidemic time period, among the 866 
municipality-weeks that observed any YF occurrence, 139 had forecasted probabilities above the 75th percentile. 
Based on the fact that false negatives occurred more frequently than true positives if the 75th percentile of fore-
casts is used as a threshold above which YF cases are expected, the binomial steps of each model appear to be 
more likely to underestimate YF risk than overestimate. Among forecasted incidence values in the endemic time 
period, 159 municipality-weeks (62%) overestimated incidence, and 99 (38%) underestimated. In the epidemic 
time period, 646 municipality-weeks (75%) overestimated incidence, and 220 (25%) underestimated. Overes-
timations were more common compared to underestimations, so the Gamma steps of each model appear more 
likely  to overestimate YF incidence rather than underestimate.

3.3. Global Sensitivity and Uncertainty Analyses

Full results of sensitivity analyses are reported in Supporting Information S1. A sensitivity analysis was conducted 
to examine the length of the training data sets used for model fitting. Keeping the end of the training data set 
for the endemic time period constant, the first week of the training data was moved forward to determine if a 
shorter training period would impact model performance, evaluated by the model fit criteria (AUC and MAE). 

Figure 2. Examples of Yellow Fever (YF) forecast maps produced for (a) 11–17 May 2015 (week 802, predicted using data from 30 March to 5 April 2015 for the 
binomial step and 23–29 March 2015 for the Gamma step); (b) 5–11 December 2016 (week 883, predicted using data from 24 to 30 October 2016 for the binomial 
step and 17–23 October 2016 for the Gamma step); (c) 13–19 February 2017 (week 893, predicted using data from 30 January to 5 February 2017 for the binomial and 
Gamma steps); and (d) 2–8 April 2018 (week 953, predicted using data from 19 to 25 March 2018 for the binomial and Gamma steps). Forecasts show probability of 
observing any YF cases (left), estimated incidence (middle), and estimated incidence among municipalities where probability of occurrence was above the median value 
(right). Forecasts were generated using the models described in Tables 2 and 3. Map source: base map is publicly available from the Database of Global Administrative 
Areas, license is available at gadm.org/license.html.

http://gadm.org/license.html
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Figure 3. Time series of forecasted probabilities of Yellow Fever occurrence (left column) and incidence (right column) 
for selected municipalities during the entire testing period for the endemic time period (top row) and the entire epidemic 
time period (bottom row). 95% prediction intervals are included to show precision of forecasts. The map shows the locations 
of the selected municipalities, highlighted in red. Map source: base map is publicly available from the Database of Global 
Administrative Areas, license is available at gadm.org/license.html.

http://gadm.org/license.html
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A decrease in AUC was observed in the binomial step for the endemic time period when the training data begin 
after January 2001. Small changes were seen in MAE of the Gamma step for the endemic time period, with a 
small increase in MAE when the training data began after July 2000. Keeping the start of the training period at 
January 2000 and shortening the end of the training period showed that AUC steadily increased as the training 
period became longer, and MAE stayed consistent when the training period spanned until February 2009 or 
farther (Figure S12 in Supporting Information S1). Earlier weeks may bear high influence because of higher case 
counts in the earlier weeks of observation (Figure 1).

Because the training data for the epidemic time period consists of nonconsecutive months, 100 randomly drawn 
combinations of three nonconsecutive months were assessed to see if results are sensitive to which months were 
drawn. Changes in AUC and MAE across drawn training/testing periods showed high sensitivity to the choice 
of training and testing data (Table S6 in Supporting Information S1). Repeating these sensitivity analyses with 
the sets of best-fitting models showed similarities in trends for training period duration in the endemic period 
(Figure S12 in Supporting Information S1) and that the combination of months selected for testing data can lead 
to notable differences in model performance across the various models, though no particular months stand out as 
best or worst for inclusion in the testing data (Figure S13 in Supporting Information S1).

Forecasting abilities of the models were also assessed across different months to determine if forecasts during 
certain times of year are most or least accurate. This was done by evaluating the AUC and MAE using only 
specific months in the testing data, omitting months where no YF cases were seen. The endemic model showed 
marginally higher accuracy of probability forecasts between July and December and substantially lower accu-
racy of incidence forecasts in October, December and January. The epidemic model showed highest forecasting 
accuracy for probability of YF occurrence in March and highest forecasting accuracy for incidence in November 
(Figure S14 in Supporting Information S1).

Within both the endemic and epidemic models, the binomial and Gamma steps of each were found to produce 
most accurate forecasts using different lag periods. To consider stakeholder preferences in aligning the lag peri-
ods of the two models or using specific lag periods, model performance was compared using lag periods between 
2 and 8 weeks. For both time periods, the AUC from the binomial step can show differences across lag periods; 
the differences in MAE from the Gamma steps are less pronounced (Table S7 in Supporting Information S1).

A global sensitivity analysis was conducted to determine which, if any, variables are most influential in each 
model step. We calculated first and second-order Sobol indices (Sobol, 1993; Wu et al., 2013) for each model step 
to measure relative influence. Sobol indices use variance decomposition in order to identify influential predictors 
or groups of predictors. First-order indices represent individual parameters' influence, and second-order indices 
combine first-order indices with each parameters' influence in conjunction with each of the other predictors. In 
the endemic period, temperature was the most influential predictor in both model steps. In the epidemic period, 
previous YF burden was commonly most influential along with precipitation and drainage density (Table S8 in 
Supporting Information S1, Figure 4).

4. Discussion
This study aimed to develop forecasting models to predict weekly YF occurrence and incidence in Brazil using 
meteorological and ecohydrological predictors, particularly targeting short-term forecasts to inform immediate 
preventative measures. Dynamic variables characterizing weather, particularly temperature, were shown to be 
influential predictors of both occurrence and incidence of YF among Brazilian municipalities; precipitation, 
water drainage, and previous YF occurrence were also influential predictors.

Different sets of predictors provided the most accurate forecasts in the endemic (January 2000 to November 
2016) and epidemic (December 2016 to March 2018) time periods, which represent time before and after the 
start of the 2016–2017 outbreak. Little has been done to compare forecasts of the same disease in the same 
location both before and during an epidemic, but changes in data quality and disease spread during an outbreak 
are likely to influence model fits. The models demonstrated high predictive accuracy as defined through AUC 
and MAE values with the testing data, suggesting that environmental factors can be reliably used for forecast-
ing YF burden in Brazil. Seasonality is a known characteristic of YF incidence, with cases primarily occurring 
between January and April (Cavalcante & Tauil,  2016). The strong predictive ability of these environmental 
factors for future YF burden may in part result from a shared seasonality. It is clear, however, that the models are 
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not only detecting seasonality, as noted by the forecasts shown in Figure 3. These forecasts across 10 example 
municipalities do not only show identical seasonal patterns. Further, the existence of relationships between the 
predictors and YF burden beyond simple seasonality are evident by the inclusion of predictors beyond month of 
year and lagged case/incidence. Despite YF occurring more frequently between January and April in Brazil and 
mosquitoes spreading YF laying eggs more in certain months (Alencar et al., 2013), the endemic period does not 
consist solely of highly pronounced seasons (Figure 1). A purely seasonal model would likely produce a worse fit 
compared to the models presented in Tables 2 and 3.

Differences seen in the optimal parameter sets and lag periods across the endemic and epidemic time periods 
suggest that some environmental factors may contribute differently to YF risk during an outbreak compared to 
outside of an outbreak. This may also relate to spatial differences in YF burden during the two time periods; cases 
during the endemic time period were primarily seen in the North and Central-West regions, while cases during 
the epidemic time period were primarily seen in the Southeast region (Figure 1). In addition to spatial differ-
ences, differences in transmission types exist between the two time periods. Cases in the endemic period were 
primarily from sylvatic transmission, with Haemagogus and Sabethes mosquitoes as primary vectors. During 
the epidemic, urban transmission also potentially occurred, where Aedes mosquitoes were significant vectors 
(Cunha et al., 2020). One previous study split the epidemic into two periods and found different contributions of 
environmental and anthropogenic factors during different times of the same epidemic (de Thoisy et al., 2020).

Figure 4. First and second order Sobol Indices for Yellow Fever forecast models. Higher values of Sobol indices indicate 
greater relative influence for a predictor over model predictions: first and second order quantify the independent and 
interactive contribution of predictors to model prediction and variability, respectively.
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Differences in lag times are also noteworthy, with 6–7 weeks lags providing the best forecasts in the endemic 
period, and 2-week lags providing the best forecasts in the epidemic period. Benefits of shorter lag periods when 
predicting an ongoing epidemic have been noted previously (Convertino et al., 2021). In this study, the shorter 
lag period during the epidemic may result from higher reliance of previous cases. In the endemic period, cases 
resulted from sylvatic transmission, and predictors relating to mosquito life cycles may have been most important 
for forecast accuracy. Life cycles of the mosquito genera that transmit YF typically span up to several weeks 
(Dégallier et al., 1998; United States Environmental Protection Agency, 2023), making longer time lags more 
relevant to the impact of ecometeorological factors on YF risk through the mechanism of mosquito life cycles. 
Different lag periods may also result from mechanistic lags varying among predictors. While we chose to keep 
consistent lags to consider practical implementation, other studies have found varying time lags between disease 
risk and environmental conditions, spanning weeks to months (Davis et  al.,  2018; Horta et  al.,  2014; Lowe 
et al., 2018b; Schuster et al., 2011). In the epidemic period, outbreak cases likely included urban transmission, 
where recent human cases are important. In the context of model fitting, it may follow that a 1-week lag period 
would have a better model fit, but we did not include this in analyses because it is impossible to obtain case data 
and weather data from week t − 1 and produce a forecast for week t until week t has already started. YF case 
data available for week t − 1 during week t are further likely subject to incompleteness (McGough et al., 2020). 
Methods have been proposed to account for this (Beesley et al., 2022), but this is outside the scope of this study.

Differences in predictor sets between the two steps (binomial and Gamma) within the same hurdle model suggests 
that there may be different contributing factors to seeing any YF cases and to seeing a greater incidence when 
observing cases. The same candidate predictors were considered for both steps, and the predictor sets that 
produced the most accurate forecasts are shown in Tables 2 and 3. This was also seen with the temporal lag 
periods; three different lag periods were observed among the four model components (Tables 2 and 3). Previous 
research has noted the complex dynamics between environmental factors and vector-borne disease risk (Pascual 
& Bouma, 2009; Tabachnick, 2010). Results from this study support this notion that the relationships between 
environmental characteristics and disease risk are not straightforward and may change in different circumstances, 
which has been observed in Zika research (Harris et  al., 2019). Some predictors largely relate to each other, 
though little multicollinearity was seen among continuous predictors included in the final models presented in 
Tables 2 and 3. The highest correlations were seen between mean humidity and mean precipitation (ρ = 0.578) as 
well as between range of temperature and range of humidity (ρ = 0.572) (Table S9 in Supporting Information S1).

Based on the Sobol indices for model parameters, temperature was the most influential predictor for the model for 
the endemic period, and rainfall, drainage, and previous YF burden were shown to be most influential predictors 
in the model for the epidemic period (Figure 4). Connections between these variables have been made previously 
to YF (de Almeida et al., 2019; De Paiva et al., 2019), other mosquito-borne diseases (Akter et al., 2020), and 
mosquito vectors in general (Dickens et al., 2018). Both linear and quadratic terms were included for at least 
one of temperature, precipitation, and humidity in three of the four component models, supporting hypotheses 
of nonlinear trends connecting disease risk and environmental factors (Githeko et al., 2000; Harris et al., 2019). 
The existence of both time varying meteorological predictors and static ecohydrological predictors as influential 
predictors in the models highlights the importance of both factors as likely contributors to YF burden.

Across the models and analyses presented in this study, we identified a collection of factors that successfully 
predict future YF burden. Most of these are consistent with previous findings regarding their link to risk of YF or 
other mosquito-borne viruses. Temperature in particular has a well-established link (Alencar et al., 2021; Possas 
et al., 2018), with previous studies also finding nonlinear relationships with disease burden (Ciota & Keyel, 2019; 
de Thoisy et al., 2020) and examining extreme temperatures (Marinho et al., 2016). Similarly, precipitation has 
been previously linked to disease burden, both linearly (Possas et al., 2018; Silva-Inacio et al., 2020) and nonlin-
early (de Thoisy et al., 2020) as we found. This has also been observed for humidity (Alencar et al., 2021; de 
Almeida et al., 2019). Our study considered weekly minimum, maximum, mean, and range, in constrast to other 
studies selecting one. Other studies have, similar to ours, noted relationships between YF burden and vegetation 
(de Almeida et al., 2019; Hamlet et al., 2018) as well as landscape types (Andreo et al., 2021; Wilk-da-Silva 
et al., 2020), which are similar to the biomes we used. Elevation has been previously inversely linked to suitability 
of mosquito habitats (Kumm et al., 1946). Drainage density with river networks is not commonly used in disease 
prediction, but issues of standing water in urban environments has been examined previously (Prestes-Carneiro 
et al., 2023; Souza et al., 2017).
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Robustness analyses comparing the selected models shown in Tables  2 and  3 to their corresponding 50 
best-performing models show that the variables included in these models are substantial and robust in their 
contributions to YF forecasting. The frequent inclusion of the predictors from Tables 2 and 3 among these 50 
models as well as agreement in their direction of association (Tables S3 and S4 in Supporting Information S1), 
along with similarities in their forecast outputs (Figures S9 and S10 in Supporting Information S1) show their 
overall importance, while also showing that other predictors can be included or excluded to produce similar 
quality forecasts.

While the contributions of these predictors are well confirmed by these robustness analyses, the individual 
parameter estimates should be interpreted with caution because they may represent associations that are not 
directly causal or mechanistic in nature, which is a consequence of the study design. For example, the Gamma 
step of the endemic model predicts higher incidence if YF is not seen 7 weeks prior (Table 2). Rather than 
interpreting this finding to mean that absence of YF cases is harmful, not seeing YF cases 7 weeks in the past 
may be indicative of a higher pool of susceptible individuals or past conditions where YF transmission was 
not sustained, but can intensify affects from other factors. An example of the latter case is a drought removing 
mosquito breeding grounds followed by rainfall having increased opportunities to create puddles in previously 
dried up lands. Precipitation and drought are capable of both creating and reducing mosquito breeding grounds 
(Caldwell et al., 2021; Lowe et al., 2018b). It is also likely that some models contain predictors that contribute 
redundant prediction information. We omitted interaction terms to avoid unnecessary complexity in these models, 
but this allows part of the contribution of one predictor in forecasting to be represented by another predictor, even 
if inclusion of both is beneficial for forecast accuracy.

From the models generated in this study, regular weekly forecasts can be produced that can identify specific 
municipalities that would be most likely to benefit from immediate actions to prevent YF infections. By updat-
ing the meteorological and environmental data used in model fitting, forecasts can be continually produced 
nationwide. Extrapolating the forecasts beyond the 462 municipalities where YF was seen between January 2000 
and March 2018 allows all municipalities to be included in produced forecasts and therefore be targeted for 
preventions.

The model fit criteria, AUC for the binomial step and MAE for the Gamma step, showed that the models fit in this 
study showed high predictive accuracy. AUC values of 0.851 and 0.902 in the endemic and epidemic time periods 
respectively indicate that the binomial steps of both models can reliably predict whether any YF cases will be 
seen. The MAE values of 7.009 and 4.860 indicate the average difference, in cases per 100,000 people, between 
observed and predicted incidence values when incidence is greater than zero. Comparisons of the AUC and MAE 
between the selected models and null models show a notably larger increase in AUC between the selected model 
and null model compared to the reduction in MAE between the selected model and null model. However, it is 
challenging to definitively compare AUC and MAE because they represent fits of different data types. A low 
sample size of municipality-weeks with positive incidence contributes to the challenge of forecasting incidence; 
doing so when nonzero incidence is more frequent may prove more successful.

The model forms used in other works predicting YF risk bear similarities and differences to the Gamma hurdle 
model used in this study. Many other studies use binary regression in order to compare occurrence and absence 
of YF (Hamlet et al., 2018; Hamrick et al., 2017; Kaul et al., 2018; Kraemer et al., 2017), while similar meth-
ods such as regression trees (Shearer et al., 2018a) are used in other works. Others, rather than using statistical 
models, use mathematical or mechanistic models (Bonin et al., 2018; Childs et al., 2019; Glover & White, 2020), 
including in conjunction with a statistical model (Jean et al., 2020). While many of these methods produce either 
predictions of YF occurrence or predicted disease burden, the hurdle model developed in this study provides both 
pieces of information, allowing more informed decisions to be made.

The objective of the modeling in this study was to produce accurate weekly forecasts for YF in order to predict 
locations where it is likely to be seen along with an estimate of incidence if seen. Similarly motivated work has 
been seen with dengue, where precipitation and temperature were used to distinguish between epidemic and 
non-epidemic years in seven cities in Brazil using a machine learning approach (Stolerman et al., 2019). Other 
work sought one-time associations, where weather patterns were used along with human, primate, and mosquito 
population data to estimate spillover of YF from nonhuman primates to humans in Brazil using a mechanistic and 
statistical model together (Childs et al., 2019).
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4.1. Implications for Preparedness

These analyses were developed to consider use for preparedness planning, whether by government or 
research-based groups. This is primarily done through the produced forecasts that can be generated, similar to 
those in Figure 2. Knowledge of locations that are more likely to see any YF cases or greater incidence of YF can 
be useful for conserving resources dedicated to public health messaging, preparing medical facilities to expect 
cases, or other preventative measures. Given the likely changes in YF dynamics in Brazil after March 2018 as a 
result of the outbreak eventually concluding, implementing a forecast model such as this would require an update. 
Repeating the analyses with more recent data would allow the methods and findings of this study to most effec-
tively inform policy and preparedness efforts.

The example forecasts shown in Figure 2 show some complexities of providing both forecasted probability of 
occurrence and forecasted incidence. The forecasts for the week of 11–17 May 2015 (Figure  2a) show that 
municipalities with the lowest probability of occurrence, but highest estimated incidence, are found throughout 
the Southeast and South regions. These municipalities saw conditions where observing YF cases is unlikely 
compared to other locations, but observing high incidence is likely if cases are seen. These competing statements 
produce communication challenges; policy recommendations will rely on tradeoffs between prioritizing prob-
ability of occurrence or incidence. Combining these pieces of information into one map, as shown in Figure 2 
(right column), may prove useful in allowing municipalities with high estimated incidence but low probability of 
observing nonzero incidence, to be shown as low-risk. The probability threshold, however, is an arbitrary deci-
sion that should be made in conjunction with stakeholders.

Presenting regular forecasts to stakeholders for preparedness is an inherently challenging activity, as current fore-
cast communication are typically individualized, and there exist few real-world examples (George et al., 2019; 
Tushar & Reich, 2017). Implementing the forecasting models developed in this study and then presenting regular, 
interpretable forecasts requires computational resources and communication strategies tailored to stakeholders. 
This is discussed in more detail in Supporting Information S1.

4.2. Limitations and Future Directions

While this study aimed to focus on environmental predictors and made use of publicly available data, other factors 
not accounted for in these analyses could yield more accurate predictions and explain more of the dynamics of 
YF spread (Harris et al., 2019), though potentially with a loss of usability. Other works have used human mobil-
ity (Kraemer et al., 2017), mosquito movements, and nonhuman primate movement (Childs et al., 2019; Kaul 
et al., 2018). However, these data are difficult to acquire at a high quality, particularly across a large nation such 
as Brazil and over several years of observation. Within the environmental predictors we used, other methods of 
applying them exist beyond minimum, maximum, mean, and range of daily values each week. Numerous possi-
bilities exist, such as apply diurnal temperature ranges, cumulative time within particular temperature ranges, or 
numbers of days with precipitation. Even without these data, the models presented in this study were shown to 
produce accurate forecasts as measured by AUC and MAE.

In aiming to determine the utility of primarily environmental predictors and focusing on YF determinants that are 
not potential targets of intervention, certain determinants of YF risk related to human activities are not accounted 
for in the models. These can include socioeconomic status (Jean et  al.,  2020), and specific human mobility 
patterns (Kraemer et al., 2017). However, while these factors can be highly influential in YF risk prediction, the 
results of this study, focusing solely on the environmental predictors, showed that accurate forecasts can still be 
achieved, particularly when forecasting YF occurrence, as evidenced by high AUC values.

Using the models generated in this study today, where one set of parameter estimates applies to the entire nation 
and the entire time period of observation, relies on the assumption that all municipalities of Brazil are currently 
capable of seeing YF cases. There may exist characteristics of municipalities outside the 462 used in model 
fitting that lead to not being susceptible (Servadio et al., 2022). We also assumed that the ability to detect and 
report YF cases is uniform across all municipalities and that YF can be observed and reported, even if it had not 
been reported between 2000 and 2018. The forecasts produced in Figure 2 among municipalities outside the 462 
used in model fitting assume that YF was not observed in those locations. It is likely that these abilities vary 
across locations as well as over time. The overall sparsity of YF data, appearing in less than a tenth of munici-
palities, creates difficulty in assessing spatial variation in forecast ability. Further, different areas of Brazil see 
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different YF vectors, with urban areas having primarily Aedes mosquitoes and western parts of the country seeing 
more Haemagogus and Sabethes mosquitoes. However, the municipalities used in model fitting represent several 
geographic areas of Brazil, suggesting they may be adequately representative of the nation from an environmental 
perspective. Additionally, use of the model today would likely require an extension to repeat the methods using 
recent data following the end of the YF outbreak. Doing so would allow comparisons of YF dynamics before, 
during, and after a large outbreak.

5. Conclusions
Weekly occurrence and incidence of YF can be forecast accurately using meteorological and ecohydrological 
predictors as well as previous cases. Specifically, forecasts based on temperature and incorporating previous YF 
occurrence were the most accurate both before and after the start of a major epidemic. The results from these 
models are useable for informing measures to prevent YF cases by providing weekly forecasts for the probability 
of YF occurrence and estimated YF incidence. Basing forecasts on environmental predictors, as done in this 
study, allows seasonality of YF to be considered and identifies environmental determinants that may be associ-
ated to ecological controls. The methods used in this study are translatable to similar vector-borne diseases and 
demonstrate the use of forecasting models for informing public health science and practice.
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