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Abstract: In this paper we propose a workflow for studying the genetic architecture of ischemic
stroke outcomes. It develops further the candidate gene approach. The workflow is based on the
animal model of brain ischemia, comparative genomics, human genomic variations, and algorithms
of selection of tagging single nucleotide polymorphisms (tagSNPs) in genes which expression was
changed after ischemic stroke. The workflow starts from a set of rat genes that changed their
expression in response to brain ischemia and results in a set of tagSNPs, which represent other SNPs
in the human genes analyzed and influenced on their expression as well.

Keywords: single nucleotide polymorphisms; models of brain ischemia; human orthologues; is-
chemic stroke

1. Introduction

The ischemic stroke (IS) is a multifactorial disease, where the genetic factors con-
tribute substantially [1]. The same seems to be true for outcomes after IS. However, their
associations with the particular genetic factors are poorly known and require further in-
vestigation [2,3]. There are two main approaches to identify the genes involved in the
development of complex traits: candidate gene approach and genome-wide association
(GWA) study (GWAS) [4]. Both were extensively applied to study the genetic bases of
IS and resulted in revealing several tens of genes involved in stroke development and
risk [5]. In contrast, only few GWA studies have been published on outcomes after IS [6,7].
Therefore, the real genetic control of them remains a black box and the full list of the risk
(prognostic) loci is yet to be identified. In this paper we describe an approach to explore
the genetic bases of variability in IS outcomes.

GWAS does not require the prior knowledge on the importance of the specific func-
tional features of the trait under consideration. At the same time, it is less precise in
revealing causal loci (genes) generally located in particular chromosomal regions that can
contain no genes or alternatively be abundant with them [8]. The usability of a gene-based
approach was mainly restricted by the incompleteness of knowledge about the biology of
the phenotypes studied. To break the information bottleneck, several strategies extending
the candidate gene approach were proposed [4]. They were based on linkage information
in a chromosomal segment, methods of comparative genomics, and gene expression at
different stages. There were also the approaches that combine two or more strategies
together. One such method is the digital candidate gene approach (DigiCGA), which
extract, filter, and analyze the resources on the web available publicly [9]. The method we
propose incorporates the best strategies of the mentioned above approaches and puts them
in a form of a workflow.

The idea of this research originates from the models of brain ischemia in laboratory
animals that were developed to understand the biological processes underlying cerebral
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ischemic injury [10]. Studies of rat and mouse genomes showed that most part of human
disease genes (99.5%) had orthologues in rodents [11]. Furthermore, comparison of conser-
vation rates of rodent orthologues associated with different types of diseases demonstrated
that gene set related to neurological conditions evolved slowly. Together that suggested
the rodent models of human neurological diseases to be appropriate representations of the
disease processes in humans. Many of the results obtained in model experiments were
subsequently confirmed (correlated) in corresponding GWA studies in humans, including
those assessed with outcomes after IS [6]. Although there is no animal model that could
cover all aspects of human ischemic stroke [12], one of such models—the transient middle
cerebral artery occlusion (tMCAO)—is quite promising and actively tested for the develop-
ment of neuroprotective therapeutic approaches. It is based on temporal artery occlusion
and subsequent restoration of blood flow. According to Howells, such model was used in
42.2% of 2582 neuroprotection experiments. The occlusion with subsequent restoration of
blood flow can influence the functioning of different genes. Recently, Dergunova et al. iden-
tified a list of rat genes that substantially changed their expression in brain in the response
to tMCAO [13]. We propose to explore the genomic variations in human orthologues of
these genes for searching the genomic markers of IS outcome. Below, we describe in the
details the workflow that starts from the list of the rat genes and leads to a set of tagging
SNPs (tagSNP) that can be used in case–control studies with the conventional TaqMan
real-time PCR assays.

2. Materials and Methods

The main steps of the workflow proposed are shown in Figure 1. In the beginning,
there are rat genes with expression level evaluated at 24 h after tMCAO [13]. Twenty-
four of them demonstrated the most significant changes in expression level (change in
expression >6-fold and p-value < 0.01) and were chosen for further analysis.
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Figure 1. The workflow to identify the tagging SNPs for studying the ischemic stroke outcomes.

The human orthologues of the rat genes were comparatively identified by querying
several resources: Ensembl [14], PANTHER 8.0 [15], PhylomeDB 4 [16], and MetaPhOrs [17].
The data from the database Ensembl Genes 97 were retrieved with BioMart by accessing it
with web-based interface [18].

The next step was the identification of SNPs within the human genes, including their
5’ and 3’ flanking regions of 5000 bp length. To be relevant to the SNP frequencies in
the potential case–control study, the genotypic data should be taken from an appropriate
population [19]. To choose such a population, the collection of population samples of
1000 Genomes Project was used. The project comprises one the most comprehensively
characterized set of populations with detailed history about each of them [20]. For our
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purposes we selected CEU population because its genotype data had been shown to
be appropriate for selection of loci to assess genetic variability in the most European
populations, including those living in Russia [21–24]. We extracted the required set of SNPs
from the bulk of CEU genotype data using VCFtools (0.1.15) [25]. To capture the most
common genetic variants, the SNPs with minor allele frequency (MAF) higher than 10%
were considered.

Then, we explored the associations between the alleles of selected loci using the
correlation coefficient r2 and revealed patterns of linkage disequilibrium (LD) in each of the
region considered. To do this, we applied the CLUSTAG tool [26], Tagger instrument [27]
implemented in Haploview 4.2 tool [28], and gpart R package (version 1.2.0) [29] using
default parameters.

The input files were generated from vcf files obtained in the previous step with
the custom scripts. All of the tools were able to reveal patterns of LD (LD blocks) using
distinct algorithms but only CLUSTAG and Haploview allowed to compute tagSNPs which
represented the groups of highly correlated SNPs in a chromosomal region. Thus, they
were used for revealing tagSNPs in the gene regions studied (the threshold of squared
correlation between SNPs r2 ≥ 0.8). For both tools, we estimated the tagging effectiveness
(TE) as the ratio of the number of tagSNPs to the number of SNPs they tagged.

Because of large number of potential tagSNPs and taking into account that not all of
them could mark functionally important SNPs, the subsequent step was to annotate all the
possible tagSNPs from high-LD regions with expression quantitative trait loci (eQTLs). For
each gene, we downloaded the Significant Single-Tissue eQTLs using the web-interface
of Genotype-Tissue Expression (GTEx) project (Release V8) [30]. The eQTLs were further
intersected with the tagSNPs determined with Tagger algorithm and filtered by tissue
defined as Brain, Artery, Nerve, Blood, and Heart.

At the final step the tagSNPs from the Haploview’s Tagger runs with the maximal
capture efficiency (maximal mean r2) and defying as eQTLs were selected to form a list
of markers for studying in case–control associations using an appropriate genotyping
approach (e.g., TaqMan real-time PCR assay).

The scripts used in this research are freely available at the repository https://github.
com/inzilico/tagSNP (accessed on 9 August 2020).

3. Results

We extracted 23 of 24 human orthologues in rat using such projects as Ensembl,
PANTHER, PhylomeDB, and MetaPhOrs. Different repositories resulted in the same
list of orthologues that showed a one-to-one relationship between human and rat genes.
The exception was Glycam1 gene, which orthologue was not identified. The human
GLYCAM1 is pseudogene. The genes extracted from Ensembl are presented in Table 1.
The numbers of SNPs identified in each gene including flanking regions are given in
Supplementary Table S1. The high-LD regions revealed with three approaches were in
good agreement. The TE for CLUSTAG and Tagger are presented in Figure 2. In general
Tagger demonstrated higher values of TE than CLUSTAG. Therefore, the tagSNPs revealed
by Tagger were used for further analyses, particularly, searching eQTLs.

https://github.com/inzilico/tagSNP
https://github.com/inzilico/tagSNP
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Table 1. The human orthologues of rat genes identified with Ensembl.

Rat Human Metrics

Gene Chrom Start (bp) End (bp) Gene Chrom Start (bp) End (bp) 1 2 3 4 5
Adora2a 20 16449385 16466147 ADORA2A 22 24813847 24838328 82 82 100 87.44 1

Bcl3 1 81996116 82010351 BCL3 19 45250962 45263301 82 83 100 59.56 1
Ccl22 19 10668403 10675173 CCL22 16 57392684 57400102 65 65 100 53.85 1
Ccr1 8 132147929 132153481 CCR1 3 46243200 46249887 80 80 75 100 1
Cd14 18 29265353 29266946 CD14 5 140011313 140013286 62 63 75 100 1
Cd44 3 99339455 99426032 CD44 11 35160417 35253949 71 68 100 91.02 1

Csf2rb 7 119544873 119558539 CSF2RB 22 37309670 37336491 56 56 100 100 1
Emp1 4 233415324 233449254 EMP1 12 13349650 13369708 76 74 75 100 1
Fosl1 1 227755887 227764393 FOSL1 11 65659520 65668044 92 91 100 100 1

Glycam1 7 142951738 142953998 *
Gpr6 20 47518790 47521561 GPR6 6 110299514 110301921 94 94 50 99.76 1

Gpr88 2 237334865 237339419 GPR88 1 101003693 101007574 95 95 50 100 1
Hmox1 19 25622556 25629372 HMOX1 22 35776354 35790207 80 80 50 100 1

Il6 4 3095536 3100112 IL6 7 22765503 22771621 40 40 0 100 0
Lcn2 3 16763059 16766466 LCN2 9 130911350 130915734 64 64 100 100 1

Lgals3 15 28094062 28106276 LGALS3 14 55590828 55612126 82 78 100 96.41 1
Mcm5 19 25637492 25681915 MCM5 22 35796056 35821423 47 97 50 99.53 0
Olr1 4 211883405 211905489 OLR1 12 10310902 10324737 66 49 75 100 0

Osmr 2 75851664 75892056 OSMR 5 38845960 38945698 56 57 100 99.6 1
Ptx3 2 177457263 177463073 PTX3 3 157154578 157161417 81 81 100 100 1
Rgs9 10 97225541 97298645 RGS9 17 63133549 63223821 91 90 75 67.67 1
Sdc1 6 43667444 43689898 SDC1 2 20400558 20425194 77 76 100 100 1

Serpine1 12 24653385 24663763 SERPINE1 7 100770370 100782547 81 81 100 100 1
Spp1 14 6653093 6658953 SPP1 4 88896819 88904562 63 62 100 66.28 1

1—%id. target rat gene identical to query gene; 2—%id. query gene identical to target Rat gene; 3—rat gene-order conservation score; 4—rat whole-genome alignment coverage; 5—rat orthology confidence [0
low, 1 high]; *Glycam1 has no orthologues in human.
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Figure 2. Tagging effectiveness by CLUSTAG and Tagger tools.

Figure 3 represents the patterns of LD and tagSNPs revealed in PTX3 gene. All the
tagSNPs obtained are given in Supplementary Table S2. Only part of them was found to
be eQTLs. Some of such tagSNPs was the eQTLs for several tissues. On other hand, no
eQTLs were identified among tagSNPs located in BCL3, CCL22, FOSL1, GLYCAM1, GPR6,
HMOX1, IL6, and LCN2 genes. After checking the identified sets of eQTLs, nine tagSNPs
were determined as potential candidates for further analysis in case–control study using
real-time PCR with TaqMan probes. Eight of them were associated with the changes of
expression in brain tissues and thus to be the first-priority markers. The ninth locus—the
SNP in CCR1 gene—had the greatest absolute values of eQTL-related statistics, particularly,
p-value and normalized effect size (10−47 and −0.40, respectively).
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bottom of LD plot designate the SNPs included in analyses. Their coordinates as well as the boundaries of the gene are
presented at the line below LD plot. The SNPs with numbers 2, 3, 4, 6, 9, 10, 13, 15, and 17 are the members of the first group
of strongly associated (r2 ≥ 0.8) SNPs, while the SNPs with the numbers 5,7,8,14,16,18 and 1,11,12 represent the second and
the third group, respectively.

4. Discussion

In this paper we proposed a workflow to identify the genetic markers associated with
the outcomes of ischemic stroke. It is based on candidate gene approach that requires
a prior knowledge about the system under consideration. We hypothesized that such
information, particularly, a list of gene-candidates, can be taken from the model studies
of brain ischemia in rat. Namely, we took 24 genes exhibited substantial changes in their
expression in brain rat after tMCAO and using the workflow proposed obtained a list of the
SNPs (tagSNPs with eQTLs abilities) that can be potentially applied in case–control studies.

In the line of workflow, we additionally compared four different sources of human
orthologues in rat and three different methods for identification of high-LD regions and
selection of tagSNPs. Ensembl, PANTHER, PhylomeDB, and MetaPhOrs were chosen
because of the best accuracy and call rate of orthologues inference [31]. They all revealed
the same list of human orthologues in rat and thus anyone can be used for searching of
orthologs. Nevertheless, human orthologues in rat was identified for each gene of interest
and confirmed by four different resources.

To explore patterns of LD and identify tagSNPs we used CLUSTAG, Tagger, and gpart
tools. These methods were chosen because they represent three different approaches to
the problem of identifying groups of highly correlated SNPs. Although they all exploit
the LD-based approach and MAF to split the list of SNPs into high-LD regions (blocks),
their algorithms differ. Tagger is based on the analysis of single markers and multi-marker
haplotypes, CLUSTAG—on the analysis of clusters, while gpart—on graph analysis. gpart
can effectively identify LD blocks of different range but cannot tag SNPs. In terms of
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TE, Tagger outperformed CLUSTAG and thus its tagSNPs were used for further analysis.
However, the number of tagSNPs computed was still high for practical usage, which is
why we annotated the SNPs from high-LD regions with eQTLs and subset the appropriate
tagSNPs manually. Because the expression of a particular gene can be potentially affected
not only the loci located inside the gene (cis-eQTLs) but the loci lied outside the gene
(trans-eQTLs) [32] the workflow may be extended with searching additional distant loci
associated with the changes of expression of target genes, particularly, the genes in which
no cis-eQTLs were identified.

Like other studies pointed to establish genomic landscape of complex traits, our
approach is also based on exploration of data of different types (mRNA transcription,
population genetic variations, eQTLs) [33,34]. However, it does not rely on GWAS data
which are known to be not good in identifying real causative variants and genes as well [35]
and thus it is initially more confident. Another characteristic of our approach is its higher
genetic complexity due to use of whole genome sequence data allowing possibility for
involvement of higher number of real (not imputed) genetic loci in analysis. It should be
also noted that although the workflow was applied to SNPs with frequency higher than
10%, it can be used for selecting and testing SNPs with lower frequency (e.g., loci with 5% to
1% frequency). However, it will require increasing the size of human samples analyzed (i.e.,
population sample, case and control samples). The data of Genome aggregation database
project [36] that includes sequencing data of 1000 Genomes Project and others can be used
for creating of samples with appropriate size.

The limitation of the proposed approach is that it has not been experimentally vali-
dated in a cohort of patients. Nevertheless, we believe that the created workflow will help
both in studying of genomics of individual variability in ischemic stroke outcomes and
looking inside the black box of polygenicity in their control.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/3/328/s1, Table S1: The number of SNPs identified in human genes, Table S2: The gene based
list of tagSNPs including those being eQTLs.
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