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Abstract

Motivation: Reliance on mapping to a single reference haplotype currently limits accurate

estimation of allele or haplotype-specific expression using RNA-sequencing, notably in highly poly-

morphic regions such as the major histocompatibility complex.

Results: We present AltHapAlignR, a method incorporating alternate reference haplotypes to

generate gene- and haplotype-level estimates of transcript abundance for any genomic region

where such information is available. We validate using simulated and experimental data to quan-

tify input allelic ratios for major histocompatibility complex haplotypes, demonstrating significantly

improved correlation with ground truth estimates of gene counts compared to standard single

reference mapping. We apply AltHapAlignR to RNA-seq data from 462 individuals, showing how

significant underestimation of expression of the majority of classical human leukocyte antigen

genes using conventional mapping can be corrected using AltHapAlignR to allow more accurate

quantification of gene expression for individual alleles and haplotypes.

Availability and implementation: Source code freely available at https://github.com/jknightlab/

AltHapAlignR.

Contact: peter.humburg@gmail.com or julian@well.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA sequencing (RNA-seq) enables high resolution quantification

of transcription (Wang et al., 2009). There are, however, significant

opportunities for bias in transcript quantification estimates in favor

of reference alleles (Degner et al., 2009) dependent, for example, on

the particular sequencing technology used and length of read gener-

ated, the strategy and reference sequence adopted for mapping and

the processing pipeline (Conesa et al., 2016; Reinert et al., 2015).

The development of longer read technologies for high-throughput

sequencing will help address this problem but given the large

amounts of data that are already generated and will continue to

be generated, using shorter reads there is a need for innovative

approaches to enable more accurate quantification. This is particu-

larly the case for highly polymorphic regions of the genome where

gene and transcript level expression data may be of significant

clinical and biological interest such as the major histocompatibility

complex (MHC) (Brandt et al., 2015; Lighten et al., 2014).

Quantification of allele- or haplotype-specific gene expression is of

particular interest when considering the functional significance of

regulatory genetic variants such as arising through genome-wide as-

sociation studies of common disease, where such variants are most

commonly implicated (Schaub et al., 2012). Establishing causal

mechanistic relationships between specific variants and expression

of individual genes is a current priority in this field of research and

accurate quantification of transcription is a critical step in such stud-

ies (Knight, 2014).

The MHC highlights some of the challenges in current applica-

tion of RNA-seq. The MHC is extremely polymorphic and gene
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dense, with an essential role for classical human leukocyte antigens

(HLA) in transplantation, established associations with disease, not-

ably autoimmunity and infection, as well as adverse drug reactions

(Matzaraki et al., 2017). It is proposed that a number of these trait

associations involve effects on gene expression, but the definition of

functional alleles, such as through gene expression quantitative trait

mapping, has been limited by the inability to obtain accurate quanti-

fication of transcript abundance. The need to define such variants,

as well as broader clinical imperatives to apply NGS (next-generation

sequencing) accurately to the MHC for tissue typing, have driven ef-

forts to address accurate read mapping for the MHC (Carapito et al.,

2016). The high degree of diversity in the MHC and occurrence of

close paralogues for several genes causes major issues for standard

mapping methods (Brandt, et al., 2015). Methods that utilize de novo

assembly with genome inference have been developed and applied to

establish personal reference sequences (Chaisson et al., 2015; Dilthey

et al., 2015). Other methods rely on the availability of genotyping

data to support the polymorphism-aware mapping of RNA-seq reads

(Baker et al., 2015; Pandey et al., 2013; Rozowsky et al., 2011; Sun,

2012; Turro et al., 2011). Some methods, like MMSEQ (Turro et al.,

2011), QuASAR (Harvey et al., 2015) and Salmon (Patro et al.,

2017), can obtain allele-specific expression estimates using only

RNA-seq data, although QuASAR is limited to a set of known poly-

morphisms and MMSEQ only allows use of a single haplotype refer-

ence. There is also the opportunity in the MHC to leverage the

availability of sequences for eight of the most commonly occurring

long range (extended) haplotypes in Caucasian populations that have

been generated for the MHC to use as alternative reference haplotypes

(Horton et al., 2008). Here, we show how such information can be

used in a novel strategy for more accurate RNA-seq analysis that le-

verages knowledge of haplotype sequence and structure. The MHC is

presented as an exemplar, but the methodology is generic and applic-

able to other genomic regions for which alternate reference sequences

are increasingly available (Schneider et al., 2017).

2 Materials and methods

2.1 Pipeline overview
The AltHapAlignR pipeline consists of three main stages (Fig. 1).

Stage 1. Reads are aligned to the standard genome reference,

which currently comprises the PGF haplotype sequence for the

MHC region as part of the Genome Reference Consortium human

genome (build 38) (GRCh38). Reads mapped to the MHC (chr6:

28 520 000–33 390 000, GRCh38) and unmapped reads are ex-

tracted and realigned to the other MHC reference haplotypes inde-

pendently. Reads mapped to multiple regions, with mapping quality

less than 20, and duplicate reads, are removed. Any third party read

mapper, like TopHat (Kim et al., 2013) or HISAT2 (Kim et al.,

2015), can be used for this purpose, provided that information

about the alignment is stored in the standard tags provided by the

SAM format specification.

Stage 2. AltHapAlignR estimates expression of genes and haplo-

type using alignments to the available reference haplotypes, here the

eight MHC Haplotype Project reference sequences. Each read is as-

signed to a gene or genes according to reference annotation. For

paired-end reads, both reads in a pair must align to the same gene.

Reads assigned to multiple genes or to different genes on different

haplotypes are removed. For each gene, all reads mapped to at least

one of the reference haplotypes are weighted based on the editing

distances (number of substitutions, insertions and deletions) be-

tween the reads and reference sequences. For paired-end reads,

editing distances for both reads are combined. The resulting weights

across all eight haplotypes are normalized to 1. For each gene/haplo-

type pair, the mapping rate is calculated as the sum of weighted val-

ues divided by the total number of reads mapped to this gene across

the eight haplotypes. To infer the best pair of reference haplotypes,

we obtained combined mapping rates and editing distances of all

possible haplotype pairs. For a given gene, we used the haplotype

pairs that produce the lowest relative editing distance among the

pairs with the top 5% of combined mapping rates.

Stage 3. To resolve ambiguities in the choice of haplotypes

AltHapAlignR constructs a weighted directed graph of genes, incor-

porating the eight MHC reference haplotypes is constructed with

one node for each gene and an edge connecting genes that are adja-

cent to each other on a given haplotype (Fig. 1 and Supplementary

Fig. S1). Let M(g1, g2) be the average combined mapping rate of

A

B

Fig. 1. Overview of AltHapAlignR workflow and sample output with haplotype

prediction. (A) Schematic depicting pipeline. Preprocessing includes mapping

of reads to the reference haplotype with unmapped reads extracted and re-

aligned to the alternative haplotypes independently. Using the scoring

weights of the haplotype pairs (based on editing distances of aligned reads to

the respective references), closest haplotypes are selected for each gene

while maximizing the quality of read alignments and minimizing the number

of switches between haplotypes. Gene and haplotype level expression is esti-

mated based on reads aligned to the selected haplotypes. (B) Example of

AltHapAlignR output using synthetic heterozygote data (PGF and COX 1:1

ratio). Haplotype prediction and mapping rates (left panel). Illustrated for

each classical HLA gene (y-axis) and eight known haplotypes. Numbers in

each cell are mapping rates in each haplotype. Predicted haplotypes high-

lighted with red border. Empty cells represent genes not annotated in given

haplotype. Combined mapping rates from the predicted haplotypes (middle

panel). Mapping rate (first column): read counts of gene in the predicted

haplotype(s)/total read count of the gene across all haplotypes. Mismatch

mapping rates of predicted haplotypes (second column). Pink (predicted het-

erozygote), grey (homozygotes). Gene counts (right panel). Raw read counts

for each HLA gene
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genes g1 and g2 in all haplotype pairs, then the weight of edge (g1, g2)

is defined as:

w g1; g2ð Þ ¼ 1=� log 1� M g1; g2ð Þð Þð Þð Þ: (1)

In addition, two pseudo nodes are introduced to mark the start and

end of the haplotypes. To select best haplotype pairs that minimize

haplotype switching, edges with different haplotypes were penal-

ized. The chosen penalty of 0.0028 corresponds to the standard

error of the mean of combined mapping rates from the difference

between true haplotypes and predicted haplotypes determined by a

simulation study. Dijkstra’s algorithm, as implemented in the R

package ‘igraph’ (Csardi and Nepusz, 2006), was employed to find

the shortest path through this graph to derive suitable pairs of refer-

ence haplotypes (Fig. 1A).

Output. The main output of AltHapAlignR is a file with the

combined mapping rates of all haplotype pairs, providing raw read

counts of both haplotypes and genes. Gene counts from this file

can be combined with data for non-MHC genes for genome-wide

gene expression analyses. In addition, AltHapAlignR produces a

file with three figures: a heat map providing an overview of map-

ping results, a table with combined mapping rates of best haplo-

type pairs and a bar plot with haplotype and gene counts (Fig. 1B).

An example of the full output for all MHC genes is shown in

Supplementary Figure S2. Optionally, a file annotating each read

with its assignment to gene features and haplotypes can be

produced.

2.2 Estimating expression of genes and haplotypes
We quantified features of transcripts and genes using GENCODE

(Harrow et al., 2012) Release 21 (GRCh38) annotations. Only pro-

tein coding transcripts with verified and manually annotated loci

were used based on a gene type and a level feature information

in GENCODE. Genomic locations of genes were restricted to fil-

tered transcript location. Genes were removed from the analysis

if they had a low proportion of uniquely mapped reads (<80%) or

if they were the target gene of incorrectly mapped reads (>20%

of reads for a given gene), as determined by a simulation study

(Supplemental Table S1). These included genes known to be highly

homologous such as the heat shock genes HSPA1A and HSPA1B

and complement genes C4A and C4B. In total, expression was esti-

mated for 135 genes in the 8 MHC haplotypes.

We estimated read counts for each gene by summing over the

read counts of transcripts from the best pair of reference haplotypes.

For comparison of haplotype expression on a per gene basis, we

only used reads uniquely mapped to a single haplotype. To obtain

haplotype counts for a heterozygous gene for comparison of haplo-

type expression across different groups, the normalized gene count

was multiplied by proportion of uniquely mapped reads to each

haplotype. For homozygous genes, normalized gene counts were

divided by 2.

2.3 Data simulation
Paired-end short reads were generated based on transcript sequences

from the eight MHC reference sequences. Haplotypes and tran-

scripts were randomly selected for each gene. For each haplotype/

gene pair, we generated 2000 read pairs by randomly selecting their

start and end positions in transcript sequences with insert sizes be-

tween 150 and 350 bp. We produced data for five different sampling

ratios (1:1, 1:1.125, 1:1.25, 1:1.5 and 1:2) between two haplotypes

and for two different read lengths (50 and 100 bp).

2.4 Comparison with salmon
The 10 sets of simulated data were analysed with Salmon version

0.9.1 using its quasi-mapping-based mode. Read mapping was re-

stricted to the set of protein coding genes that were used in the simu-

lation. Simulated reads were quantified directly against the resulting

index using the Salmon ‘quant’ command. Salmon’s estimate of the

number of reads mapping to each transcript (NumReads) was used

for transcript-level abundance. Trimport (Soneson et al., 2015) was

used to compute the gene-level estimates from transcript estimates.

We used the read counts of genes and transcripts only matching to

the simulated dataset and compared the performance of the expres-

sion estimation to ours. Identical sequences in different haplotypes

were treated as the same gene. Incorrect mapping rates were com-

puted as the expression estimates for transcripts not present on the

simulated haplotypes over the total expression, aggregated at the

gene level.

2.5 Sample preparation of synthetic heterozygote
Two of HLA-homozygous lymphoblastoid cell lines (LCLs), PGF and

COX were used to produce ‘synthetic heterozygote’ samples. The

COX cell line was obtained from The International Histocompatibility

Working Group (IHW, ref 0922) and PGF cell line from the European

Cell Culture Collection (Salisbury, UK ref 94050342); integrity and

genotypes had been previously verified by DNA FISH, HLA typing,

microsatellite and SNP (single nucleotide polymorphism) genotyping

as described (Vandiedonck et al., 2011). Cells were harvested in mid-

log growth phase, total RNA extracted and quantified using the Qubit

RNA assay. RNA from each of the two MHC homozygous cell lines

was mixed in differing ratios before mRNA library preparation and

sequencing. Libraries were generated from each of the RNA ratio

mixes using polyT capture of mRNA. Once the mRNA had been se-

lected the RNA was fragmented and then cDNA libraries were made.

The cDNA was end repaired, A-tailed and adaptor-ligated before amp-

lification for sequencing. Sequencing was performed using the Illumina

GAIIx. RNA-seq data are deposited at ArrayExpress accession number

E-MTAB-5870.

2.6 GEUVADIS RNA-seq data analysis
RNA-seq data generated as part of the GEUVADIS project (Genetic

European Variation in Health and Disease, A European Medical

Sequencing Consortium) was used for this study. The dataset in-

cludes RNA-seq data on LCLs established from 462 individuals

from five populations: 91 CEPH (CEU), 95 Finns (FIN), 94 British

(GBR), 93 Toscani (TSI) and 89 Yoruba (YRI) (Lappalainen et al.,

2013). Bam files for paired-end reads (2 � 75 bp) were downloaded

from ArrayExpress (accession number E-GEUV-6).

We focused on analysing the expression of genes and haplotypes

in the MHC region, using the strategy described earlier. To identify

genes with differential expression between populations, we gener-

ated raw read counts of genes of all individuals using AltHapAlignR

and these were normalized using DESeq2 (Love et al., 2014). Genes

with Benjamini–Hochberg adjusted P-value<0.05 and fold change

>2 were considered significant. We estimated expression levels of

haplotypes for heterozygous genes by comparing uniquely mapped

reads to two predicted haplotypes. When comparing haplotype ex-

pression within population, we only included haplotype pairs with

more than 5 individuals and a read depth of at least 30 in both

haplotypes.

We performed HLA-typing of all RNA-seq data using PHLAT

(Bai et al., 2014), which is based on SNP sites against reference se-

quences in IMGT/HLA database (Robinson et al., 2015). Reads
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mapped to the best pair of haplotypes for each gene were extracted

and mapped to the IMGT/HLA sequences that contain DNA se-

quences of HLA alleles to find a pair of the reference haplotype and

the HLA type.

2.7 Software availability
AltHapAlignR is freely available under the terms of the LGPL-3 li-

cense at https://github.com/jknightlab/AltHapAlignR. Customized

shell scripts provided in the R package for remapping can be run on

a per sample basis.

3 Results

3.1 Read mapping accounting for alternate haplotypes

using AltHapAlignR
We first aimed to develop an approach for RNA-seq read mapping

that can take account of alternate haplotypes, using the MHC as

an exemplar region. To do this, we developed a novel analytical

pipeline (denoted AltHapAlignR) (Fig. 1; Supplementary Fig. S1) in

which reads are aligned to the reference sequence for this region.

This currently corresponds to the PGF haplotype as part of the

GRCh38 reference sequence (Schneider et al., 2017). Unmapped

and reads mapped to chromosome 6 (chr6: 29, 580, 000-

33 100 000) are then extracted and realigned to the other seven

MHC reference haplotypes independently. We ensured uniqueness

in mapping for a given read or pair of reads, with weighting based

on editing distance to calculate mapping rates and infer the best pair

of reference haplotypes.

3.2 Comparison of accuracy of quantification using

simulated data
We proceeded to compare our AltHapAlignR approach accounting

for alternate haplotypes with a standard mapping procedure using

the GRCh38 reference sequence as well as to gene expression esti-

mates produced by Salmon (Patro et al., 2017). To do this, we ran-

domly generated simulated reads (50 and 100 bp) from up to two of

the eight MHC reference haplotypes for each gene, with relative

gene expression levels set at five different ratios (1:1, 1:1.125,

1:1.25, 1:1.5 and 1: 2) between any pair of haplotypes. We obtained

gene counts mapped to the GRCh38 reference sequence and com-

pared them to gene counts obtained by our AltHapAlignR method.

For the latter, we estimated gene counts by summing the read count

from the best pair of haplotypes. We found that the correlation be-

tween simulated and predicted gene counts using AltHapAlignR was

very high (r2 0.99), whereas the correlation obtained when using

Salmon or a single reference was substantially lower (r2 0.65 and

0.46, respectively) (Fig. 2A), with longer reads improving accuracy

(Supplementary Fig. S3).

Using conventional mapping with a single reference haplotype,

we found that expression levels of 85 out of 135 genes (63%) in the

MHC were estimated to have an expression level at least 10% below

the nominal value. Salmon performed better with 31 genes (23%)

producing low expression estimates. AltHapAlignR compared

favorably to this with only 13 genes (10%) producing low estimates.

This includes six classical HLA genes and seven other HLA

genes, with some of these failing to attract any reads (Fig. 2B,

Supplementary Figs. S3B and S4A). At the haplotype level, we found

that there was a high level of correlation between estimated and

simulated median expression ratios using AltHapAlignR (r2 0.95)

for best matching haplotypes (Fig. 2C and Supplementary Fig. S4B).

We also found that using longer reads improved the accuracy of esti-

mated expression ratios (Supplementary Fig. S4B).

3.3 Generation and quantification of synthetic samples

comprising different allelic ratios
We validated our approach experimentally by generating ‘synthetic

heterozygote’ samples in which we combined total RNA from LCLs

homozygous for two MHC haplotypes (PGF and COX) in five dif-

ferent allelic ratios (1:1, 1:1.125, 1:1.25, 1:1.5 and 1:2) and used

these to generate RNA-seq sequencing libraries. We calculated ex-

pected haplotype ratios for heterozygous genes, which had uniquely

mapped reads with minimum read depth of 30 in both haplotypes.

We were able to quantify haplotype-specific differences (Fig. 3) with

a correlation observed between input and observed median ratios

(0.997). Median ratios were consistently lower than expected,

however, scaling by the ratio observed in the 1:1 sample reduced

the observed deviation from expected (Supplementary Fig. S5).

Observed differences may reflect biological differences between the

gene expression for the two haplotypes or the difficulty of accurate

quantification of RNA abundance at the time of mixing RNA from

the two cell lines.

A

B

C

Fig. 2. Accuracy of estimated gene and haplotype level expression using

simulated data for MHC genes. (A) Gene counts for input simulated

reads (100 bp) comparing mapped read counts using single reference,

AltHapAlignR or Salmon. (B) Mapping rates between single reference-based

mapping, AltHapAlignR or Salmon for HLA genes (error bars SEM). (C)

Estimated mapping ratios relative to true actual sample ratios. Expected map-

ping ratio is indicated by a dashed line. At haplotype level, boxplots show

estimated haplotype ratios with actual ratios indicated by dashed lines
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3.4 Application of AltHapAlignR to large-scale RNA-seq

data from diverse populations
We next aimed to investigate differential expression of genes and al-

leles for MHC haplotypes encountered in diverse populations. We

applied AltHapAlignR to the GEUVADIS dataset comprising deep

RNA-seq data for 462 LCLs established from individuals from five

different populations (Lappalainen, et al., 2013). Gene expression

was variable with high levels of expression seen, notably in classical

HLA genes (Fig. 4) (Supplemental Table S2) with six genes (HLA-A,

HLA-B, HLA-C, HLA-DQA1, HLA-DQB1 and HLA-DRB1) ac-

counting for 25–47% of expression in all genes in the MHC across

all individuals. Genes showing significant variation in expression be-

tween individuals included genes only found on specific haplotypes

(such as HLA-DRB5) and others with regulatory genetic variants

modulating transcription [such as ZFP57 (Plant et al., 2014)] or

mRNA stability [such as HLA-G (Rousseau et al., 2003)].

We compared gene level expression estimated by single

reference-based mapping with that achieved using AltHapAlignR

(Fig. 5, Supplementary Fig. S6). We found significant differences in

expression with 20 genes showing 1.5-fold lower level of gene ex-

pression in the single reference-based mapping at least in ten individ-

uals (Fig. 5A, Supplemental Table S3). These included the majority

of classical class I (HLA-A, HLA-B, HLA-C and HLA-G) and class

II (HLA-DOA, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-

DQB2, HLA-DRA and HLA-DRB1) genes.

In contrast, HLA-DPA1 showed consistent gene expression from

the two mapping procedures (Fig. 5B). For this gene, all the reference

haplotypes carry the same allele (DPA1*01:03:01), whereas the HLA

genes that showed significant differences in expression estimates have

different alleles across different haplotypes (Robinson et al., 2015).

Fig. 4. Heat map diagram of MHC gene expression analysed by AltHapAlignR

for GEUVADIS cohort. Gene level expression for 114 genes in the MHC from

462 individuals in five populations shown. Each column represents an indi-

vidual, each row a single gene (classical HLA genes highlighted). Normalized

log2 expression levels shown (white, low intensities; dark shading, high

intensities)

Fig. 3. Haplotype ratios of gene expression for synthetic heterozygote sam-

ples. Box plots present estimated haplotype ratios of genes from synthetic

heterozygote samples prepared in five different haplotype ratios (1:1, 1:1.125,

1:1.25, 1:1.5 and 1:2)

A

B

Fig. 5. Variation in estimated gene expression estimates for GEUVADIS co-

hort by mapping method. Read counts by single reference-based mapping

(x-axis) and by AltHapAlignR (y-axis) shown, each dot indicating an individ-

ual. (A) Scatter plots for 20 genes showing 1.5-fold change (red dashed line)

with lower expression in single reference mapping versus AltHapAlignR.

(B) Scatter plots illustrating genes with similar estimated expression
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We explored population differences in gene level expression

using the quantification achieved through AltHapAlignR. We found

that comparing median values of gene expression in each popula-

tion, the correlation coefficient was>0.94 between all population

pairs (Supplementary Fig. S7). While there was a high correlation in

overall gene expression between different populations, there were

notable outliers that showed over 4-fold difference between popula-

tions, involving HLA-DRB3, HLA-DRB4, HLA-DRB5, NOTCH4

and COL11A2 (Supplementary Fig. S7 and Table S4). These five

genes are also among those showing the broadest range of expres-

sion within populations (Fig. 6). Other genes showing variation in

expression within populations included HLA genes HLA-DQA2,

HLA-DQB2 and HLA-G and non-HLA genes EGFL8, POU5F1,

TNXB, ZBED9 and ZFP57 (Fig. 6).

Classical HLA genes have a large number of different alleles and

the extent to which these vary in terms of gene expression is an unre-

solved question although evidence suggests significant variation

(Apps et al., 2015) with potentially important consequences for

function and disease risk (Apps et al., 2013). We inferred high reso-

lution HLA types from RNA-seq data using PHLAT (Bai et al.,

2014) in which reads mapping to the best pair of haplotypes for

each gene were extracted and mapped to IMGT/HLA allelic se-

quences to find a pair of the reference haplotype and the HLA type

using a likelihood based ranking. We observed gradients in expres-

sion for the alleles of the different classical HLA genes (Fig. 7).

4 Discussion

It is well-established that read mapping algorithms are biased to-

wards reference alleles (Degner et al., 2009). For genes that harbor

multiple non-reference alleles, as is the case for many MHC genes,

this can lead to a significant under-estimation of gene expression.

The approach outlined here alleviates this by allowing for the inclu-

sion of multiple reference sequences. AltHapAlignR enables finding

the best match or closest haplotypes for all genes annotated in the

current references and estimating their expression using RNA-seq

data. We demonstrated the utility of our approach using eight MHC

reference haplotypes. The ability to comprehensively analyse expres-

sion of genes in the MHC will inform understanding of their role in

disease, which may involve effects not only at a structural level but

also differences in levels of gene expression.

We found evidence that some MHC genes show strong evidence

of allele specific expression with the same allele (as identified by the

best matching reference haplotype) exhibiting consistent expression

patterns across populations. This effect is more pronounced than

any population specific differences we observed in the GEUVADIS

data. Indeed, it seems likely that differential expression observed be-

tween populations is largely due to differences in allele frequencies.

For example, the observed variation in gene expression within and

between populations involving functional paralogous HLA-DRB

genes is likely to be accounted for by the variable number of HLA-

DRB loci dependent on haplotype that vary in frequency across

populations (Gonzalez-Galarza et al., 2015; Zhang et al., 2017).

This variation is reflected in the occurrence of these genes among

the reference haplotypes (HLA-DRB1 is present in seven out of the

eight available reference haplotypes, whereas HLA-DRB3 is only

present on COX and QBL, HLA-DRB4 on MCF and SSTO and

HLA-DRB5 on PGF) and in population studies where, for example,

African ancestry populations have high frequency of HLA-DRB3

and low HLA-DRB4 (Zhang et al., 2017) consistent with our obser-

vations at the level of gene expression. We also provide estimates of

A

B

Fig. 6. Variation in gene level expression across and within populations.

(A) Box plots of normalized log2 read counts for each gene across five popu-

lations from the GEUVADIS cohort. (B) Coefficient of variation for each gene

by population

Fig. 7. Gradients of expression across allelic lineages of six classical HLA

genes (HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1 and HLA-DRB1) in the

GEUVADIS cohort. Expression values plotted by allele (two for each individ-

ual) and coloured by population. Allelic lineages with>¼10 individuals are

shown. Yellow diamonds represent average expression levels for each allelic

lineage of their role in disease, which may involve effects not only at a struc-

tural level but also differences in levels of gene expression
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differences in gene expression specific to individual HLA types

involving six classical HLA genes, with HLA typing information ex-

tracted from RNA-seq data by HLA typing tools. We find that while

expression of the closest matched haplotypes to individual HLA

types is broadly comparable across allelic lineages there are some

differences in expression.

Our AltHapAlignR method is directly applicable to many pub-

licly available RNA sequencing datasets for which expression of

genes in the MHC region has not been studied. It is, however, not

limited to the analysis of the MHC. Alternative haplotypes for many

regions of the human genome are now available (Church et al.,

2015) and could be integrated into an RNA-seq analysis using

AltHapAlignR, enabling more accurate estimation of gene expres-

sion and opportunities for analysis of allele-specific expression.

In addition, AltHapAlignR provides bam files filtered with reads as-

signed to predicted haplotypes, which allows detecting mutations.

This can improve accuracy of somatic mutation detection to under-

stand the implicated dysfunction in immune evasion as somatic mu-

tations of genes in the MHC region were observed to be a frequent

process in some tumor types (Lawrence et al., 2014). For any of

these regions additional haplotype sequences and improved an-

notation can be easily integrated by users into the AltHapAlignR

R package.

AltHapAlignR was designed to take advantage of existing ref-

erence haplotypes and uses the available information to produce

less biased estimates of gene expression for highly polymorphic

genes. It is not intended to derive novel haplotypes or identify spe-

cific alleles of a given gene. Other technologies, especially those

utilizing long sequencing reads, are better suited to this task.

However, we note that although such technologies will improve

haplotype prediction and facilitate the assembly of sample haplo-

types this is still costly and their utility for RNA-seq analyses re-

mains limited for now. Moreover, our method will allow mining of

the large number of existing RNA-seq datasets for more accurate

estimation of gene expression in highly polymorphic loci that are

typically of significant research interest due to disease association

and is applicable to other genomic regions as alternate reference

haplotypes become available.
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