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To perform brain asymmetry studies in large neuroimaging archives, reliable and

automatic detection of the interhemispheric fissure (IF) is needed to first extract the

cerebral hemispheres. The detection of the IF is often referred to as mid-sagittal plane

estimation, as this plane separates the two cerebral hemispheres. However, traditional

planar estimation techniques fail when the IF presents a curvature caused by existing

pathology or a natural phenomenon known as brain torque. As a result, midline estimates

can be inaccurate. In this study, a fully unsupervised midline estimation technique is

proposed that is comprised of three main stages: head angle correction, control point

estimation and midline generation. The control points are estimated using a combination

of intensity, texture, gradient, and symmetry-based features. As shown, the proposed

method automatically adapts to IF curvature, is applied on a slice-to-slice basis for

more accurate results and also provides accurate delineation of the midline in the

septum pellucidum, which is a source of failure for traditional approaches. The method

is compared to two state-of-the-art methods for midline estimation and is validated

using 75 imaging volumes (∼3,000 imaging slices) acquired from 38 centers of subjects

with dementia and vascular disease. The proposed method yields the lowest average

error across all metrics: Hausdorff distance (HD) was 0.32 ± 0.23, mean absolute

difference (MAD) was 1.10 ± 0.38 mm and volume difference was 7.52 ± 5.40 and

5.35 ± 3.97 ml, for left and right hemispheres, respectively. Using the proposed

method, the midline was extracted for 5,360 volumes (∼275K images) from 83 centers

worldwide, acquired by GE, Siemens and Philips scanners. An asymmetry index was

proposed that automatically detected outlier segmentations (which were<1% of the total

dataset). Using the extracted hemispheres, hemispheric asymmetry texture biomarkers

of the normal-appearing brain matter (NABM) were analyzed in a dementia cohort, and

significant differences in biomarker means were found across SCI and MCI and SCI

and AD.
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1. INTRODUCTION

Half a million Canadians are living with dementia and 25,000
new cases are diagnosed per year. By 2031, this is expected to
increase by 66% to more than 1 million Canadians, carrying a
$16.6B cost per year to care for them (Manuel et al., 2016). There
has been numerous failed clinical trials targeting beta-amyloid
plaques with no resulting cure or disease modifying treatment
(Yiannopoulou et al., 2019). Determining whom to treat and
when requires reliable and clinically valid biomarkers that
identify disease early and characterize disease trajectories.

Computer generated biomarkers measured from magnetic
resonance imaging (MRI) can be used to stratify patients,
identify new targets, detect disease early and monitor disease
progression. Clinically, biomarkers can be used to determine
optimal intervention points. There have been numerous research
efforts over the years to identify reproducible biomarkers
from neurological MRI that are related to cognition including
GM volumes (Taki et al., 2011), WM volumes and integrity
(Pievani et al., 2010) as well as white matter lesions (WML)
(Meng et al., 2017). There is also growing evidence that
neurodegenerative diseases may affect cerebral symmetry in
MRI (Toga and Thompson, 2003; Feis et al., 2019). Studies
have demonstrated that patients with more advanced dementia
have larger cortical volume asymmetries (Rombouts et al., 2000;
Karas et al., 2004; Kim et al., 2012). More recently, there has
been gaining interest in identifying microstructural asymmetry
biomarkers as a mechanism to understanding the underlying
diffusion and structural integrity of underlying WM and GM.
In Derflinger et al. (2011) and Yang et al. (2017), through
diffusion tensor tractography and voxel-based morphometry
(VBM), microstructrual symmetry analysis revealed asymmetric
topological organization in WM networks and asymmetric GM
loss in patients with AD. Due to the increasing prevalence of
neurodegeneration and dementia diseases and their interaction
with brain asymmetries, this work focuses on tools that enable
automated cerebral hemisphere analysis.

Although many sequences are available to study

neurodegenerative diseases, Fluid-Attenuated Inversion
Recovery (FLAIR) MRI is a preferred sequence for analyzing

vascular disease (Alber et al., 2019) which is the second leading

risk factor for dementia (Román, 2002). This is because the

cerebrospinal fluid (CSF) signal is nulled in FLAIR MRI which
highlights ischemic and demylinating pathology with high
intensities (Alber et al., 2019). Automated algorithms that
quantify brain asymmetry in FLAIR MRI can facilitate large
scale analysis of retrospective databases to identify patterns
that aid in understanding the etiology and pathogenesis of
neurodegeneration, dementia and vascular disease. Performing
symmetry analysis on FLAIR-MRI can aid in the identification
of vascular risk factors and can be used to develop new
therapies (Frey et al., 2019). Clinically, since FLAIR MRI are
routinely acquired, automated asymmetry analysis tools can be
integrated into clinical workflows to characterize vascular and
neurodegnerative diseases in real-time.

To perform brain asymmetry analysis in FLAIR MRI,
the cerebral hemispheres must be extracted. This can be

completed by detecting the interhemispheric fissure (IF), which
corresponds to the midsagittal plane (MSP) that separates
cerebral hemispheres. Normally, the human brain exhibits an
approximate bilateral symmetry with respect to the IF. A natural
phenomenon known as brain torque can cause asymmetries of
the IF. Brain torque results in clear visible bending along the
entire fissure, more prominently in the occipital lobe (Xiang
et al., 2019). It is assumed to from a lateralized gradient of
embryological development of the human brain (Xiang et al.,
2019). Traditional techniques for midline plane estimation do
not account for IF curvature which results in a poor separation
of cerebral hemispheres (Stegmann et al., 2005). Therefore, for
optimal separation of cerebral hemispheres, IF curvature should
be detected.

Midline plane estimation algorithms inMRI are classified into
two types: symmetry-based and shape-based. Symmetry-based
approaches, also known as content-based, optimize a symmetry
metric computed between candidate cerebral hemispheres until
the optimal hemispheric separation is found (Ferrari et al., 2016).
Ruppert et al. (2011) proposed an MSP algorithm based on
bilateral symmetry maximization. In this approach, symmetry is
quantified using edge features and the optimal plane is sought
through maximizing the correlation between the original image,
and a flipped copy with respect to a candidate plane (Ruppert
et al., 2011). Shape-based algorithms make use of an initial
estimation of the IF and use it as a landmark to fit a plane from
points that lie in the IF region (Ferrari et al., 2016). A classic
shape-based algorithm by Brummer (1991), implemented a
three-dimensional variant of the Hough transform to detect lines
in each coronal slice and computed the MSP using interpolation.

In traditional midline estimation algorithms, the result
is planar and three dimensional, meaning each axial slice
contains the same midline estimation. Although promising,
these methods may not be optimal in the presence of midline
curvature or shift, and could have higher error since the amount
of IF curvature can vary slice to slice. Midline plane estimation
can be used as a preprocessing step for more accurate midline
detection, but any error in this step is propagated to later phases
of the algorithm. Attempts to improve on previous approaches
to account for IF curvature include work from Stegmann et al.
(2005), which defines the curved MSP as the mid-sagittal surface
(MSS). They proposed a MSS estimation algorithm that fits a
thin-plate spline to the brain data using a robust least median of
squares estimator (Stegmann et al., 2005). This method results
in more accurate separation of cerebral hemispheres but is
more computationally expensive (Stegmann et al., 2005). While
MSS methods are better to handle IF curvature, the septum
pellucidum, a membrane separating the lateral ventricles, can
causes issues for MSS-based approaches.

To overcome the challenges of traditional midline methods,
this work proposes a novel and robust mid-sagittal surface
(MSS) estimator that accounts for IF curvature in multicenter
FLAIR datasets. It does not require a MSP pre-processing step, is
completely unsupervised and estimates the midline on a per-slice
basis. The issue of curvature in the IF is addressed through local
optimization of control points (spatial coordinates) determined
by extracting features in the vicinity of the IF. Control points
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are estimated based on local contrast, texture, intensity, and
symmetry features at the same time, and post-processing
is completed to ensure the features are robust across the
volume and in septum pellucidum region. Polynomial fitting
is utilized to detect the midline from the control points and
the brain can be separated into the left and right hemispheres.
To evaluate performance of the proposed MSS algorithm, a
series of validation metrics are used on a midline validation
dataset comprised of 75 volumes (∼3,000 image slices). Data
was sampled from three databases of vascular disease (CAIN)
(Tardif et al., 2013), Alzheimer’s disease (ADNI) (Aisen et al.,
2015) and dementia (CCNA) (Mohaddes et al., 2018; Chertkow
et al., 2019; Duchesne et al., 2019) from three different scanner
vendors representing a diverse multi-center, multi-disease
FLAIR MRI database for testing across a wide variety of imaging
characteristics. The proposed MSS method was compared to two
works that perform midline estimation in the literature. The first
is a traditional, planar approach by Bergo et al. (2008) which
was re-implemented for FLAIR MRI in this work. The second
method is by Kuijf et al. (2014), which addresses curvature of
the IF and is available as open source software. Through the
combination of shape- and symmetry-based approaches, the
proposed method accurately detects midlines over all images,
including regions with IF curvature or septum pellucidum.

In addition to a novel midline detection method, two other
innovations are presented. First is a method to automatically
gauge midline separation performance in large datasets without
ground truths. It is based on an asymmetry index (AI), which
measures the volume difference across hemispheres and z-scores
are used to determine segmentation outliers. A total of 5,360
volumes (∼275,000 image slices) from 86 centers from CAIN,
ADNI, and CCNA databases were used to test the outlier
detection approach. Midlines were extracted over the entire
dataset and AI outliers were flagged and visually inspected.
Out of 5,360 volumes, only 53 were detected as outliers. This
can be applied on retrospective large scale studies or real-
time on prospective datasets. Lastly, as a proof of concept,
microstructural asymmetry biomarkers from the normal-
appearing brain matter (NABM) are extracted and compared
across subjects in CCNA, for subjects with AD, mild cognitive
impairment (MCI) and subjective cognitive impairment (SCI).

2. MATERIALS AND METHODS

In this section, we will describe the data used in this analysis,
along with the methods used to extract the midline, and the
experimental design.

2.1. Data and MRI
The FLAIR MRI data used in this study is from 3 datasets:
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Aisen
et al., 2015), the Canadian Atherosclerosis Imaging Network
(CAIN) (Tardif et al., 2013) and the Canadian Consortium
on Neurodegeneration in Aging (CCNA) (Mohaddes et al.,
2018; Chertkow et al., 2019; Duchesne et al., 2019). ADNI is
an open source dementia dataset with longitudinal imaging
data from 889 subjects, acquired at 58 imaging centers,

resulting in a total of 4,264 FLAIR image volumes for analysis
(ADNI-2 cohort). This dataset contains subjects within the
following disease classifications: Normal, Early Mild Cognitive
Impairment (EMCI), Late Mild Cognitive Impairment (LMCI),
Subjective Memory Concerns (SMC), and AD (Aisen et al.,
2015). The CAIN dataset is from a pan-Canadian clinical
study that investigates cerebrovascular disease (CVD). The
database contains data from 386 subjects with cerebrovascular
risk factors and a varying numbers of follow-up scans, from
eight centers, yielding a total of 922 FLAIR imaging volumes.
The CCNA dataset is a Canada-wide initiative to strengthen
Canadian research on Alzheimer’s disease (AD) and related
neurodegenerative disorders (NDDs) (Mohaddes et al., 2018).
Currently, the FLAIR data from the study contains imaging
volumes for 380 subjects, acquired at 20 imaging centers. The
FLAIR MRI datasets were acquired on scanners from three
vendors (GE, Siemens, and Philips), from over 80 institutions
worldwide with variable acquisition parameters. All three data
sets are multi-center and multi-vendor FLAIR-MRI scans,
representing a diverse dataset of one of the largest FLAIR MRI
databases analyzed in the literature. More information on FLAIR
acquisition parameters and subject demographics for ADNI,
CAIN and CCNA can be found in Table 1. This dataset in
its entirety is used for outlier rejection to find poor quality
hemispheric segmentations automatically.

To evaluate the performance of the proposed midline
estimation algorithm, a midline validation dataset was created
by sampling 75 FLAIR MRI volumes (∼3,000 images) from
all three datasets. In total, there were 25 volumes from CAIN,
25 from CCNA and 25 from ADNI. The data sampling
strategy included stratification across centers and scanners where
possible, resulting in images from 38 different centers with 27%
Philips, 23% GE, and 50% Siemens scans. When stratifying
by both center and scanner in CCNA, it resulted in more

TABLE 1 | Summary of ADNI, CAIN, and CCNA datasets.

Dataset Information

Database No.

volumes

No.

images

No.

patients

No.

centers

Age

(years)

M/F (%)

ADNI 4,264 213K 889 58 73 ± 7 53/47

CAIN 922 46K 386 8 74 ± 8 58/42

CCNA 380 19K 380 20 73 ± 7 56/44

Acquisition Parameters

Database Mag

Field (T)

TR (ms) TE (ms) TI (ms) Pixel

Spacing

(mm)

Slice

Thickness

(mm)

ADNI 1.5-3 6,000–

11,900

90–192 2,000–

2,800

0.7812–1 2–6

CAIN 3 8,000–

11,000

117–150 2,200–

2,800

0.4285–1 3–5

CCNA 3 9,000–

9,840

111–148 2,250–

2,500

0.9375 3
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Siemens volumes being sampled, since 288 of the 380 volumes
in CCNA are acquired with Siemens scanners. In ADNI, the
diagnosis labels are distributed by varying level of cognition.
Of the 25 sampled volumes, five were cognitively normal (CN),
nine early mild cognitive impairment (EMCI), six late cognitive
impairment (LMCI), and five AD cases. In CCNA, the 25
validation volumes included various dementia cases which are:
six AD cases, nine MCI, two SCI, two Parkinson’s disease (PD)
cases, one Lewey Body disease (LBD), one PD-MCI, and four
vascular mild cognitive impairment (V-MCI) cases. In CAIN,
clinical diagnosis labels are not available. This represents a diverse
set of dementia related diseases in the validation set. Details
regarding the midline validation dataset can be found in Table 2.
Ground truth midlines were generated by a biomedical student
trained by a radiologist using ITKSnap. Midlines were delineated
along the interhemispheric fissure by following the region of
CSF for all slices (Yushkevich et al., 2006). When there was a
shift in the midline for a given slice, the curvature was carefully
delineated. To examine automated symmetry analysis using
local texture analysis, the CCNA dataset is used. CCNA has
diagnostic labels for each subject. All subjects were included that
had the specific diagnostic label of interest, except for scans from
a specific center that contained high bias field artifacts. In this
work, the Alzheimer’s Disease (AD), Mild Cognitive Impairment
(MCI), and Subjective Cognitive Impairment (SCI) diagnostic
labels are used (Mohaddes et al., 2018).MCI describes individuals

TABLE 2 | Data summary of sampled ground truth volumes.

Database Disease No.

volumes

No.

centers

GE/

Philips/

Siemens

Age

(years)

M/F (%)

ADNI Alzheimer’s 25 22 6/11/8 73 ± 6 52/48

CAIN Vascular 25 8 9/8/8 71 ± 6 64/36

CCNA Dementia 25 8 2/4/19 73 ± 5 60/40

withmemory impairment greater thanwhat would be expected of
their age. It is a clinical state between normal cognitive changes
due to age and early stages of AD (Petersen, 2000). SCI describes
individuals with self-experienced persistent decline in cognitive
ability, but achieve normal cognitive scores (Jessen et al., 2014).
In total, there are 50 SCI, 98 MCI, and 43 AD cases from CCNA
used in this analysis.

2.2. Midsaggital Surface Estimation
The proposed work is a midsagittal surface (MSS) estimation
algorithm designed to extract cerebral hemispheres, which
enables clinical applications through brain asymmetry studies.
First, intensity standardization is used to normalize the range of
intensities and reduce variability in multicenter data. Next, brain
extraction is performed to remove non-cerebral tissue which
permits for robust analysis of the hemispheres. On the intensity
standardized and brain extracted data, the midline is extracted
using the proposed method. Using the extracted midline for each
slice, the brain is separated into cerebral hemispheres that can be
analyzed for asymmetry. Figure 1 shows block diagram for the
proposed framework.

2.2.1. Pre-processing
Before midline estimation, pre-processing steps are utilized
to improve robustness of the algorithm. First, intensity
standardization is performed to remove variability caused
from the multi-center (MC) effect (Reiche et al., 2019). The
standardization algorithm is a framework developed for multi-
institutional FLAIR MRI datasets by Reiche et al. (2019) that
reduces intensity variability caused by different scanning devices.
Denoising, bias field reduction and background subtraction
is applied first. Following this, intensity standardization is
facilitated through the combination of normalization, scaling,
and histogram peak alignment. The standardization pipeline
is able to preserve different pathologies, such as white matter
lesions (WMLs) (Reiche et al., 2019). This technique is utilized
to ensure the same features can be used and the interhemispheric

FIGURE 1 | Experimental design for the proposed method.
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fissure can reliably be extracted inmulticenter datasets. Following
intensity standardization, brain extraction (BE) is performed on
the dataset to ensure midline estimation and symmetry analysis is
performed only on cerebral tissues. The brain extraction method
is based on aU-Net for intracranial volume (ICV) for FLAIRMRI
(Khademi et al., 2019; DiGregorio et al., 2021).

2.2.2. Midline Estimation
Using intensity standardized and brain extracted volumes,
midline estimation is performed. The proposed midline
estimation method can be divided into three main components:
(1) head angle correction, (2) control point optimization, and (3)
midline generation. Using the estimated midline for each slice,
the cerebral hemispheres can be extracted across the volume.

Head angle correction. Head angle correction is employed
in this work as a preprocessing step to align the head with the
longitudinal axis to improve robustness of midline estimation.
The method is inspired by the midline plane estimation
algorithm proposed by Liu et al. (2001) which used the head angle
to estimate the plane of the midline. To estimate the head angle,
the concept of bilateral symmetry is used, where a bilaterally
symmetric image Si about its symmetry axis produces an image
Ri that is approximately identical to Si (Liu et al., 2001). Thus,
the head angle is estimated by maximizing the cross correlation
between the original image, Si and its reflected image, Ri using
the following steps:

1. Reflect Si over the vertical axis.
2. For each angle θ , rotate Ri by 2θ and compute the cross

correlation of Ri and Si.
3. Find the angle that corresponds to the maximum cross

correlation value.
4. Use the optimized θ to rotate Si and correct for head angle

orientation.

In this implementation, the angle is estimated based on the
middle slice of the volume and θ values ranged from −20 to
20◦, with 0.5◦ increments to account for right and left angled
brains. Figures 2A–C shows the head angle correction algorithm
for an example slice. Figure 2A shows the original image, and
B shows the cross correlation for various angles θ obtained by
reflecting the original image, rotating it and computing the cross
correlation. As can be seen the maximum cross correlation value
is at θ = 10◦. Using this angle, the original image is rotated, and
shown in Figure 2C, which shows the head is aligned with the
longitudinal plane.

Control point estimation. Once the head angle is corrected,
control point estimation is performed. Control points are
locations estimated along the interhemispheric fissure found
using a combination of symmetry- and shape-based approaches
to characterize CSF in the midline. The midline is estimated
based on these control points along the fissure.

Control point estimation is performed for cerebral slices
only, as these are the most important slices for hemispheric
analysis. Moreover, the interhemispheric fissure (IF) is well-
defined in the cerebral slices, when compared to slices containing
the cerebellum. The method begins by automatically selecting a
rectangular ROI containing the IF which is found by extracting a

2 cm region centered around the middle column of the image
that extends the length of the image. Given that head angle
correction has oriented the head along the longitude plane, this
ROI contains the midsagittal plane. A window size of 2 cm
ensures both the brain tissue surrounding the IF and the CSF
inside the IF are contained within the ROI. An example of
the extracted 2 cm region can be seen in Figures 2D–F, which
shows an original slice and the corresponding 2 cm region that
includes the interhemispheric fissure. Beginning from the first
non-zero row of the image, each 2× 2 cm ROI are extracted and
several features are computed to estimate the control points along
the midline.

The features used in this work are focused on simultaneously
describing the local intensity, gradient, texture and symmetry
information of the CSF region within the IF (as compared to the
brain). This differs from previous approaches that rely mainly on
a single feature. For example, in Jayasuriya and Liew (2012), the
authors use intensity profiling for estimating the midline plane.
In Bergo et al. (2008) mean intensity was used to search for an
initial candidate plane and Chen et al. (2015) used local intensity
and gradient symmetry to estimate midline shift of the IF in
patients with cerebral glioma. The use of several descriptors to
optimize control points yields a more robust and informative
encoding of CSF properties within the IF. Moreover, compared
to previous works that were developed for other sequences, such
as T1 (Jayasuriya and Liew, 2012; Rehman and Lee, 2018), this
work focuses on fine-tuning the features specifically for FLAIR
MRI. Due to intensity standardization, the extracted intensity,
gradient and texture features are consistent across slices and
tissues. Depending on the feature, the minimum or maximum
value is used to estimate the control point for the particular
feature. All features are combined (described later) to arrive at
the final control point estimation for that ROI.

In FLAIR MRI, CSF appears as low intensity and therefore
intensity is a discriminative feature that is explored. The intensity
features used are the intensity sum, energy, root-mean-square
(RMS), and cumulative energy. To improve control point
estimation, gradient and texture features are also included. The
gradient magnitude enhances edges within the ROI around
the midline and the IF is localized between edge peaks
with a low gradient value. See Figure 2H which shows the
original ROI and the corresponding gradient image. There
are large edge magnitudes localizing the brain and CSF tissue
boundaries, and low edge strength between these edges. To
describe texture differences between the IF and surrounding
brain tissue, the Gabor transform is used. Texture features have
been commonly used in medical image analysis for pattern
recognition, segmentation and classification (Castellano et al.,
2004). The Gabor filter bank deployed in Roslan and Jamil (2012)
for skull stripped T1, T2, and FLAIR MRI brain images is used.
For each ROI, the Gabor energy is measured and the maximum
energy is used to detect themidline (indicatesmore homogeneity,
i.e., the CSF).

The final set of descriptors used to find control points
along the IF are symmetry features. The proposed symmetry
features used are mean squared error (MSE) and mean gradient
symmetry (MGS). For each ROI, every column is used as a
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FIGURE 2 | This figure depicts multiple stages of the proposed midline estimation. (A–C) Head angle correction step where (A) is the original image, (B) is the cross

correlation values for each θ , and (C) the image with corrected head angle. (D–F) ROI extraction where (D) is the pre-processed image, (E) is the ROI 2 cm around

the middle column, (F) is the 2 by 2 cm window starting from the first non-zero row. Lastly, (G,H) show symmetry feature optimization, where (G) is the mean squared

error symmetry and (H) is for gradient-based symmetry.

candidate midline to separate hemispheres. The MSE symmetry
feature is found by computing the difference in intensities across
the hemispheres extracted using the candidate. Hemispheric
separation results in two image of the same size as the original,
with the left and right sides zeroed out for the right and
left hemisphere, respectively. When computing the MSE, the
maximum error corresponds to the candidate column that yields
the best separation of hemispheres, since the intensities of one
hemisphere occur where it is zero valued in the other. For the
MGS, the gradient image is used, and the difference in gradient
magnitude across the candidate hemispheres is computed. The

MGS should be minimum when the correct midline has been
selected. An ROI and the corresponding symmetry features
is shown in Figures 2G,H where the x-axis represents the
column number of the image (ROI). In Figures 2G,H, the
detected control point for MSE and MGS occurs at the column
that optimally separates the hemispheres and is retained as a
candidate control point in the IF.

For each feature calculated, an estimated control point is
obtained for the location of the IF in the current ROI. Depending
on the feature, either themaximum orminimum value is retained
and these are used to find the spatial coordinate of the candidate
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control point for that feature. To combine all features (intensity,
texture, gradient and symmetry) and obtain a single control
point per ROI that best describes the IF, the median of the
estimated control points for all features is taken. The median
is used to ensure outliers do not negatively affect analysis. This
analysis is repeated on all ROI (every 2 cm) resulting in a
vector of control points along the interhemispheric fissure for
every slice. Each slice has its own control points (slice-slice
refinement) to ensure midline curvature is detected if present in
any slices.

There are two additional tests that are performed to maximize
robustness. The first is completed by inspecting control points or
the same ROI across the volume (i.e., same ROI over different
slices). The estimated control points for this ROI across the
volume is treated as a distribution and any extreme points
(i.e., three scaled median absolute deviations (MAD) from the
median) are flagged. These flagged (outlier) control points are
then replaced by a linearly interpolated control point value based
on the control points for the same ROI in the two neighboring
slices. A second automated test is utilized to ensure the method
is robust in the septum pellucidum region between ventricles.
These bright regions can cause the midline to be incorrectly
estimated into the ventricles (which are dark) instead of along
the midline. To mitigate this possibility, a binary mask of the CSF
is generated based on thresholding the intensity standardized
ROI. If CSF makes up more than 50% of the ROI, then the
image intensity is inverted which transforms the CSF inside
ventricles to bright intensities, and the septum pellucidum to
appear dark, which enables the control point estimation to behave
as in CSF-filled IF regions.

Midline generation.Given a vector of control points for every
slice, the midline is generated using a shape-preserving piece-
wise cubic interpolation function, which computes the best fit
line along the IF given the control points for that slice. To
maintain curvature and smoothness in the estimated midline, a
third order polynomial fitting is completed using least squares
over the interpolated midline. A third order polynomial is chosen
to balance between smoothness and overfitting.

Hemispheric separation. Given the estimated midlines for
every slice, hemispheric separation is performed. The midline
coordinates are used to determine which pixels reside in the left
or right hemisphere and binary masks for the corresponding
regions are generated for each slice in the imaging volume. Using
the extracted cerebral hemispheres, asymmetry biomarkers can
be analyzed.

2.3. Midline Validation
To validate the proposed midline estimation algorithm, this
work will be evaluated over a set of ground truth images and
will be compared to two other methods for midline estimation.
Performance is quantified with three different validation metrics:
(1) mean Hausdorff distance, (2) mean absolute distance, and
(3) mean volume-difference, which all compare the automated
midline to the ground truth delineations.

The first method that is compared to is from Bergo et al.
(2008), and based on the detection of the midsagittal plane (MSP)
for T1 MRI. In this work, we have re-implemented the method

for multicenter FLAIR MRI based on the intensity standardized
imaging data. The method is composed of two main stages
to search for the plane that contains the most CSF (excluding
ventricles). In this method, the brain is automatically segmented
and CSF is removed prior to midline estimation. The IF is located
by searching for a candidate plane that intersects the brain masks
while minimizing the mean voxel intensity (i.e., CSF) (Bergo
et al., 2008). Using the candidate plane, a set of rotations and
translations are applied to fine-tune the results by minimize the
intensities in these transformed candidate planes. If none of the
transformations lead to a plane with a lower intensity score, the
current plane is taken as the MSP and the algorithm stops (Bergo
et al., 2008). The authors report errors due to irregular, non-
planar fissures (Bergo et al., 2008).

The second method is proposed by Kuijf et al. This method
is publicly available via GitHub (Kuijf et al., 2014) and is one
of the methods that addresses the curvature of the IF. The
method is based on the assumption the brain is approximately
centered, and initializes two reference planes 2 cm apart from
the central sagittal slice of the image (Kuijf et al., 2014). A
single probability distribution p of the intensity values in the
two reference planes is created. All sagittal slices between the
two reference planes are inspected, and the KL divergence is
used to compute the difference d, between p and the inspected
planes. Since the IF contains CSF, which presents itself as low
intensity, it is expected that the difference (d) between the MSP
and reference slices will be large (Kuijf et al., 2014). The sagittal
slice that produces the largest difference d between the reference
planes was chosen as the MSP. The estimated MSP is used to
initialize the MSS, where the MSS is defined as a bicubic spline
and a set of control points in a grid are placed on the MSP. These
control points are adjusted in the left-right direction by using KL
divergence as a cost function for optimization, by maximizing d,
the difference between the reference planes andMSP. (Kuijf et al.,
2014). A potential challenge of this approach is poor optimization
in slices that contain the septum pellucidum, the membrane
separating the lateral ventricles. This error results in the MSS
being estimated through one of the CSF filled ventricles (Kuijf
et al., 2014).

2.3.1. Hausdorff Distance
The first validation metric explored is the Hausdorff distance
(HD) which has been traditionally used to compare two sets of
points (Olson, 1998). A smaller HD indicates better similarity
between two sets. This metric is used to determine the distance or
similarity between automated and manually generated midlines.
The HD computes the minimum distance from a point in line
segment 1 (L1) to every point in line segment 2 (L2). In this
application, L1 corresponds to the ground truth and L2 the
automated midline. This is repeated for every point in L1, which
creates a distance vector d1,2 that contains all the minimum
distances found. The distance vector, d1,2, can be found by:

dL1 ,L2 (L1, L2) = min
p∈L1

min
q∈L2

||p− q||. (1)
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Similarly, comparing L2 to L1 the distance vector d2,1 can be
computed by

dL2 ,L1 (L2, Ll) = min
p∈L2

min
q∈L1

||p− q||. (2)

To quantify overall performance of the midline estimation, dmin

is generated by concatenating d1,2 and d2,1 and the mean of
the minimum distances is computed from to generate the mean
Hausdorff distance:

dmeanHD(L1, L2) =
1

N

N
∑

i=1

(

dmin(i)
)

(3)

where N is the length of the minimum distances vector, which
describes the average error between the estimated and manual
midlines. This is a slight modification from the traditional HD
definition that uses the maximum distance, which does not apply
for midlines. For example, for a midline that has large curvature
in the occipital area, a point at the top of the midline is farthest
from a point near the bottom. The maximum would then yield
this as high error, which is not an accurate representation of the
error. Using mean HD, the average of the minimum distances is
computed. The smaller the minimum distances are, the lower the
average error.

2.3.2. Mean Absolute Distance (MAD)
The mean absolute distance (MAD) is a pixel by pixel distance
comparison of the ground truth to the estimated midline. It is
an adaptation of the average z-distance, originally proposed by
Ruppert et al. (2011). The z-distance was proposed to solve the
problem of parallel planes, by measuring the physical distance
between the estimated and ground truth MSP. It became a gold
standard validation metric in the literature surrounding midline
plane estimation, and has been used to validate MSP algorithms
on CT and MR images (Qi et al., 2013; Rehman and Lee, 2018).
Since the mid-sagittal surface can vary slice to slice based on
the curvature of the IF, and is not represented by a plane, this
metric was adapted to measure the physical distance between
automated and annotated midlines for each slice. For a given
slice, let the y-coordinates correspond to the columns, and x-
coordinates corresponds to the rows. Then, the y-coordinates
of the midline are used to compute the distance between each
line and are averaged across cerebral slices in the volume. Let
y1 be the y-coordinates of the ground truth midline and y2 y-
coordinates of the estimated midline. Thus, the mean absolute
distance (MAD) can be defined by:

MAD =
1

N

N
∑

i=1

∣

∣y1(i)− y2(i)
∣

∣ (4)

where N is the length of the coordinate vector. This formula is
computed for each slice, and the average of cerebral slices is taken,
to represent the average distance for the volume. Using the voxel
spacing parameters, the average pixel distance is computed as
a physical distance in mm. The smaller the distance, the more
accurate the estimation is.

2.3.3. Volume Difference (VD)
The volume difference (VD) metric is used to validate the
segmented cerebral hemispheres with the difference in the
volumes of the hemispheres obtained by the automated
algorithm and the ground truths. The difference is computed for
left and right hemispheres separately. For optimal performance
the difference in volume should be 0. To compute volumes,
the number of non-zero pixels are counted for each cerebral
hemisphere and the voxel resolution parameters are used to
compute the physical volume in mL. Let VGT

L be the ground
truth volume of the left hemisphere and VL

auto be the automated
extraction volume of the left hemisphere. The volume difference
for the left hemisphere can be computed by:

1VL =

∣

∣

∣
VGT
L − Vauto

L

∣

∣

∣
. (5)

Similarly, for the right hemisphere:

1VR =

∣

∣

∣
VGT
R − Vauto

R

∣

∣

∣
, (6)

where VGT
R and Vauto

R are the ground truth and automated
volumes for the right hemisphere.

2.4. Midline Outlier Detection
In this section, we propose a novel metric called the volumetric
asymmetry index (AI) to estimate the performance of the midline
algorithm prospectively and without validation data. This can
be used to automatically judge midline estimation performance
in large clinical datasets, or real-time in a clinical setting. Since
there is some degree of symmetry in the brain between cerebral
hemispheres the difference in volume between the left and right
hemispheres is expected to be small. If the difference is small,
it can be assumed there are minimal (or no) errors in midline
estimation. The left and right hemispheric volume is computed
in mL and the AI is found by:

AI =
| VL − VR |

(VL + VR)
(7)

where, VL and VR correspond to the left and right hemispheric
volume, respectively. Computing the volumetric asymmetry
index on a large cohort of images gives the relative distribution
of volume asymmetry in a population. Using this distribution,
and a given AI computed for a prospective subject, z-score outlier
analysis can be used to automatically determine the quality of
the midline estimation. If the AI value is greater than three
standard deviations from the mean AI value, then these outliers
can be visually inspected. Any midline errors can be flagged and
removed from large dataset analysis.

2.5. Cerebral Symmetry Analysis
Clinically, midline estimation can be used to extract biomarkers
across hemispheres that can be used to explore the relationship
between cognition and brain asymmetry in AD and other
forms of dementia. There may be loss of gray matter,
microstructural damage, increased ventricle volumes which may
have a hemispheric dependence. As a proof of concept, in this
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work, we compute a novel hemispheric symmetry marker that
investigates microstructural differences in multicenter FLAIR
MRI for the CCNA dataset through local texture analysis. CCNA
is used since clinical diagnosis is available for these subjects. After
midline extraction, the intensity standardized images are spatially
normalized to 0.35 × 0.35 × 3 mm3 to ensure biomarkers are
comparable across subjects. Following this, the normal-appearing
brain matter (NABM) is extracted through thresholding the
intensity standardized images between 200 and 400 (Reiche
et al., 2019). Thresholding in this range removes any CSF and
white matter lesions from the symmetry analysis which aids in
investigation of strictly the local changes in the NABM.

To quantify microstructural changes in the NABM, local
binary patterns (LBP) are used to create texture maps. LBP is
a popular texture method due to its high discriminative power
and low computational expense. LBP has been used as a texture
feature for dementia classification in the work by Oppedal et al.
(2015). LBP detects reoccurring patterns, such as ridges and
curves, which can be related to the structural integrity of the
tissue. To compute the LBP texture maps, eight neighbors and
a radius of 3 was used, which resulted in a 7 × 7 window. As
LBPmaps were generated for each slice independently, pixel-wise
averaging across slices was performed to obtain a volume-wise
local average of the LBP feature. This results in a single image that
describes the integrity of the NABM tissue for each hemisphere.

Using the pixel-wise average texture image for the NABM,
10 different features are extracted, which are combination of
first and second order histogram statistics. The first order
histogram features used were mean, median, variance, skewness
and kurtosis. The second order histogram features used were
contrast, energy, correlation, homogeneity and entropy. Each
feature f is computed from the respective hemisphere, and
asymmetry is measured by taking the normalized difference
across hemispheres, as in:

1f =
| fL − fR |

(fL + fR)
. (8)

Statistical testing was performed using ANOVA and Tukey’s
Honest Significant Difference (HSD) to measure statistical
differences between groups. Prior to statistical testing, the
Box-Cox power transform was applied to stabilize variance
and strengthen the normality of the symmetry features (Box
and Cox, 1964). Statistical significance will indicate whether
there are differences between brain asymmetry and cognitive
groups, or diagnosis. To control for the effect of age and sex,
ANCOVA analysis was performed. This allows the relationship
between the symmetry markers and diagnostic labels to be
analyzed independently.

3. RESULTS

In this section, results are visualized, followed by quantitative
performance evaluation on the midline validation set, outlier
rejection analysis on the entire dataset and symmetry analysis on
CCNA. For midline estimation accuracy, the mean performance
metrics are computed over all 75 ground truth volumes. To test

the reliability and consistency of the method, validation metrics
are compared as a function dataset (CCNA, ADNI, CAIN),
scanner vendor (GE, Philips and Siemens), and pathology, by
measuring the CSF load in the validation cases. Midline detection
performance is compared to the two previous works by Bergo
and Kujif. To investigate performance on large clinical datasets,
the midline is extracted over all datasets, which comprises 5,360
volumes (roughly 275,000 image slices) from over 80 centers
worldwide. The volume asymmetry index is computed and the
outlier volumes are visually inspected. Using the remaining
volumes, asymmetry biomarkers measured from CCNA will be
analyzed and correlated with diagnosis to show proof of concept
and clinical feasibility of the work.

3.1. Midline Visualizations
Figure 3 shows the results of the proposed midline estimation
method on several cases. The first column displays the ground
truth midlines, the second column is the estimated midline and
the last two columns contain the left and right hemispheric
segmentations. For images with dark contrast, large ventricles or
heavy lesion loads the tool robustly estimates the midline. There
is also an example with extreme curvature and off-center head
angle, and in both cases, the midline is accurately estimated as
well. Hemispheric separation clearly shows the two hemispheres
contain tissue only from the respective hemisphere.

Figure 4 contains the estimated midline for the proposed
method alongside the two competing methods (Bergo and
Kujif) for ADNI, CAIN, and CCNA. As shown, the proposed
method carefully delineates the interhemispheric fissure and
adapts to the curvature across the datasets. The midline plane
estimation method (Bergo) fails to estimate the curvature
of the IF due to the planar nature of the method. Kuijf ’s
method appears to track the IF, but in Figure 5A, the MSS
is estimated through one of the CSF-filled ventricles. During
optimization, the cost function estimates the spline through the
ventricles and avoids the septum pellucidum, which is likely
the reason for this. Similarly, the Bergo et al. method finds
the minimum intensity score inside the ventricles and since the
septum pellucidum contains high intensities, this method cannot
accurately estimate the midline in this region. The proposed
method over comes these challenges through multiple features
and intensity inversion during control point estimation, resulting
in accurate demarcation of the midline through the septum
pellucidum and for curved interhemispheric fissures.

To demonstrate the benefits of the angle correction step,
and to further demonstrate the robustness of the approach, an
additional experiment was conducted and the results are shown
in Figure 5B. In this experiment a FLAIR volume was rotated by
20◦, and the midline estimation algorithms were employed. The
proposed method highlights the midline more robustly than the
comparison methods.

3.2. Accuracy
In this section, midline estimation accuracy is reported by the
mean Hausdorff distance (HD), volume difference (VD) and
mean absolute difference (MAD) of both hemispheres. The
estimated midline is compared to the ground truth delineations
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FIGURE 3 | Visualizing midline estimations and extracted hemispheres of various cases using the proposed method. From left to right: ground truth midline, estimated

midline, left hemisphere, right hemisphere. The cases shown are: (A) High lesion load, (B) Enlarged ventricles, (C) Dark contrast, (D) Head angled, and (E) Curved LF.

in the midline validation data (75 ground truth volumes from
CAIN, ADNI, and CCNA). The mean and standard deviation
for each metric is summarized in Table 3 and raincloud plots for
each metric are shown in Figure 6 to visualize the distributions
(Allen et al., 2019). The proposed method has the lowest mean
Hausdorff distance (HD) distance (and standard deviation) with
a much more compact distribution, indicating the proposed

method is more accurately estimating the midline across
multicenter datasets as compared to the competing methods.
Mean VD across both L and R hemispheres, and MAD are
also the best for the proposed method. This is likely due to
both the intensity standardization framework and robust feature
measurements that can handle IF curvature. The next best
performer was the method by Kujif et al., followed by the
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FIGURE 4 | Sample midline estimation results for the proposed method compared to the state-of-the-art. (A) ADNI. (B) CAIN. (C) CCNA.

traditional midline plane estimation technique. The outliers in
the Bergo et al. method may be attributed to the planar nature of
the method.

3.3. Reliability and Consistency
To investigate the reliability and consistency of the proposed
method, validation metrics are compared as a function of dataset,
scanner vendor, and pathology in this subsection. The validation
results for all groups are shown in Figure 7 and summarized in
Table 4.

3.3.1. Results as a Function of Dataset
Three datasets are used to analyze performance: ADNI, which
is an AD dataset, CAIN which is a vascular disease dataset
and CCNA which is a dementia dataset. Testing the midline
estimation methods over each dataset can be used to gauge
robustness across diseases. As discussed in section 2.1, there
are a variety of vascular and dementia diseases in the midline
validation dataset. In Figure 7A, the mean HD, mean absolute
difference (MAD) and volume difference (VD)metrics are shown
for each dataset and method and summarized in Table 4. The
proposed technique shows lowest mean error (HD and VD) and
standard deviation over most datasets. The proposed technique
yields the lowest mean and standard deviation for mean HD
in the ADNI, CAIN, and CCNA groups. Kuijf et al. method
yields a lower mean and standard deviation for the CAIN dataset,
followed closely by the proposed technique. For CCNA and

ADNI, the proposed method yields the lowest mean VD and
standard deviation. The lowest performance is from the Bergo
et al., method due to head angle errors or due to the planar nature
of the approach.

3.3.2. Results as a Function of Scanner Vendor
The datasets were acquired using one of the three scanner
vendors: Philips, GE, or Siemens. This causes variability in
the data as each scanner vendor has varying software, post-
processing techniques, MR acquisition parameters and hardware
components. In Figure 7B, mean HD, MAD, and volume
difference metrics are grouped per scanner vendor for each
compared method. The proposed technique shows lower error
over each scanner and a more consistent distribution across the
scanner vendors. The mean and standard deviation for both
metrics, mean HD and mean VD, is lowest for the proposed
technique across all scanners as shown in Table 4. The proposed
method produces minimal error across GE, Philips and Siemens
scanners, and has similar performance across scanners which
highlights the clinical feasibility and reliability of the method.

3.3.3. Results as a Function of Pathology
To determine if the proposed work is robust to the level
of disease, midline estimation performance is analyzed as a
function of CSF load to determine reliability across varying
disease levels. A common characteristic of neurodegenerative
diseases is increased ventricular volume and atrophy (Ott et al.,
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FIGURE 5 | Challenging examples for midline estimation. (A) Septum pellucidum. (B) Head rotation.

TABLE 3 | Mean (± std) validation metric for all methods over the entire validation

dataset.

Bergo et al. Kuijf et al. IAMLAB

Mean HD 1.20 ± 1.73 0.49 ± 0.31 0.32 ± 0.23

MAD (mm) 2.13 ± 2.82 1.22 ± 0.35 1.10 ± 0.38

1VL (ml) 15.97 ± 26.51 14.18 ± 6.31 7.52 ± 5.40

1VR (ml) 15.57 ± 26.63 14.18 ± 6.31 5.35 ± 3.97

Bold is best.

2010). Therefore, to quantify disease burden in AD, vascular
disease or dementia subjects, the CSF load in the ventricles and
subarachnoid spaces is measured for each imaging volume. CSF
load is chosen as a disease characteristic since large ventricles,
or high amounts of atrophy can create challenges in midline
segmentation algorithms. CSF load is computed in the intensity
standardized FLAIRMRI by determining by applying a threshold
of 200 to extract a CSF mask from the standardized brain over
the entire dataset (Reiche et al., 2019). Using the number of non-
zero pixels and the voxel spacing parameters, CSF volume in mL
was found.

Plots of each validation metric against CSF load were used
to visualize trends in performance with increasing pathology.
In Figure 7C, the mean HD, MAD and volume difference,
the proposed technique had the lowest average error over all
loads (low, medium, and high). For both mean HD and MAD,

the average error is the lowest in all three CSF categories.
This validates the ability of the proposed method to estimate
the midline correctly when the lateral ventricles increase in
neurodegenerative cases. This is also illustrated in Figure 3B.
When looking at the volume difference metric for the Bergo et al.
method, it is affected by low and medium CSF load cases. This
method relies is based on minimizing a global intensity score in
the plane, and thus with less CSF, the global score will struggle in
finding an optimal plane. The proposed method performs feature
optimization locally, which improves the estimation of IF in low
to medium CSF load cases. The Kuijf et al. method struggles
the most with high CSF load cases, due to the optimization
algorithm estimating into the lateral ventricles. Overall, the
proposed method yields the lowest average volume difference for
low, medium and high CSF loads.

3.4. Midline Outlier Detection
In this section, the proposed midline algorithm is computed
for each of the 5,360 volumes from the entire dataset (roughly
275,000 image slices for ADNI, CAIN, and CCNA combined)
and the asymmetry index (AI) is used to automatically assess
midline estimation performance without ground truths. The AI
measures the difference in volume between hemispheres for every
volume in the dataset, and the distribution of the AI values
were retained for z-score outlier analysis. Volumes with extreme
AI values are flagged for visual analysis to verify hemispheric
segmentation visually. In a clinical setting, this tool can be
used when ground truth data is unavailable or infeasible to
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FIGURE 6 | Raincloud plots of results for (A) Mean HD, (B) MAD, (C) Left Volume Difference 1VL, and (D) Right Volume Difference 1VR for entire validation set (75

volumes from CAIN, ADNI, and CCNA).

obtain. For research applications and large-scale analysis, the
AI can be used to determine sub-optimal segmentation results
(which can therefore be excluded from biomarker studies). The
AI outlier detection method drastically reduces the number of
cases to visually inspect in large datasets and indirectly measures
hemispheric segmentation performance without ground truth.
Out of a total of 5,547 volumes, only 53 volumes were detected
as outliers (<1%) using z-score analysis, with 33 out of 4,100
in ADNI (0.8%), 10 out of 871 in CAIN (1.1%), and 10 out of
380 volumes CCNA (2.6%). The 53 outliers were then visually
inspected to verify the outliers.

Some of the detected outliers are shown in Figure 8.
Figure 8A is a case from the CCNA dataset that was found
to be estimated incorrectly. Upon further inspection, this error
was caused by incorrect estimation of the head angle during
preprocessing. The head angle was measured to be -15 degrees
(which visually can be seen to be incorrect since the brain
is not angled). The cross-correlation score fails here because
of the shape of the head. When the shape is circular, cross
correlation score reaches a maximum at various rotations of θ .
To make this more robust in the future perhaps an edge map
of the brain could be incorporated into the cross correlation

analysis (Liu et al., 2001). In (B), the brain is not centered which
misaligns the detection of the 2 cm rectangular ROI that should
contain the midline. In (C), there are large motion artifacts,
which although creates some inaccuracies, overall, the proposed
technique still manages to approximate the midline, given the
poor quality of the image. Another poor quality case, in (D),
has found an issue with the brain segmentation mask due to
missing tissue. These outliers, whether it be from segmentation
error or poor image quality, can be removed prior to
clinical analysis.

After visual inspection of the 53 outliers, only one was seen to
be a case that can be accepted and used in the clinical analysis.
Figures 8E,F, shows two different slices from this case in the
ADNI dataset. In certain slices, the midline estimation is slightly
off and not optimal, as seen in (E). For the rest of the volume
and majority of the later cerebral slices, the midline estimation
was found to be accurate. Due to the slight underestimation of
the midline on a few slices, this case was found to have a z-
score value of 3.154, which is just greater than the z-score cut
off of 3, making this an outlier by definition. This highlights the
sensitivity of the AI outlier method to slice differences in volumes
as well.
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FIGURE 7 | Validation metrics as a function as a function of (A) dataset, (B) scanner, and (C) CSF load.
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TABLE 4 | Mean (± std) of mean HD and mean volume difference for each dataset, scanner type and pathology level.

Mean HD 1 V (mL)

Bergo et al. Kuijf et al. IAMLAB Bergo et al. Kuijf et al. IAMLAB

ADNI 0.76 ± 0.44 0.37 ± 0.22 0.28 ± 0.13 9.83 ± 6.94 13.08 ± 5.00 6.16 ± 3.19

CAIN 1.51 ± 2.01 0.51 ± 0.32 0.41 ± 0.29 14.84 ± 32.00 6.25 ± 4.34 6.82 ± 5.06

CCNA 1.34 ± 2.15 0.59 ± 0.34 0.26 ± 0.21 22.64 ± 31.55 12.58 ± 3.32 6.33 ± 3.27

GE 1.29 ± 2.34 0.56 ± 0.34 0.34 ± 0.17 17.13 ± 35.91 13.03 ± 4.84 7.10 ± 4.22

Philips 0.86 ± 0.83 0.53 ± 0.34 0.43 ± 0.30 8.60 ± 7.78 9.62 ± 6.38 6.30 ± 4.33

Siemens 1.35 ± 1.81 0.43 ± 0.28 0.25 ± 0.17 19.16 ± 28.28 10.19 ± 4.52 6.23 ± 3.57

Low 1.28 ± 1.82 0.50 ± 0.34 0.33 ± 0.28 14.77 ± 26.85 9.20 ± 5.25 6.56 ± 4.36

Medium 1.25 ± 1.83 0.49 ± 0.31 0.32 ± 0.17 19.35 ± 29.28 11.41 ± 4.77 5.98 ± 3.11

High 0.66 ± 0.45 0.42 ± 0.13 0.27 ± 0.12 7.56 ± 3.28 14.62 ± 4.82 7.51 ± 4.39

Bold is best. Low, medium, and high refer to CSF loads: <150 mL, 150–250 mL, >250 mL.

3.5. Clinical Symmetry Analysis
In this subsection, the midline is extracted from the SCI, MCI,
and AD labeled CCNA volumes and the proposed asymmetry
biomarkers in FLAIR are extracted and analyzed to demonstrate
proof-of-concept. First the midline is extracted from the whole
volume and cerebral hemispheres are extracted. To measure
biomarkers in the normal-appearing brain matter (NABM)
thresholds are applied to the intensity standardized data to strip
out the CSF and lesions (Reiche et al., 2019). The hemispheres
of the NABM are segmented and the LBP is computed on a
per-slice basis on each hemisphere separately. The pixel-wise
average of the LPB feature map is taken across the volume
for each hemisphere, and statistical values are computed per
hemisphere. To quantify differences in hemispheric properties,
asymmetry is measured by taking the normalized difference
across hemispheres for each statistical feature. See Figure 9 for
example images with the detected midline, central slice of the
LBP feature map and the pixel-wise average for a subject with
SCI, MCI and AD. Considering the feature maps, there are visual
differences in texture across diseases. As cognitive impairment
increases from SCI, to MCI and to AD, the roughness of the
NABM increases and the ridges and curves aremuch larger which
could indicate a breakdown in NABM integrity.

Prior to comparing biomarker means across groups, outlier
cases are removed. After outlier removal there are 47 SCI cases, 96
MCI cases, and 40 AD cases. See Figures 10A,B for themean LBP
variance and contrast asymmetry features plotted as a function
of cognitive diagnosis. The level of asymmetry measured by LBP
variance and contrast increases with worse cognitive outcome,
indicating there is a difference in the NABM texture across
hemispheres for each disease level.

One-way ANOVA was used to test if the mean values of
the symmetry biomarkers were significantly different between
disease groups SCI, MCI, and AD. In Table 5, ANOVA analysis
found the means of the symmetry biomarkers to be different
across disease groups, for both LBP variance and contrast
symmetry features. To further investigate the sources of the
differences, Tukey’s HSD was used for post-hoc analysis in
Table 5. Post-hoc testing revealed significant differences between

MCI and SCI groups for both variance and contrast asymmetry
features with a mean difference of 0.053 (p = 0.005) and
0.068 (p = 0.003), respectively. Moreover, significance was
found between AD and SCI groups with a difference in means
= 0.069 (p = 0.005) and 0.067 (p = 0.032) for variance and
contrast, respectively. Therefore, textural symmetry biomarkers
from the NABM can be used to distinguish between these disease
groups. No statistical significance was found between AD and
MCI groups.

To investigate biomarker differences across age and sex, the
variance, and contrast asymmetry features are analyzed further.
Figures 10C,D contains the distribution of the biomarkers as
a function of sex, and Figures 10E,F shows the biomarkers
as a function of age, using the median age as a cutoff for
group comparison. The same trend observed in Figures 10A,B

is seen, where the biomarkers across disease groups for sex
or age have increasing asymmetry measured by LBP variance
and contrast from SCI, to MCI and to AD. To validate the
findings of Figures 10C–F, ANCOVA testing was completed to
statistically analyze the difference in biomarker means while
first controlling for age, and next controlling for sex. These
results are summarized in Table 5. When controlling for age,
the relationship between the asymmetry features and diagnosis
remained statistically significant. Performing post-hoc analysis
with the effect of age removed revealed significant differences
between MCI and SCI groups for both variance and contrast
asymmetry features (p = 0.027 and p = 0.002, respectively).
Moreover, significant differences between AD and SCI groups are
found after ANCOVA for both variance and contrast asymmetry
features (p = 0.04 and p = 0.018, respectively). Similar to
ANOVA, no significant differences were found between MCI
and AD groups. Although the features remain significant, the p-
values marginally increased, implying that age has some effect on
textural asymmetry. This is expected as microstructural integrity,
GM, and WM loss is found to increase with age (Ge et al., 2002).
Although there is an age affect, the proposed biomarkers remain
significant across disease levels. When considering sex as a co-
variate, it was not found to be statistically significant for both
LBP variance and contrast indicating that these biomarkers are
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FIGURE 8 | Midline estimation errors detected using the asymmetry index outlier detection method. Cases from (A–F): CCNA, CAIN, ADNI, ADNI, ADNI, ADNI.
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FIGURE 9 | Sample AD, MCI, and SCI slice (Top) with corresponding LBP slice (Middle) and LBP pixel-wise average (Bottom).

not influenced by sex. Performing post-hoc analysis with the effect
of sex removed revealed significant differences between MCI and
SCI groups for both variance and contrast asymmetry features
(p = 0.0018 and p = 0.003, respectively). Moreover, significant
differences between AD and SCI groups are found after applying
ANCOVA with sex removed, for both variance and contrast
asymmetry features (p = 0.025 and p = 0.033, respectively). No
significant differences were found between MCI and AD groups.

4. DISCUSSION

The proposed midline estimation technique is completely
unsupervised, can adapt to curvature in the interhemispheric
fissure (IF), does not require an initial plane estimate
preprocessing step, estimates the midline for each slice
individually for improved accuracy, and the method can robustly
estimate the midline in the septum pellucidum. In terms of
accuracy over the entire validation dataset of 75 FLAIR MRI
volumes from 38 centers in ADNI, CAIN, and CCNA, the
method yielded the lowest average error for the mean Hausdorff
distance (HD), mean absolute distance (MAD) and volume
difference metrics compared to two other previous works. When
analyzing the reliability and consistency of the method, the
performance is more consistent across datasets, scanner vendors
and CSF load compared to the other methods demonstrating the
ability of the proposed midline detection algorithm to effectively
operate in diverse multicenter and multi-disease FLAIR MRI
datasets. Performance on large datasets and automated outlier
detection highlights the clinical utility of the proposed method

and ability to detect midline detection inaccuracies automatically
and on-the-fly. Asymmetry biomarkers that quantify the
structural integrity of the normal-appearing brain matter
(NABM) show significant differences between subjects with
different cognitive diagnoses and provide the opportunity
for larger cerebral hemisphere symmetry analysis studies in
the future.

An important characteristic of the proposed method is

the ability to estimate irregularities and curvature within the
interhemispheric fissure. In the method by Bergo et al. (2008),

irregularities in and the non-planar nature of the fissure is known

to create algorithm inaccuracies and this was also seen in our
experiments for the method implemented on FLAIR MRI. The

method by Kuijf et al., has challenges when large head angles

are present (see Figure 5) and there was more volume difference
error in the ADNI and CCNA datasets. ADNI and CCNA are
dementia datasets, and a common characteristic of the disease
is increased ventricular size. Thus, the Kuijf et al. method may
be over-estimating the midline into the lateral ventricles, which
could be due to the septum pellucidum. The proposed method is
also more robust to head angle variations through the use of the
head angle correction step.

With the rise of deep learning in medical image segmentation,
mid-sagittal surface estimation could potentially be improved
upon through these techniques. A recent paper by Pisov et al.
(2019) uses convolutional neural networks (CNNs) for brain
midline shift (MLS) detection. They introduced a novel deep
learning based approach for MLS detection, which exploits task-
specific structural knowledge. The work utilizes a two-headed
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FIGURE 10 | (A) LBP variance asymmetry, (B) LBP contrast asymmetry grouped by diagnosis, (C) LBP variance asymmetry vs. sex, grouped by diagnosis, (D) LBP

contrast asymmetry vs. sex, grouped by diagnosis, (E) LBP variance asymmetry vs. age grouped by diagnosis, and (F) LBP contrast asymmetry vs. age, grouped by

diagnosis. Age ranges split by median age.

CNN with shared input layers, where one head is tasked with the
segmentation via UNet, and the other head predicts the slices
which contain MLS (Pisov et al., 2019).

In this work, preliminary clinical analysis highlighted the
relationship between dementia diagnosis and asymmetry of the
NABMmicrostructure in multicenter FLAIR MRI. It is seen that
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TABLE 5 | One-way ANOVA and ANCOVA tests with post-hoc analysis for each asymmetry biomarker.

Test Feature Source F Pr > Fcrit SCI vs. MCI MCI vs. AD SCI vs. AD

ANOVA + Tukey’s HSD
LBP variance Diagnosis 6.404 0.002 0.005 0.702 0.006

LBP contrast Diagnosis 5.894 0.003 0.003 0.9 0.032

ANCOVA (Age) + post-hoc

LBP variance
Diagnosis 4.070 0.018 0.027 0.95 0.04

Age 3.631 0.058 – – –

LBP contrast
Diagnosis 6.551 0.002 0.002 0.999 0.018

Age 1.322 0.251 – – –

ANCOVA (Sex) + post-hoc

LBP variance
Diagnosis 4.560 0.011 0.018 0.81 0.025

Sex 1.316 0.252 – – –

LBP contrast
Diagnosis 5.677 0.004 0.003 0.999 0.033

Sex 0.112 0.739 – – –

Bold values indicate statistical significance.

textural asymmetry increases as dementia progress from SCI
to AD. This can possibly be attributed to an overall decrease
in the structural integrity of the tissue since the texture feature

quantifies the changes in intensity of the NABM. In regions
with higher variance and contrast asymmetry, there may be

more tissue degeneration in the GM and WM for a particular
hemisphere. These findings are analogous to previous asymmetry

studies in AD and dementia. Yang et al. used diffusion tensor

tractography to construct hemispheric brain WM networks

(Yang et al., 2017). They found hemispheric brain WM networks
showed an aberrant rightward asymmetry in AD, but not in the

early phases of MCI (Yang et al., 2017). Through voxel-based

morphometry of T1-weighted MRI, Derflinger et al. (2011)
found brain atrophy in AD to be asymmetric. They also report

that performance of language-based neuropshycological tests
are correlated with the lateralization of GM loss in the left

hemisphere in AD and MCI patients (Derflinger et al., 2011).
Lateralization (left vs. right asymmetry) of microstructural

changes and the relationship to texture and cognitive status in

FLAIR MRI will be explored further in future studies.
From all the features extracted from the 2D LPB feature

map, the variance and contrast were shown to be statistically

significant features to differentiate between AD—SCI, and

MCI—SCI groups. No statistical significance was found between

AD and MCI groups. This could be due to class imbalance
between AD andMCI, or could be due to the over-generalization

of the MCI diagnosis, which captures a wide range (of subjective)
memory complaints and cognitive conditions. A review on the

current research of MCI found that MCI has been modified from

a memory disorder to include other types of cognitive concerns
and impairments that describe other forms of dementia, not just

progression to AD (Petersen, 2009).
In future work, additional asymmetry biomarkers will be

designed and applied on more datasets and compared to
additional clinical variables. Clinical variables, such as medical

history, cognitive scores, and vascular disease risk factors will

be investigated. Given that FLAIR MRI is the leading modality

for the investigation of cerebrovascular disease, we are excited to

explore this in future works.

5. CONCLUSION

Through the combination of shape and symmetry based
approaches, an automated midsagittal surface estimation
algorithm was designed to robustly delineate the curvature of the
interhemispheric fissure (IF). It is completely unsupervised, and
extracts the midline accurately on a per slice basis. Performance
was compared to two state-of-the-art methods for midline
estimation and the proposed method yielded the lowest average
error over 75 volumes from 38 centers, acquired from GE,
Siemens and Philips scanners. Performance of the proposed
algorithm was also shown to be more consistent in multi-center,
multi-scanner and multi-pathology datasets, and more reliable
in varying levels of CSF pathology as compared to the other
approaches. The midline of 5,360 FLAIR MRI volumes from
86 international centers were extracted and a novel automated
asymmetry index was defined to automatically detect outliers
that could be related to poor segmentations. From the 5,360
volumes <1% were detected as outliers which were easily
inspected manually. Finally, clinical utility of the method was
shown as asymmetry features that quantified microstructural
differences in the normal-appearing brain matter (NABM)
across hemispheres were shown to differentiate between
cognitive diagnosis. In future work, these tools will be applied
on larger datasets and correlated to clinical variables to discover
relationships between brain asymmetry and neurodegenerative
diseases.
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