Review Article

Risk of Rash in PD-1 or PD-L1-Related Cancer Clinical Trials: A Systematic Review and Meta-Analysis

 Heli Shang © ${ }^{6}$ Junyan Zhao ©,7 Yuedong Xu ${ }^{(0)}{ }^{8}$ Tong Wu © ${ }^{1}$ Wei Liu ${ }^{1}$, ${ }^{1}$ Xiaowei Yang ${ }^{(1)}{ }^{9}$ and Mohammed Safi ${ }^{(1)}{ }^{10}$
${ }^{1}$ Radiotherapy Department, Shandong Second Provincial General Hospital, Jinan, Shandong 250023, China
${ }^{2}$ Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
${ }^{3}$ Phase I Clinical Trial Center, Shandong Cancer Hospital and Institute,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250012, China
${ }^{4}$ Department of Respiratory and Critical Care Medicine, The People's Hospital of Yuncheng County, Heze, Shandong 274799, China
${ }^{5}$ Department of Oncology, Jinan Central Hospital, Weifang Medical University, Jinan, Shandong 250013, China
${ }^{6}$ Radiotherapy Oncology Department, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan 250014, Shandong, China
${ }^{7}$ Nursing Department, The First Affiliated Hospital of Shandong First Medical University \& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
${ }^{8}$ Endocrinology Department, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China
${ }^{9}$ Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
${ }^{10}$ Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China

Correspondence should be addressed to Yuan Tian; tytytianyuan@aliyun.com
Received 19 March 2022; Accepted 25 June 2022; Published 18 July 2022
Academic Editor: Yuan Seng Wu
Copyright © 2022 Yuan Tian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Given that immune-related rash was the most frequently reported PD-1 or PD-L1-related skin toxicity, this systematic review and meta-analysis were conducted to elucidate its incidence risk. Methods. The meta-analysis was carried out according to the PRISMA guidelines. The random effect model was used in the process of all analyses. Skin rash of all grades and grades $3-5$ were calculated and gathered in the final comprehensive analyses. Results. The study included 86 clinical trials classified into 15 groups. Compared with chemotherapy, PD-1 or PD-L1 inhibitors significantly strengthened the risk of developing rash across all grades ($\mathrm{OR}=1.66,95 \%$ CI: $[1.31,2.11] ; p<0.0001$). This trend was significantly stronger when the control group was placebo ($\mathrm{OR}=2.62,95 \% \mathrm{CI}$: $[1.88,3.65]$; $p<0.00001$). Similar results were observed when PD-1 or PD-L1 inhibitors were given together with chemotherapy ($\mathrm{OR}=1.87,95 \% \mathrm{CI}:[1.59,2.20] ; p<0.00001$), even in patients with grades $3-5$. As with other combination therapies, the risk of developing rash for all grades was enhanced when PD-1 or PD-L1 was given together with chemotherapy as the second-line option ($\mathrm{OR}=2.98,95 \% \mathrm{CI}$: $[1.87,4.75] ; p=0.05$). No statistically significant differences could be found in skin rash between the PD-1 and PD-L1-related subgroups. Conclusion. Whether PD-1 or PD-L1 inhibitors were given alone or together with others, the risk of developing rash would be enhanced. Furthermore, the risk of developing rash appeared to be higher when PD-1 or PD-L1 inhibitors together with other antitumor drugs were given as the second-line options. No statistically significant results of developing rash between PD-1 and PD-L1 subgroups were obtained owing to the participation of PD-1 or PD-L1 inhibitors.

1. Introduction

Due to tobacco cessation, advancements in early diagnosis and treatment, the death rate of various cancers has been falling year after year in the United States, while the survival rate has been improving, particularly for non-small-cell lung cancer (NSCLC) [1]. Among the several therapeutic options available, cancer immunotherapy is extremely successful in increasing cancer patients' survival rates, particularly when PD-1 or PD-L1 inhibitors are given [2]. On the basis of research into the mechanisms of immune escape, PD-1 or PD-L1 inhibitors have reshaped the therapy landscape for cancer by activating the immune system, while also gradually reporting plenty of treatment-related side effects [3]. Although the association between some adverse events and PD-1 or PD-L1 inhibitors has been extensively examined and documented [4-9], many toxicities remain unexplored, including skin toxicities [3].

Skin toxicities, such as rash, pruritus, vitiligo, palmarplantar erythrodysasthesia (PPE), erythema, eczema, urticaria, dermatitis, dry skin, and maculopapular rash, were frequently observed in cancer patients treated with PD-1 or PD-L1 [3, 10, 11]. Additionally, autoimmune skin toxicities associated with PD-1 or PD-L1 have been reported to be significantly more prevalent in patients with NSCLC who are in complete or partial remission [10]. This pattern may also be observed in other types of tumors [11, 12]. Correlations between adverse events and clinical benefit are not uncommon [13-15]. However, the correlations between the risk of developing skin toxicities and PD-1 or PD-L1 inhibitors, as well as their effect on patient prognosis, remain unknown. Therefore, the rash with the highest rate of occurrence among PD-1 or PD-L1-related skin toxicities was chosen for the comprehensive analysis. To begin, subgroup analysis would be used to assess the difference in rash risk between the PD-1 and PD-L1 subgroups; second, the effect of different administration timing on rash would be assessed; and then, detailed subgroup analysis would be used to elucidate the source of heterogeneity.

2. Methods

The design and specific procedures of the meta-analysis were carried out step-by-step as recommended by the PRISMA [16].
2.1. Eligibility Screening for All Clinical Trials. Phase III clinical trials involving PD-1 or PD-L1 inhibitors with control groups would be preferred. Other clinical trials with control groups would be placed in an alternate location. With the exception of hematological malignancies, the types of solid tumors would not be limited. All data involving rash would be extracted and recorded in preparation for the subsequent adequate subgroup analysis. Four authors were appointed for eligibility screening.
2.2. Formulation and Implementation of Literature Search Strategy. According to the principle of PICOS (participants, interventions, comparisons, outcomes, and study design), the specific strategy of literature search was specified and implemented by all authors [16]. First, neoplasm was firstly searched as the MeSH keyword, not limited to specific solid tumor types. Then, all kinds of PD-1 or PD-L1 inhibitors, including common names, trade names, and abbreviations, would be searched as keywords and the search results would be unioned.

The publication time of relevant studies would be limited from July 09, 2013, to September 14, 2021. If one clinical trial was repeatedly reported several times, only the one with full detailed data could be selected for the analysis.

2.3. Quality Evaluation and Publication Bias Screening.

 The revised Cochrane Collaboration tool was adopted for bias risk screening in all selected trials [17], and the Funnel plot and Egger's test were used for publication bias assessments [18]. A p value <0.05 was considered as the evidence for the existence of publication bias.The quality screening of all the enrolled clinical trials were also carried out by the above four authors. The screening criteria were listed as the following 5 items: (a) selection bias, (b) performance bias, (c) detection bias, (d) attrition bias, and (e) reporting bias [17].
2.4. Screening of Results. The main outcome measure was the risk of PD-1 or PD-L1 involving rash across all grades, while the second was the rash for grades $3-5$. The main information of all trials would be extracted and summarized in the single table (Table 1). The main content included in the table was listed as the following items: the first author's name, publication years, trial title, registered trial number, therapies lines, treatment regimens, participants, phase, tumor type, RCT, and the number of rash events.
2.5. Heterogeneity Screening and Statistical Analyses. Cochrane's Q and I^{2} statistics were used for heterogeneity screening, as described by Higgins and colleagues [16, 19], while the Harbord test was used for publication bias evaluation [19]. Three grades of heterogeneity were defined according to the I^{2} value: The two separation thresholds were 25% and 50%, respectively [20]. Using Review Manager 5.3, odds ratios (OR) and 95% confidence intervals (CI) across all enrolled clinical trials using the random effect (RE) method were calculated [21], whereas funnel plots were constructed using the fixed effect (FE) model. All statistical tests were two-sided, and $p<0.05$ was taken as a statistically significant result. In the process of analyses, adequate subgroup evaluations would be carried out according to the actual situation.
Table 1: Basic information of all selected clinical trials.

Trial no.	Reference	NCT number	Drug	Treatment Regimens	Involving Patients	Rash	Previous therapy	Phase	Tumor Type
1	Borghaei H, et al. 2015 [22]	$\begin{aligned} & \text { NCT01673867 } \\ & \text { (CheckMate 057) } \end{aligned}$	Nivolumab (PD- 1)	Nivolumab versus Docetaxel	555	35	Yes	III	Advanced nonsquamous NSCLC
2	Weber JS, et al. 2015 [23]	$\begin{aligned} & \text { NCT01721746 } \\ & \text { (CheckMate 037) } \end{aligned}$	$\begin{aligned} & \text { Nivolumab (PD- } \\ & \text { 1) } \end{aligned}$	Nivolumab versus Dacarbazine/Paclitaxel plus Carboplatin	370	30	No	III	Advanced melanoma
3	$\begin{gathered} \text { Brahmer J, et al. } \\ 2015 \text { [24] } \end{gathered}$	$\begin{aligned} & \text { NCT01642004 } \\ & \text { (CheckMate 017) } \end{aligned}$	Nivolumab (PD1)	Nivolumab versus Docetaxel	260	13	Yes	III	Advanced squamous cell NSCLC
4	$\begin{aligned} & \text { Motzer RJ, et al. } \\ & 2015 \text { [25] } \end{aligned}$	NCT01668784 (CheckMate 025)	Nivolumab (PD- 1)	Nivolumab versus Everolimus	803	120	Yes	III	Advanced RCC
5	Herbst RS, et al. 2016A [26]	NCT01905657 (KEYNOTE-010)	$\begin{gathered} \text { Pembrolizumab } \\ \text { (PD-1) } \end{gathered}$	Pembrolizumab $2 \mathrm{mg} / \mathrm{kg}$ versus Pembrolizumab $10 \mathrm{mg} / \mathrm{kg}$	991	73	Yes	II/III	Advanced NSCLC
	Herbst RS, et al. 2016B [26]			Pembrolizumab $2 \mathrm{mg} / \mathrm{kg}$ versus Docetaxel		43			
	Herbst RS, et al. 2016C [26]			Pembrolizumab $10 \mathrm{mg} / \mathrm{kg}$ versus Docetaxel		58			
6	Langer CJ, et al. 2016 [27] Awad MM, et al. 2021 [28]	$\begin{aligned} & \text { NCT02039674 } \\ & \text { (KEYNOTE-021) } \end{aligned}$	Pembrolizumab (PD-1)	Pembrolizumab plus Carboplatin plus Pemetrexed versus Carboplatin plus Pemetrexed	121	25	No	II	Advanced nonsquamous NSCLC
7	$\begin{aligned} & \text { Antonia SJ, et al. } \\ & 2016 \text { [29] } \end{aligned}$	$\begin{aligned} & \text { NCT01928394 } \\ & \text { (CheckMate 032) } \end{aligned}$	Nivolumab (PD1)	Nivolumab versus Nivolumab plus Ipilimumab	152	6	Yes	I/II	Recurrent SCLC
8	Ferris RL, et al. 2016 [30]	$\begin{aligned} & \text { NCT02105636 } \\ & \text { (CheckMate 141) } \end{aligned}$	Nivolumab (PD1)	Nivolumab versus (Methotrexate, Docetaxel, or Cetuximab)	347	23	Yes	III	Recurrent HNSCC
9	Hodi FS, et al. 2016 [31]	NCT01927419 (CheckMate 069)	Nivolumab (PD1)	Nivolumab plus Ipilimumab versus Ipilimumab	140	54	No	II	Advanced melanoma
10	$\begin{aligned} & \text { Bellmunt J, et al. } \\ & 2017 \text { [32] } \end{aligned}$	$\begin{aligned} & \text { NCT02256436 } \\ & \text { (KEYNOTE-045) } \end{aligned}$	Pembrolizumab (PD-1)	Pembrolizumab versus Chemotherapy	531	45	Yes	III	Advanced UC
11	$\begin{aligned} & \text { Kang YK, et al. } \\ & 2017 \text { [33] } \end{aligned}$	$\begin{gathered} \text { NCT02267343 (ONO- } \\ 4538-12, \\ \text { ATTRACTION-2) } \end{gathered}$	Nivolumab (PD- 1)	Nivolumab versus Placebo	491	24	Yes	III	Advanced gastric or GJC
	Schachter J, et al. 2017A [34]			Pembrolizumab every 2 weeks versus Pembrolizumab every 3 weeks		92			
12	Schachter J, et al. 2017B [34]	$\begin{aligned} & \text { NCT01866319 } \\ & \text { (KEYNOTE-006) } \end{aligned}$	$\begin{aligned} & \text { Pembrolizumab } \\ & (\text { PD-1) } \end{aligned}$	Pembrolizumab every 2 weeks versus Ipilimumab	811	84	Yes	III	Advanced melanoma
	Schachter J, et al. 2017C [34]			Pembrolizumab every 3 weeks versus Ipilimumab		88			
13	$\begin{aligned} & \text { Antonia SJ, et al. } \\ & 2017 \text { [35] } \end{aligned}$	NCT02125461 (PACIFIC)	$\begin{aligned} & \text { Durvalumab } \\ & \text { (PD-L1) } \end{aligned}$	Durvalumab versus Placebo	709	50	Yes	III	Advanced, unresectable, stage III NSCLC
14	Socinski MA, et al. 2018 [36]	NCT02366143 (IMpower150)	Atezolizumab (PD-L1)	Atezolizumab plus Bevacizumab plus Carboplatin plus Paclitaxel (ABCP) versus Bevacizumab plus Carboplatin plus Paclitaxel (BCP)	787	72	No	III	Metastatic nonsquamous NSCLC

Table 1: Continued.

Trial no.	Reference	NCT number	Drug	Treatment Regimens	Involving Patients	Rash	Previous therapy	Phase	Tumor Type
15	$\begin{gathered} \text { Paz-Ares L, et al. } \\ 2018 \text { [37] } \end{gathered}$	NCT02775435 (KEYNOTE-407)	Pembrolizumab (PD-1)	Pembrolizumab plus chemotherapy versus chemotherapy	558	79	No	III	Squamous NSCLC
16	$\begin{gathered} \text { Horn L, et al. } \\ 2018 \text { [38] } \end{gathered}$	NCT02763579 (IMpower133)	Atezolizumab (PD-L1)	Atezolizumab plus Carboplatin plus Etoposide versus Carboplatin plus Etoposide	394	57	No	III	Extensive-stage SCLC
17	$\begin{aligned} & \text { Antonia SJ, et al. } \\ & 2018 \text { [39] } \end{aligned}$	NCT02125461 (PACIFIC)	$\begin{aligned} & \text { Durvalumab } \\ & \text { (PD-L1) } \end{aligned}$	Durvalumab versus Placebo	709	76	Yes	III	Stage III NSCLC
	$\begin{gathered} \text { Gandhi L, et al. } \\ 2018 \text { [40] } \end{gathered}$								
18	Gadgeel S, et al. 2020 [41] RodríguezAbreu D, et al. 2021 [42]	$\begin{aligned} & \text { NCT02578680 } \\ & \text { (KEYNOTE-189) } \end{aligned}$	Pembrolizumab (PD-1)	Pembrolizumab plus Pemetrexed plus A platinum-based drug versus Pemetrexed plus A platinum-based drug	607	105	No	II	Metastatic nonsquamous NSCLC
19	Hida T, et al. 2018 [43]	NCT02008227 (OAK)	Atezolizumab (PD-L1)	Atezolizumab versus Docetaxel	101	22	Yes	III	Advanced/metastatic NSCLC
20	Eggermont AMM, et al. 2018 [44]	NCT02362594	Pembrolizumab (PD-1)	Pembrolizumab versus Placebo	1011	136	No	III	Resected stage III melanoma
21	Schmid P, et al. 2018 [45] Emens LA, et al. 2021 [46]	NCT02425891 (IMpassion130)	Atezolizumab (PD-L1)	Atezolizumab plus Nab-paclitaxel versus Nabpaclitaxel	890	113	No	III	Unresectable locally advanced or metastatic TNBC
	Hellmann MD, et al. 2018A [47]			Nivolumab plus Ipilimumab versus Nivolumab		139			
	Hellmann MD, et al. 2018B [47]			Nivolumab plus Ipilimumab versus Chemotherapy (platinum doublet)		125			
22	Hellmann MD, et al. 2018C [47]	NCT02477826	Nivolumab (PD-	Nivolumab versus Chemotherapy (platinum doublet)	1537	72	No	III	Stage IV or recurrent
	$\begin{aligned} & \text { Reck M, et al. } \\ & \text { 2021A [48] } \end{aligned}$	(CheckMate 227)	1)	Nivolumab plus Ipilimumab versus Nivolumab		139			
	Reck M, et al. 2021B [48]			Nivolumab plus Ipilimumab versus Chemotherapy (platinum doublet)		125			
	Reck M, et al. 2021C [48]			Nivolumab versus Chemotherapy (platinum doublet)		72			
	Powles T, et al. 2018A [49]	NCT02302807	Atezolizumab	Atezolizumab versus Chemotherapy (vinflunine paclitaxel or docetaxel)		20			Locally advanced or
23	Powles T, et al. 2018B [49]	(IMvigor211)	(PD-L1)	Atezolizumab versus Chemotherapy (vinflunine paclitaxel or docetaxel)	1128	61	YSE	III	metastatic UC
24	$\begin{gathered} \text { Paz-Ares L, et al. } \\ 2019 \text { [50] } \end{gathered}$	$\begin{gathered} \text { NCT03043872 } \\ \text { (CASPIAN) } \end{gathered}$	Durvalumab (PD-L1)	Durvalumab plus EP versus EP	531	6	No	III	Extensive-stage SCLC

Table 1: Continued.

$\begin{aligned} & \hline \text { Trial } \\ & \text { no. } \\ & \hline \end{aligned}$	Reference	NCT number	Drug	Treatment Regimens	Involving Patients	Rash	Previous therapy	Phase	Tumor Type
25	Motzer RJ, et al. 2019 [51] Motzer RJ, et al. 2020 [52]	NCT02684006 (JAVELIN Renal 101)	$\begin{aligned} & \text { Avelumab (PD- } \\ & \text { L1) } \end{aligned}$	Avelumab plus Axitinib versus Sunitinib	873	96	Yes	III	Advanced RCC
26	West H , et al. 2019 [53]	NCT02367781 (IMpower130)	Atezolizumab (PD-L1)	Atezolizumab plus Carboplatin plus Nabpaclitaxel versus Carboplatin plus Nab-paclitaxel	705	25	No	III	Metastatic nonsquamous NSCLC
27	$\begin{gathered} \text { Kato K, et al. } \\ 2019 \text { [54] } \end{gathered}$	$\begin{gathered} \text { NCT02569242 } \\ \text { (ATTRACTION-3) } \end{gathered}$	$\begin{aligned} & \text { Nivolumab (PD- } \\ & \text { 1) } \end{aligned}$	Nivolumab versus Paclitaxel/Docetaxel	417	54	Yes	III	Advanced OSCC
28	$\begin{aligned} & \text { Motzer R, et al. } \\ & 2019 \text { [55] } \end{aligned}$	NCT02231749 (CheckMate 214)	Nivolumab (PD- 1)	Nivolumab plus Ipilimumab versus Sunitinib	1082	193	No	III	Advanced RCC
29	$\begin{aligned} & \text { Rini BI, et al. } \\ & 2019 \text { [56] } \end{aligned}$	NCT02420821 (IMmotion151)	Atezolizumab (PD-L1)	Atezolizumab plus Bevacizumab versus Sunitinib	907	128	No	III	Metastatic RCC
30	$\begin{aligned} & \text { Sullivan RJ, et al. } \\ & 2019 \text { [57] } \end{aligned}$	NCT01656642	Atezolizumab (PD-L1)	Atezolizumab plus Vemurafenib versus Atezolizumab plus Cobimetinib plus Vemurafenib	56	20	No	Ib	BRAF-mutated melanoma
	Hellmann MD, et al. 2019A [58]			Nivolumab plus Ipilimumab versus Nivolumab		139			
31	Hellmann MD, et al. 2019B [58] Hellmann MD, et al. 2019C [58]	$\begin{aligned} & \text { NCT02477826 } \\ & \text { (CheckMate 227) } \end{aligned}$	Nivolumab (PD- 1)	Nivolumab plus Ipilimumab versus Chemotherapy (platinum doublet) Nivolumab versus Chemotherapy (platinum doublet)	1537	125 72	No	III	Advanced NSCLC
32	$\begin{gathered} \text { Wu YL, et al. } \\ 2019 \text { [59] } \end{gathered}$	$\begin{aligned} & \text { NCT02613507 } \\ & \text { (CheckMate 078) } \end{aligned}$	$\begin{aligned} & \text { Nivolumab (PD- } \\ & \text { 1) } \end{aligned}$	Nivolumab versus Docetaxel	493	43	Yes	III	Advanced NSCLC
33	Cohen EEW, et al. 2019 [60]	$\begin{aligned} & \text { NCT02252042 } \\ & \text { (KEYNOTE-040) } \end{aligned}$	Pembrolizumab (PD-1)	Pembrolizumab versus (Methotrexate, Docetaxel, or Cetuximab)	480	53	Yes	III	Recurrent or metastatic HNSCC
34	```Mok TSK, et al. 2019 [61] Wu YL, et al. 2021 [62]```	$\begin{aligned} & \text { NCT02220894 } \\ & \text { (KEYNOTE-042) } \end{aligned}$	$\underset{\text { (PD-1) }}{\text { Pembrolizumab }}$	Pembrolizumab versus Chemotherapy	1251	73	No	III	Locally advanced or metastatic NSCLC
	Burtness B, et al. 2019A [63]			Pembrolizumab versus Pembrolizumab plus Chemotherapy		59			
35	Burtness B, et al. 2019B [63]	$\begin{aligned} & \text { NCT02358031 } \\ & \text { (KEYNOTE-048) } \end{aligned}$	Pembrolizumab (PD-1)	Pembrolizumab versus Cetuximab plus Chemotherapy	863	141	No	III	Recurrent or Metastatic HNSCC
	Burtness B, et al. 2019C [63]			Pembrolizumab plus Chemotherapy versus Cetuximab plus Chemotherapy		140			
36	$\begin{aligned} & \text { Finn RS, et al. } \\ & 2020 \text { [64] } \end{aligned}$	NCT03434379	Atezolizumab (PD-L1)	Atezolizumab plus Bevacizumab versus Sorafenib	485	68	No	III	Unresectable hepatocellular carcinoma
37	Gutzmer R, et al. 2020 [65]	NCT02908672 (IMspire150)	Atezolizumab (PD-L1)	Atezolizumab plus Vemurafenib plus Cobimetinib versus Vemurafenib plus Cobimetinib	511	209	No	III	Unresectable advanced BRAFV600 mutationpositive melanoma
38	Mittendorf EA, et al. 2020 [66]	NCT03197935 (IMpassion031)	Atezolizumab (PD-L1)	Atezolizumab + Chemotherapy versus Chemotherapy	331	88	No	III	Early stage TNBC

Table 1: Continued.

Trial no.	Reference	NCT number	Drug	Treatment Regimens	Involving Patients	Rash	Previous therapy	Phase	Tumor Type
39	Ascierto PA, et al. 2020 [67]	NCT02388906 (CheckMate 238)	Nivolumab (PD- 1)	Nivolumab versus Ipilimumab	905	197	No	III	Resected stage IIIB-C and stage IV Melanoma
40	Herbst RS, et al. 2020 [68]	NCT02409342 (IMpower110)	Atezolizumab (PD-L1)	Atezolizumab versus Chemotherapy (platinumbased)	549	63	No	III	PD-L1-selected NSCLC
41	$\begin{aligned} & \text { Emens LA, et al. } \\ & 2020 \text { [69] } \end{aligned}$	$\begin{gathered} \text { NCT02924883 } \\ \text { (KATE2) } \end{gathered}$	Atezolizumab (PD-L1)	Atezolizumab plus Trastuzumab emtansine versus Trastuzumab emtansine	200	34	Yes	II	HER2-positive advanced breast cancer
42	Huang J, et al. 2020 [70]	$\begin{aligned} & \text { NCT03099382 } \\ & \text { (ESCORT) } \end{aligned}$	Camrelizumab (PD-1)	Camrelizumab versus Chemotherapy (Docetaxel or Irinotecan)	448	189	Yes	III	Advanced or metastatic OSCC
43	$\begin{aligned} & \text { Powles, et al. } \\ & 2020 \text { [71] } \end{aligned}$	NCT02603432 (JAVELIN Bladder 100)	$\begin{aligned} & \text { Avelumab (PD- } \\ & \text { L1) } \end{aligned}$	Avelumab versus Best Supportive Care (BSC)	689	44	Yes	III	Advanced or metastatic UC
44	$\begin{aligned} & \text { André T, et al. } \\ & 2020 \text { [72] } \end{aligned}$	$\begin{aligned} & \text { NCT02563002 } \\ & \text { (KEYNOTE-177) } \end{aligned}$	$\begin{aligned} & \text { Pembrolizumab } \\ & \text { (PD-1) } \end{aligned}$	Pembrolizumab versus Chemotherapy (5-fluorouracil-based therapy with or without bevacizumab or cetuximab)	296	36	No	III	Colorectal cancer
45	$\begin{aligned} & \text { Schmid P, et al. } \\ & 2020 \text { [73] } \end{aligned}$	$\begin{aligned} & \text { NCT03036488 } \\ & \text { (KEYNOTE-522) } \end{aligned}$	Pembrolizumab (PD-1)	Pembrolizumab plus Chemotherapy (Paclitaxel plus Carboplatin) versus Placebo plus Chemotherapy (Paclitaxel plus Carboplatin)	1170	229	No	III	Stage II or stage III TNBC
46	Jotte R, et al. $2020 \text { [74] }$	NCT02367794 (IMpower131)	Atezolizumab (PD-L1)	Atezolizumab plus Carboplatin plus Nabpaclitaxel versus Carboplatin plus Nab-paclitaxel	668	38	Yes	III	Advanced squamous NSCLC
47	$\begin{gathered} \text { Zhou C, et al. } \\ 2020 \text { [75] } \end{gathered}$	NCT03134872 (CameL)	Camrelizumab (PD-1)	Camrelizumab plus Carboplatin plus Pemetrexed versus Carboplatin plus Pemetrexed	412	36	No	III	Nonsquamous NSCLC
	$\begin{aligned} & \text { Zimmer L, et al. } \\ & \text { 2020A [76] } \end{aligned}$			Nivolumab plus Ipilimumab versus Nivolumab		6			
48	$\begin{aligned} & \text { Zimmer L, et al. } \\ & \text { 2020B [76] } \end{aligned}$	NCT02523313 (IMMUNED)	Nivolumab (PD1)	Nivolumab plus Ipilimumab versus Placebo	162	N/A	Yes	II	Resected stage IV melanoma
	Zimmer L, et al. 2020C [76]			Nivolumab versus Placebo		N/A			
	Galsky MD, et al. 2020A [77]			Atezolizumab plus Chemotherapy (platinumbased) versus Atezolizumab		75			
49	Galsky MD, et al. 2020B [77]	NCT02807636 (IMvigor130)	Atezolizumab (PD-L1)	Atezolizumab plus Chemotherapy versus Chemotherapy	1203	80	No	III	Locally advanced or metastatic UC
	Galsky MD, et al. 2020C [77]			Atezolizumab versus Placebo plus Chemotherapy		41			
	Powles T, et al. 2020A [78]	NCT02516241		Durvalumab versus Durvalumab plus Tremelimumab		73			
50	Powles T, et al. 2020B [78]	(DANUBE)	(PD-L1)	Durvalumab versus Chemotherapy (gemcitabine plus cisplatin/carboplatin)	998	34	No	III	or metastatic UC
51	$\begin{aligned} & \text { Rudin CM, et al. } \\ & 2020 \text { [79] } \end{aligned}$	$\begin{aligned} & \text { NCT03066778 } \\ & \text { (KEYNOTE-604) } \end{aligned}$	Pembrolizumab (PD-1)	Pembrolizumab plus EP versus Placebo plus EP	446	43	No	III	Extensive-stage SCLC

Table 1: Continued.

Table 1: Continued.

Trial no.	Reference	NCT number	Drug	Treatment Regimens	Involving Patients	Rash	Previous therapy	Phase	Tumor Type
61	Motzer R, et al. 2021A [89]	$\begin{aligned} & \text { NCT02811861 } \\ & \text { (CLEAR) } \end{aligned}$	Pembrolizumab(PD-1)	Lenvatinib plus Pembrolizumab versus Sunitinib	1047	143	No	III	Advanced RCC
	Motzer R, et al. 2021B [89]			Lenvatinib plus Pembrolizumab versus Lenvatinib plus Everolimus		184			
	$\begin{gathered} \text { Motzer R, et al. } \\ \text { 2021C [89] } \end{gathered}$			Lenvatinib plus Everolimus versus Sunitinib		135			
62	Bellmunt J, et al. 2021 [90]	NCT02450331 (IMvigor010)	Atezolizumab (PD-L1)	Atezolizumab versus Observation	787	101	No	III	Muscle-invasive UC
63	Choueiri TK, et al. 2021 [91]	$\begin{aligned} & \text { NCT03141177 } \\ & \text { (CheckMate 9ER) } \end{aligned}$	Nivolumab (PD- 1)	Nivolumab plus Cabozantinib versus Sunitinib	640	95	No	III	Advanced RCC
64	$\begin{aligned} & \text { Sezer A, et al. } \\ & 2021 \text { [92] } \end{aligned}$	NCT03088540 (EMPOWER-Lung 1)	Cemiplimab (PD- 1)	Cemiplimab versus Chemotherapy (platinumdoublet)	697	26	No	III	Advanced NSCLC
65	$\begin{gathered} \text { Paz-Ares L, et al. } \\ 2021 \text { [93] } \end{gathered}$	NCT03215706 (CheckMate 9LA)	Nivolumab (PD1)	Nivolumab plus Ipilimumab plus Chemotherapy versus Chemotherapy	707	78	No	III	Stage IV or recurrent NSCLC
66	Baas P, et al. 2021 [94]	NCT02899299 (CheckMate 743)	$\begin{aligned} & \text { Nivolumab (PD- } \\ & \text { 1) } \end{aligned}$	Nivolumab plus Ipilimumab versus Chemotherapy	584	58	No	III	Unresectable malignant pleural mesothelioma
67	$\begin{aligned} & \text { Goldman JW, } \\ & \text { et al. 2021A [95] } \end{aligned}$	$\begin{gathered} \text { NCT03043872 } \\ \text { (CASPIAN) } \end{gathered}$	$\begin{aligned} & \text { Durvalumab } \\ & \text { (PD-L1) } \end{aligned}$	Durvalumab plus EP versus EP	797	26	No	III	Extensive-stage SCLC
	$\begin{aligned} & \text { Goldman JW, } \\ & \text { et al. 2021B [95] } \end{aligned}$			Durvalumab plus Tremelimumab (CTLA-4) plus EP versus EP		46			
	$\begin{aligned} & \text { Goldman JW, } \\ & \text { et al. 2021C [95] } \end{aligned}$			Durvalumab plus Tremelimumab (CTLA-4) plus EP versus Durvalumab plus EP		52			
	Pujade-Lauraine E, et al. 2021A [96]			Avelumab plus PLD (Pegylated Liposomal Doxorubicin) versus PLD		61	Yes	III	Platinum-resistant or platinum-refractory OC
68	Pujade-Lauraine E, et al. 2021B [96]	NCT02580058 (JAVELIN Ovarian 200)	$\begin{aligned} & \text { Avelumab (PD- } \\ & \text { L1) } \end{aligned}$	Avelumab plus PLD versus AvelumabAvelumab versus PLD	546	54			
	Pujade-Lauraine E, et al. 2021C [96]					25			
69	Kelly RJ, et al. 2021 [97]	$\begin{aligned} & \text { NCT02743494 } \\ & \text { (CheckMate 577) } \end{aligned}$	Nivolumab (PD1)	Nivolumab versus Placebo	792	62	Yes	III	Resected esophageal or GJC
70	Sugawara S, et al. 2021 [98]	NCT03117049 (ONO- 4538-52/TASUKI-5)	Nivolumab (PD- 1)	Nivolumab versus Placebo	548	121	No	III	Stage IIIB/IV or recurrent nonsquamous NSCLC
71	$\begin{gathered} \text { Yang Y, et al. } \\ 2021 \text { [99] } \end{gathered}$	$\begin{aligned} & \text { NCT03707509 } \\ & \text { (CAPTAIN-1st) } \end{aligned}$	Camrelizumab (PD-1)	Camrelizumab plus Gemcitabine plus Cisplatin versus Gemcitabine plus Cisplatin	263	72	No	III	NC
72	$\begin{aligned} & \text { Liu SV, et al. } \\ & 2021 \text { [100] } \end{aligned}$	NCT02763579 (IMpower133)	Atezolizumab (PD-L1)	Atezolizumab plus CP/ET versus Placebo plus CP/ET	394	61	No	I/III	Extensive-stage SCLC

Table 1: Continued.

Trial no.	Reference	NCT number	Drug	Treatment Regimens	Involving Patients	Rash	Previous therapy	Phase	Tumor Type
73	Monk BJ, et al. 2021A [101]	NCT02718417 (JAVELIN Ovarian 100)	$\begin{aligned} & \text { Avelumab (PD- } \\ & \text { L1) } \end{aligned}$	Avelumab plus Chemotherapy + Avelumab (maintenance) versus Chemotherapy	991	91	No	III	Stage III-IV epithelialOC
	Monk BJ, et al. 2021B [101]			Avelumab plus Chemotherapy plus Avelumab (maintenance) versus Chemotherapy plus Avelumab (maintenance)		125			
	Monk BJ, et al. 2021C [101]			Chemotherapy plus Avelumab (maintenance) versus Chemotherapy		84			
74	$\begin{aligned} & \text { Choueiri TK, } \\ & \text { et al. } 2021 \text { [102] } \end{aligned}$	NCT03142334 (KEYNOTE-564)	$\begin{aligned} & \text { Pembrolizumab } \\ & \text { (PD-1) } \end{aligned}$	Pembrolizumab versus Placebo	984	151	No	III	Clear-cell, advanced RCC
75	Moore KN, et al. 2021 [103]	(NCT03038100) (IMagyn050/GOG 3015/ENGOT-OV39)	$\begin{aligned} & \text { Atezolizumab } \\ & \text { (PD-L1) } \end{aligned}$	Atezolizumab plus CP plus Bevacizumab versus Placebo plus CP plus Bevacizumab	1285	252	No	III	Stage III or IV OC
76	Gogas H, et al. 2021 [104]	$\begin{gathered} \text { NCT03273153 } \\ \text { (IMspire170) } \end{gathered}$	Atezolizumab (PD-L1)	Cobimetinib plus Atezolizumab versus Pembrolizumab	436	118	No	III	BRAFV600 wild-type melanoma
	Owonikoko TK, et al. 2021A [105]			Nivolumab plus Ipilimumab versus Nivolumab		82			
77	$\begin{aligned} & \text { Owonikoko TK, } \\ & \text { et al. 2021B } \\ & {[105]} \end{aligned}$	$\begin{aligned} & \text { NCT02538666 } \\ & \text { (CheckMate 451) } \end{aligned}$	$\begin{aligned} & \text { Nivolumab (PD- } \\ & \text { 1) } \end{aligned}$	Nivolumab plus Ipilimumab versus PlaceboNivolumab versus Placebo	830	76	Yes	III	Extensive-disease SCLC
	Owonikoko TK, et al. 2021C [105]					28			
78	Luo H , et al. 2021 [106]	$\begin{aligned} & \text { NCT03691090 } \\ & ((\text { ESCORT-1st) } \end{aligned}$	$\begin{aligned} & \text { Camrelizumab } \\ & (\mathrm{PD}-1) \end{aligned}$	Camrelizumab plus Chemotherapy versus Chemotherapy	595	22	No	III	Advanced or metastatic ESCC
79	Colombo N, et al. 2021A [107]	NCT03635567	Pembrolizumab	Pembrolizumab plus Chemotherapy plus Bevacizumab versus Chemotherapy plus Bevacizumab	389	65		III	Persistent, recurrent, or metastatic cervical
	Colombo N, et al. 2021B [107]	(KEYNOTE-826)	(PD-1)	Pembrolizumab plus Chemotherapy versus Chemotherapy	227	17			cancer
80	$\begin{gathered} \text { Fennell DA, } \\ \text { et al. } 2021 \text { [108] } \end{gathered}$	$\begin{aligned} & \text { NCT03063450 } \\ & \text { (CONFIRM) } \end{aligned}$	Nivolumab (PD- 1)	Nivolumab versus Placebo	332	1	Yes	III	Malignant mesothelioma
81	$\begin{aligned} & \text { Pusztai L, et al. } \\ & 2021[109] \end{aligned}$	(NCT01042379) (I- SPY2)	$\begin{aligned} & \text { Durvalumab } \\ & \text { (PD-L1) } \end{aligned}$	Durvalumab plus Olaparib plus Paclitaxel (DOP) versus Paclitaxel	372	63	No	II	HER2-negative stage II/III breast cancer
82	$\begin{aligned} & \text { Zhu X, et al. } \\ & 2021 \text { [110] } \end{aligned}$	NCT02704156	Pembrolizumab (PD-1)	SBRT plus Pembrolizumab plus Trametinib versus SBRT plus Gemcitabine	170	22	Yes	II	Locally recurrent pancreatic cancer after surgical resection
83	$\begin{aligned} & \text { Sun JM, et al. } \\ & 2021 \text { [111] } \end{aligned}$	$\begin{aligned} & \text { NCT03189719 } \\ & \text { (KEYNOTE-590) } \end{aligned}$	$\begin{aligned} & \text { Pembrolizumab } \\ & \text { (PD-1) } \end{aligned}$	Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy	740	47	No	III	Advanced esophageal cancer
84	$\begin{aligned} & \text { Mai } \mathrm{HQ} \text {, et al. } \\ & \text { 2021 [112] } \end{aligned}$	NCT03581786	Toripalimab (PD- 1)	Toripalimab plus GP versus Placebo plus GP	289	71	No	III	Advanced NC

Table 1: Continued.

$\mathrm{RCT}=$ randomized controlled trial, $\mathrm{N} / \mathrm{A}=$ not available, $\mathrm{NSCLC}=$ non-small-cell lung cancer, $\mathrm{SCLC}=$ small-cell lung cancer, $\mathrm{UC}=$ urothelial carcinoma, $\mathrm{HNSCC}=$ head and neck squamous-cell carcinoma, TNBC = triple-negative breast cancer, $\mathrm{NC}=$ nasopharyngeal carcinoma, $\mathrm{GJC}=$ gastroesophageal junction cancer, $\mathrm{GC}=$ gastric cancer, $\mathrm{ESCC}=$ esophageal squamous cell carcinoma, $\mathrm{OC}=$ ovarian cancer, and RCC $=$ renal cell carcinoma .

3. Results

3.1. Literature Search Results. After a preliminary PubMed search, 522 studies were retrieved (Figure 1). After criteria screened, 95 studies involving 86 clinical trials, including 55207 participants, were used for the final comprehensive analyses [22-25], [26-30], [31-35], [36-40], [41-45], [46-50], [51-55], [56-60], [61-65], [66-70], [71-75], [76-80], [81-85], [86-90], [91-95], [96-110], [111-115], [116, 117]. According to the PICOS guidelines, the detailed process of literature screening was provided in the form of PRISMA flow diagram (Figure 1). All types of literature included in the quality checking were finished by the four authors independently and finally summarized by the corresponding author and then plotted as the (S Figure 1) [22-25], [26-30], [31-35], [36-40], [41-45], [46-50], [51-55], [56-60], [61-65], [66-70], [71-75], [76-80], [81-85], [86-90], [91-95], [96-110], [111-115], [116, 117].
3.2. Basic Information for All Included Clinical Trials. Basic characteristics of 86 clinical trials included in the study were extracted and shown in Table 1 [5], [22-25], [26-30], [31-35], [36-40], [41-45], [46-50], [51-55], [56-60], [61-65], [66-70], [71-75], [76-80], [81-85], [86-90], [91-95], [96-110], [111-115], [116, 117]. 6 clinical trials, including KEYNOTE-021 [27, 28], KEYNOTE-189 [40-42], CheckMate 227 [47, 48], JAVELIN Renal 101 [51, 52], KEYNOTE-042 [61, 62], and CheckMate 067 [114-117], were repeatedly reported multiple times by different reporters, and only one with the detailed data could be selected for the final analyses. Among them, there were 72 Phase III, 8 Phase II, 2 Phase II/III, 1 Phase I/II, 1 Phase I/III, 1 Phase Ib, and 1 Phase I clinical trials. In 55 clinical trials, PD-1 or PDL1 inhibitors were given alone or together with other antitumor drugs as the first-line regimens [23, 27, 28, 31], [36-38, 40-42], [44-48, 50, 53], [55-58], [61-68], [72, 73, 75], [77-80, 83-86], [88-95], [98-104], [106, 107, 109, 111, 112], [114-117], while previous therapies were found in the other 31 clinical trials [22, 24-26, 29, 30, $32-35,39,43,49,51,52,54,59,60,69-71$, $74,76,81,82,87,96,97,105,108,110,113]$. Among the tumor types involved in all enrolled clinical trials, NSCLC accounted for the highest proportion $(n=22)$ [22, 24, 26-28, $35-37,39-43,47,48,53,58,59,61,62,68$, $74,75,92,93,98,113]$, followed by melanoma $(n=11)$ [23, 31, 34, 44, 57, 65, 67, 76, 81, 104, 114-117], urothelial carcinoma $(n=8)$ [32, 49, 71, 77, 78, 86, 87, 90], renal cell carcinoma ($n=7$) [25, 51, 52, 55, 56, 89, 91, 102], SCLC ($n=7$) [29, 38, 50, 79, 95, 100, 105], triple-negative breast cancer $(n=6)[46,66,73,82,84,88]$, and head and neck squamous cell carcinoma $(n=4)$ [30, 60, 63, 84].

All enrolled clinical trials were classified into 15 groups in view of the treatment regimens of all the control groups, which were listed as follows: Group A (PD-1 or PD-L1 versus Chemotherapy) [22-24, 26, 32, 43, 47, 49, 54, 59, 61, $68,77,78,80,82,86,92,96]$, Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy) [27, 37, 41, 45, 53, 66, $73,74,77,79,80,84,86,95,96,100,101,103,107,111,112]$,

Group C (Camrelizumab plus Chemotherapy versus Chemotherapy) [75, 99, 106], Group D (PD-1 or PD-L1 plus Chemotherapy plus Bevacizumab versus Chemotherapy plus Bevacizumab) [36, 107], Group E (PD-1 or PD-L1 versus Placebo) $[33,39,44,71,87,90,91,97,98,105,108]$, Group F (PD-1 or PD-L1 plus Chemotherapy versus PD-1 or PD-L1) [63, 77, 80, 96], Group G (PD-1 or PD-L1 plus CTLA-4 versus PD-1 or PD-L1) [29, 47, 76, 78, 105, 118], Group H (PD-1 or PD-L1 versus CTLA-4) [34, 67, 117], Group I (PD-1 or PD-L1 plus CTLA-4 versus Chemotherapy) [47, 94], Group J (PD-1 or PD-L1 plus CTLA-4 plus Chemotherapy versus Chemotherapy) [93, 95], Group K (PD-1 or PD-L1 plus Bevacizumab versus Sorafenib) [64, 85], Group L (PD-1 or PD-L1 plus CTLA-4 versus CTLA-4) [31, 117], Group M (PD-1 or PD-L1 versus Methotrexate/docetaxel/cetuximab) [30, 60], and Group N (PD-1 or PD-L1 plus Antineoplastic Drug versus Sunitinib) [$51,55,56,89,91]$. The others would just be used for the systematic review $[25,26,34,57,63,65$, $69,72,81,83,88,89,95,101,104,105,109,110]$. Within each group, the differences between the PD-1 and PD-L1 subgroups would be assessed firstly, followed by the treatment lines.
3.3. Risk of Bias. 86 clinical trials, involving 95 literatures, were all screened for 5 relevant bias risks, and the results were shown in the (S Figure 1) [22-25], [26-30], [31-35], [36-40], [41-45], [46-50], [51-55], [56-60], [61-65], [66-70], [71-75], [76-80], [81-85], [86-90], [91-95], [96-110], [111-115], [116, 117]. Data with high bias would not be adopted for the final meta-analysis (S Figure 1) [57, 114-116]. The funnel plots for publication bias assessments were constructed and shown in the corresponding figures (S Figures 2-6).
3.4. Risk Assessments of Rash for All Grades in Group A (PD-1 or PD-L1 versus Chemotherapy). Reactive cutaneous capillary endothelial proliferation (RCCEP) was the characteristic rash of camrelizumab, so the clinical trials including camrelizumab were evaluated separately [70]. 19 clinical trials in Group A were summarized and prepared for the final analyses $[22-24,26,32,43,47,49,54,59,61,68,77,78,80$, 82, 86, 92, 96]. Among all tumor types, NSCLC was the most common one $(n=10)$ [22, 24, 26, 43, 47, 59, 61, 68, 92], followed by UC $(n=5)$ [32, 49, 77, 78, 86].

Through analyses, we found that PD-1 or PD-L1 inhibitors significantly increased the risk of developing rash for all grades ($\mathrm{OR}=1.66,95 \% \mathrm{CI}$: [1.31, 2.11]; $\mathrm{I}^{2}=57 \%$, $Z=4.19, p<0.0001$; Figures 2(a) $-2(d))$. Compared with the PD-L1 subgroup, the risk of developing rash appeared to be higher in PD-1 subgroup ($\mathrm{OR}=1.92$, $95 \% \mathrm{CI}$: [1.48, 2.50]; $\mathrm{I}^{2}=46 \%, Z=4.86, p=0.03$; Figure 2(a)). Similar trend was also found when subgroup was divided based on the treatment lines $\left(\mathrm{OR}=1.82,95 \% \mathrm{CI}:[1.48,2.24] ; \mathrm{I}^{2}=0 \%\right.$, $Z=5.67, p<0.00001$; Figure 2(b)). However, no statistically significant subgroup differences were found in the above two subgroups $\left(\mathrm{Chi}^{2}=2.62, p=0.11, \mathrm{I}^{2}=61.8 \%\right.$, Figure 2(a); $\mathrm{Chi}^{2}=0.46, p=0.50, \mathrm{I}^{2}=0 \%$, Figure 2(b)).

Figure 1: The flow diagram of all enrolled clinical trials.

High heterogeneity ($\mathrm{I}^{2}=57 \%$) could be found in the analysis results (Figures 2(a)-2(d)). After adequate subgroup analyses, it was found that this high degree of heterogeneity stemmed mainly from the two clinical trials of NSCLC $\left(I^{2}=76 \%\right.$, Figure 2(c); $I^{2}=83 \%$, Figure 2(d)) [22, 24]. The funnel plots of them are shown in S Figures 2(a)-2(d).

3.5. Risk Assessments of Rash for All Grades in Group B, Group

 C, and Group D. 21 clinical trials in Group B were enrolled for the final analysis $[27,37,41,45,53,66,73,74$, $77,79,80,84,86,95,96,100,101,103,107,111,112]$. Among all enrolled clinical trials, clinical trials involving NSCLC $(n=5)$ still accounted for the highest proportion [27, 37, 41, 53, 74], followed by triple-negative breast cancer (TNBC) $(n=4)[45,66,73,84]$, small cell lung cancer (SCLC) $(n=3)$ [79, 95, 100], ovarian cancer (OC) $(n=3)$ [96, 101, 103], and urothelial carcinoma (UC) $(n=2)$ [77, 86].Compared with chemotherapy in Group B, it was found that PD-1 or PD-L1 together with chemotherapy significantly increased the risk of rash for all grades ($\mathrm{OR}=1.87$, $95 \% \mathrm{CI}: \quad[1.59,2.20] ; \mathrm{I}^{2}=53 \%, \quad Z=7.50, \quad p<0.00001$; Figures 3(a)-3(d)), even in each evaluable subgroups (Figures 3(c) and 3(d)). Similar to the former analysis result of Group A, the PD-1 subgroup appeared to have a higher risk of rash ($\mathrm{OR}=2.01,95 \% \mathrm{CI}$: [1.63, 2.47]; Figure 3(a)) with no statistical significant differences [27, 37, 41, 73, 79, 80, 86, 107, 111, 112], when it was
compared to the PD-L1 subgroup $\left(\mathrm{Chi}^{2}=0.66, p=0.42\right.$; Figure 3(a)) $[45,53,66,74,77,84,95,96,100,101,103]$. Different from the previous analyses (Figure 2(b)), the incidence risk of rash was higher when PD-1 or PD-L1 together with chemotherapy was given as the second-line option ($\mathrm{OR}=2.98,95 \% \mathrm{CI}$: [1.87, 4.75]; $\mathrm{Chi}^{2}=3.95$, $p=0.05$; Figure 3(b)) [74, 96]. Subgroup analyses indicated that the incidence risk of rash was different among different tumor types, especially in UC subgroup ($\mathrm{OR}=2.66,95 \% \mathrm{CI}$: [1.73, 4.09]; $\mathrm{I}^{2}=61 \%, Z=4.48, p<0.00001$; Figure 3(c)) [77, 86]. Through subgroup analyses (Figures 3(c) and 3(d)), it was found that the high heterogeneity $\left(\mathrm{I}^{2}=53 \%\right)$ might be mainly derived from the clinical trial KEYNOTE-361 (Figure 3(d)) [86].

Similar to the analysis result in Group B, the incidence risk of rash was also significantly increased when camrelizumab was given together with chemotherapy ($O R=2.30$, 95\% CI: $[1.54,3.44] ; \quad \mathrm{I}^{2}=0 \%, \quad Z=4.04, \quad p<0.0001$; Figure 3(e)) [75, 99, 106]. However, when PD-1 or PD-L1 was given with bevacizumab and chemotherapy, no statistically significant analysis result was found ($\mathrm{OR}=1.90,95 \%$ CI: $[0.86,4.20] ; \mathrm{I}^{2}=77 \%, Z=1.60, p=0.11$; Figure 3(e)). All the corresponding funnel lots are shown in S Figures 3(a)3(f).
3.6. Risk Assessments of Rash for All Grades in Groups E and F. 11 clinical trials in Group E were enrolled for the final analyses [33, 39, 44, 71, 87, 90, 91, 97, 98, 105, 108]. Among

Figure 2: Forest plots of comparison in Group A (PD-1 or PD-L1 versus Chemotherapy). (a) The OR of rash for all grades calculated by the random effect (RE) model: subgroup analyses were performed according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). (b) The OR of rash for all grades calculated by the random effect (RE) model: subgroup analyses were performed according to the treatment lines (first or second line). (c) The OR of rash for all grades calculated by the random effect (RE) model: subgroup analyses were performed based on drug name, tumor type, and immune checkpoint type. (d) The OR of rash for all grades calculated by the random effect (RE) model: subgroup analyses were performed based on drug name, tumor type, immune checkpoint type, and I2 value.
all clinical trials, clinical trials involving UC $(n=3)$ accounted for the highest proportion [71, 87, 90], followed by NSCLC $(n=2) \quad[39,98]$. In 5 clinical studies [44, 90, 91, 98, 108], PD-1 or PD-L1 inhibitors were given as the first-line choice, whereas they were utilized as second-
line or alternative therapeutic choices in the other 6 trials [33, 39, 71, 87, 97, 105].

Compared with placebo, it was found that PD-1 or PDL1 inhibitors significantly increased the risk of developing rash for all grades ($\mathrm{OR}=2.62,95 \% \mathrm{CI}:[1.88,3.65] ; \mathrm{I}^{2}=69 \%$,

Figure 3: Continued.

Sudyor S Sugroup	+cher		Chemoth		Wha	Odds Ration					
					¢						
	${ }_{16}^{25}$	${ }_{29}^{205}$	${ }^{11}$	${ }_{207}^{207}$	${ }_{178}^{29.9}$		${ }^{2020}$				
Yang Y, etal2021	${ }_{46}^{16}$	${ }_{134}^{298}$	26	129	${ }_{521}$		${ }_{2021}^{2021}$			-	
Total (99\% cr)		637		633	100.0	230 [1.54, 34]					
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=0.31, \mathrm{df}=2(\mathrm{P}=0.86) ; \mathrm{F}^{2}=0 \%$ Test for overall effect: $\mathrm{Z}=4.04$ ($\mathrm{P}<0.0001$)											
									${ }_{\text {PD-1/PD-LI }}^{\text {didem }}$	apy Chemotherapy	

(e)

(f)

Figure 3: Forest plots of comparison in combination regimens. (a) The OR of rash for all grades checked using the random effect (RE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). (b) The OR of rash for all grades checked using the random effect (RE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out according to the treatment lines (first or second line). (c) The OR of rash for all grades checked using the random effect (RE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on tumor type. (d) The OR of rash for all grades checked using the random effect (RE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on tumor type and immune checkpoint type. (e) The OR of rash for all-grade checked using the random effect (RE) model in Group C (Camrelizumab plus Chemotherapy versus Chemotherapy). (f) The OR of rash for all-grade checked using the random effect (RE) model in Group D (PD-1 or PD-L1 plus Chemotherapy plus Bevacizumab versus Chemotherapy plus Bevacizumab).
$Z=5.71, p<0.00001$; Figures $4(a)-4(d))$, especially for UC ($\mathrm{OR}=5.81, \quad 95 \% \mathrm{CI}: \quad[2.78,12.15] ; \mathrm{I}^{2}=71 \%, \quad Z=4.68$, $p<0.00001$; Figure 4(d)) [71, 87, 90]. Subgroup comparison indicated that the risk of developing rash was higher in the PD-L1 subgroup and first-line subgroup (Figures 4(a)-4(d)), which no statistical subgroup difference could be found. Overall heterogeneity in high degree $\left(\mathrm{I}^{2}=69 \%\right)$ could be found, which was mainly caused by the clinical trial CheckMate $274\left(I^{2}=0 \%\right.$, Figure 4(c); $I^{2}=71 \%$, Figure 4(d)) [87]. The corresponding funnel plots are shown in S Figures 4(a)-4(d).

4 clinical trials in Group F were enrolled for the final analyses [63, 77, 80, 96]. For PD-1/PD-L1 alone, the risk of rash was significantly increased when they were given with chemotherapy ($\mathrm{OR}=2.33,95 \% \mathrm{CI}:[1.15,4.75] ; \mathrm{I}^{2}=81 \%$, $Z=2.34, p=0.02$; Figures 4(e) and 4(f)). Furthermore, this trend was much more pronounced when PD-L1 was combined with chemotherapy ($\mathrm{OR}=4.02,95 \% \mathrm{CI}$: [1.70, $9.53] ; \mathrm{I}^{2}=71 \%, Z=3.16, p=0.002$; Figure $4(\mathrm{e})$) or prescribed as the second line ($\mathrm{OR}=6.50,95 \% \mathrm{CI}$: [3.07, 13.75]; Figure 4(f)). Through subgroup analysis, it could be indicated that the high degree heterogeneity might be caused by the clinical trial JAVELIN Ovarian 200 (Figures 4(e) and 4(f)) [96]. The corresponding funnel plots were constructed and are shown in S Figures 4(e) and 4(f).
3.7. The Incidence Risk of Rash for All Grades in Groups G-N. 6 clinical trials in Group G were used for the final analysis [29, 47, 76, 78, 105, 118]. In 3 clinical trials [47, 78, 118], PD1 or PD-L1 inhibitors were given as the first-line choice, while they were used as second-line or other treatment options in the other 3 trials $[29,76,105]$. Compared with the adoption of PD-1 or PD-L1 inhibitor alone, the combination regimen (PD-1 or PD-L1 plus CTLA-4) significantly increased the risk of developing rash ($\mathrm{OR}=2.39,95 \% \mathrm{CI}$: $[1.67$, 3.42]; $\mathrm{I}^{2}=54 \%, Z=4.79, p<0.00001$; Figures 5(a)-5(c)). Subgroup analysis suggested that the risk of rash in SCLC was higher than that in other tumor types ($\mathrm{OR}=4.61,95 \%$ CI: [2.70, 7.88]; $\mathrm{I}^{2}=0 \%, Z=5.59, p<0.00001$; Figure 5(b)). Furthermore, the incidence risk of rash was higher when PD-1 or PD-L1 together with CTLA-4 was given as the
second-line choice ($\mathrm{OR}=4.31,95 \% \mathrm{CI}:[2.58,7.20] ; \mathrm{I}^{2}=0 \%$, $Z=5.59, p<0.00001$; Figure 5(c)). By comprehensively evaluating the results of various subgroup analyses (Figures 5(a)-5(c)), we inferred that the high degree of heterogeneity might be mainly caused by the clinical trial CheckMate 227 [47]. The corresponding funnel plots are shown in S Figures 5(a)-5(c).

3 clinical trials in Group H (PD-1 or PD-L1 versus CTLA-4) were selected for the final meta-analysis [34, 67, 117]. The risk of developing rash caused by PD-1 was found to be significantly lower than that of CTLA-4 only in the first-line therapy subgroup ($\mathrm{OR}=0.51,95 \% \mathrm{CI}$: [0.26, $0.99] ; \mathrm{I}^{2}=87 \%, Z=1.99, p=0.05$; Figure 5(e)), whereas the overall effect was not statistically significant (OR $=0.73,95 \%$ CI: [0.43, 1.22]; $\mathrm{I}^{2}=86 \%, Z=1.20, p=0.23$; Figure 5(d)). The subgroup analysis suggested that the high heterogeneity might be mainly caused by CheckMate 238 and CheckMate 067 [67, 117]. The corresponding funnel plots are shown in S Figures 5(d) and 5(e).

For chemotherapy alone, PD-1 or PD-L1 together with CTLA-4 (Group I) [47, 94], or together with chemotherapy on this basis (Group J) [93, 95], would significantly increase the risk of developing rash (Figures 5(f) and 5(g)). However, the conclusion was still controversial due to few studies included in those analyses (Figures 5(f) and 5(g)). The corresponding funnel plots are shown in (S Figures 5(f) and $5(\mathrm{~g})$).

For sorafenib (Group K), the risk of developing rash was lower ($\mathrm{OR}=0.60,95 \% \mathrm{CI}$: $[0.41,0.89] ; \mathrm{I}^{2}=0 \%, Z=2.52$, $p=0.01$; Figure 5(h)). When PD-1 or PD-L1 was given with CTLA-4 (Group L), the risk of developing rash was higher than that of CTLA-4 subgroup (OR $=1.43,95 \% \mathrm{CI}$: [1.06, 1.93]; $\mathrm{I}^{2}=0 \%, Z=2.32, p=0.02$; Figure 5(i)). When PD-1 was compared with chemotherapy (Group M), no statistical significant result was found ($\mathrm{OR}=0.87,95 \% \mathrm{CI}$: $[0.25,2.98]$; $\mathrm{I}^{2}=78 \%, Z=0.23, p=0.82$; Figure $\left.5(\mathrm{j})\right)$. The corresponding funnel plots are shown in S Figures 5(k)-5(m).

In 5 of the 6 clinical trials of renal cell carcinoma, the control group was sunitinib [51, 55, 56, 89, 91]. In these 5 clinical trials, we found that PD-1 or PD-L1 increased the incidence risk of rash regardless of which antitumor drug was used in combination [51, 55, 56, 89, 91]. However, the

Figure 4: Forest plots of different comparison groups. (a) The OR of rash for all grades checked using the random effect (RE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). (b) The OR of rash for all grades checked using the random effect (RE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out according to the treatment lines (first or second line). (c) The OR of rash for all grades checked using the random effect (RE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out based on tumor type. (d) The OR of rash for all grades checked using the random effect (RE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out based on tumor type and I2 value. (e) The OR of rash for all grades checked using the random effect (RE) model in Group F (PD-1 or PD-L1 plus Chemotherapy VS PD-1 or PD-L1): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). (f) The OR of rash for all grades checked using the random effect (RE) model in Group F (PD-1 or PD-L1 plus Chemotherapy versus PD-1 or PD-L1): subgroup analyses were carried out according to the treatment lines (first or second line).

FIGURE 5: Forest plots of comparison groups (Groups G-M). (a) The OR of rash for all grades checked using the random effect (RE) model in Group G (PD-1 or PD-L1 plus CTLA-4 versus PD-1 or PD-L1): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). (b) The OR of rash for all grades checked using the random effect (RE) model in Group G (PD-1 or PD-L1 plus CTLA-4 versus PD-1 or PD-L1): subgroup analyses were carried out based on tumor type. (c) The OR of rash for all grades checked using the random effect (RE) model in Group G (PD-1 or PD-L1 plus CTLA-4 versus PD-1 or PD-L1): subgroup analyses were carried out according to the treatment lines (first or second line). (d) The OR of rash for all grades checked using the random effect (RE) model in Group H (PD-1 or PD-L1 versus CTLA-4). (e) The odds ratio of rash for all grades calculated by the random effect (RE) model in Group H (PD-1 or PD-L1 versus CTLA-4): subgroup analyses were carried out according to the treatment lines (first or second line). (f) The OR of rash for all-grade checked using the random effect (RE) model in Group I (PD-1 or PD-L1 plus CTLA-4 versus Chemotherapy): subgroup analyses were carried out based on tumor type. (g) The OR of rash for all grades checked using the random effect (RE) model in Group J (PD-1 or PD-L1 plus CTLA-4 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on treatment regimens. (h) The OR of rash for all grades checked using the random effect (RE) model in Group K (PD-1 or PD-L1 plus Bevacizumab versus Sorafenib): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). (i) The odds ratio of rash for all-grade checked using the random effect (RE) model in Group L (PD-1 or PD-L1 plus CTLA-4 versus CTLA-4). (j) The odds ratio of rash for all grades checked using the random effect (RE) model in Group M (PD-1 or PD-L1 versus Methotrexate/docetaxel/cetuximab).
meta-analysis could not be performed due to the lack of consistency in the experimental groups in these 5 clinical trials $[51,55,56,89,91]$. The types of combination therapy regimens involving PD-1 or PD-L1 have been increasingly used in different tumors $[26,34,57,63,65$, $69,72,81,83,88,95,101,104,105,109,110]$. In those combined treatment regimens, rash has been reported, which further verified the correlation between PD-1 or PDL1 and the incidence of rash $[26,34,57,63,65,69$, $72,81,83,88,95,101,104,105,109,110]$.
3.8. Risk Assessments of Rash for Grades 3-5. The risk of developing rash for grades 3-5 was reported in 18 clinical trials (Group A) [22-24, 26, 32, 47, 54, 59, 61, 68, 70, 72, 77, 78, 82, 86, 92, 96]. Through analyses, statistically significant result was found only in NSCLC ($O R=2.51,95 \% \mathrm{CI}$: [1.03, 6.11]; $\mathrm{I}^{2}=0 \%, \quad Z=2.02, \quad p=0.04$; Figure 6(a)) [22, 24, 47, 59, 61, 64, 68, 92], while the overall effect across all tumor types was not statistically different ($\mathrm{OR}=1.73,95 \%$ CI: $[0.91,3.31] ; \mathrm{I}^{2}=0 \%, Z=1.66, p=0.10$; Figure 6(a)).

Similar to the risk of rash for all grades in Group B, the risk of developing rash was significantly higher than that of the control chemotherapy group $[27,36,38,41,45,53$, $66,73-75,79,80,84,86,96,101,103,107,111,112]$, when PD-1 or PD-L1 was given together with chemotherapy (OR $=2.61,95 \% \mathrm{CI}:[1.67,4.08] ; \mathrm{I}^{2}=0 \%, Z=4.20, p<0.0001$; Figure 6(b)), especially for ovarian cancer ($\mathrm{OR}=4.34,95 \%$ CI: [1.89, 9.96]; $\mathrm{I}^{2}=0 \%, Z=3.46, p=0.0005$; Figure 6(b)) [96, 101, 103]. The positive result could also be found in Group C (OR $=3.42,95 \%$ CI: [1.49, 7.85]; $\mathrm{I}^{2}=0 \%, Z=2.89$, $p=0.004$; Figure 6(c)), Group G (OR $=3.39,95 \%$ CI: [1.54, 7.49]; $\mathrm{I}^{2}=0 \%, Z=3.02, p=0.002$; Figure 6(d)), and Group J (OR $=9.64,95 \% \mathrm{CI}:[1.22,76.16] ; \mathrm{I}^{2}=0 \%, Z=2.15, p=0.03$; Figure 6(i)) $[39,44,47,77,78,81,90,91,93,95,98,105,117]$. However, when PD-1 or PD-L1 plus bevacizumab were compared with sorafenib, the risk of developing rash was lower than that of the control group ($\mathrm{OR}=0.13,95 \% \mathrm{CI}$: [0.02, 0.83]; $\mathrm{I}^{2}=0 \%, Z=2.16, p=0.03$; Figure 6(h)). In the other groups, no statistical significant results could be found (Figures 6(e)-6(g)). All the corresponding funnel plots were constructed and are shown in S Figures 6(a)-6(i).

4. Discussion

Among several therapeutic options available, cancer immunotherapy is extremely successful in increasing tumor patients' survival rates, particularly with PD-1/PD-L1 inhibitors [2]. Currently, PD-1 or PD-L1 inhibitors are extensively employed in the treatment of many types of malignancies, and the combination regimens using PD-1 or PD-L1 inhibitors are diversified [22-25], [26-30], [31-35], [36-40], [41-45], [46-50], [51-55], [56-60], [61-65], [66-70], [71-75], [76-80], [81-85], [86-90], [91-95], [96-110], [111-115], [116, 117], [118]. As with cetuximab [119, 120], rash associated with therapeutic benefit was one of the most frequently reported skin toxicities associated with PD-1 or PD-L1 inhibitors [13-15]. The correlation between rash and PD-1 or PD-L1 inhibitors, on the other
hand, has to be further clarified in detail, particularly in diverse combination treatment regimens. Therefore, a systematic review and meta-analysis were conducted with the guidelines of the PRISMA criteria (Figure 1) [16].

After quality screening (S Figure 1), 86 clinical trials with complete data were adopted for the final comprehensive analyses [22-25], [26-30], [31-35], [36-40], [41-45], [46-50], [51-55], [56-60], [61-65], [66-70], [71-75], [76-80], [81-85], [86-90], [91-95], [96-110], [111-115], [116, 117], which avoided the high risk of attrition bias. With the development of clinical research, PD-1 or PD-L1 inhibitors have been increasingly prescribed as the first-line antitumor options $(n=51)$ [23, 27, 28], [31, 36-38], [40-42], [44-48], [50, 53], [55-58], [61-68], [72, 73], [75, 77-80], [83-86], [88-95], [98-104], [106, 107, 109], [111, 112], [114-117], especially for PD-1 or PD-L1 combined regimens $[27,36,38,41,45,53,66,73,75,79,80,84,86,99$, $101,103,107,111,112$], which also increase the difficulty of elucidating the relationship between PD-1 or PD-L1 and the risk of rash. Therefore, it is necessary for us to conduct this meta-analysis.

According to the compositions of all the control groups, all the enrolled clinical trials were firstly classified into different groups (Groups A-N), and then, analyses were carried out for each group (Figures 2-6 and S Figures 2-6). Through the analyses, it was found that PD-1 or PD-L1 inhibitors raised the risk of developing rash (Figure 2, Figures 4(a)-4(d), and Figure 6(a)), whether compared with chemotherapy or placebo alone (Group A and Group E) [22-24, 26, 32, 33, 39, 43, 44, 47, 49, 54, 59, 61, 68, 71, 77, 78, 80, 82, 86, 87, 90-92, 96-98, 105, 108]. However, this effect was weaker than CTLA-4 with no statistical significance (Group H) (Figures 5(d)-5(e) and 6(f)) [34, 67, 117]. In the combined antitumor treatment regimens containing PD-1 or PD-L1 inhibitors (Group B, Group C, Group D, and Group L) $[27,31,36,37,41,45,53,66,73-75,77,79$, $80,84,86,95,96,99-101,103,106,107,111,112,117]$, it was also found that the risk of rash was increased due to the involvement of PD-1 or PD-L1 inhibitors (Figure 3, Figures 5(a)-5(c), Figure 6(b), S Figure 3, S Figure 5(a)-5(c), and S Figure 6(b)). Similar trend was also found in other PD1 or PD-L1 inhibitor-based combination regimens (Group F, Group G, Group I, and Group G) (Figures 4(e) and 4(f); Figures 5(a)-5(c), 5(f), 5(g), 6(d), 6(e), and 6(i); S Figures 4(e)-4(f); S Figures 5(a)-5(c), 5(f), 5(g), 6(d), 6(e), and 6(i)) $[29,47,63,76-78,80,93-96,105,117]$. In the other clinical trials for which meta-analysis could not be performed, the experimental group of PD-1 or PD-L1 inhibitors involved also indicated an increased risk of rash $[25,26,34,51,55-57,63,65,69,72,81,83,88,89,91$, $95,101,104,105,109,110]$. From the above, it could be concluded that the risk of rash would be increased when PD1 or PD-L-1 inhibitors were given alone or together with other antitumor regimens.

For the lack of head-to-head contrast between PD-1 and PD-L1 [22-25], [26-30], [31-35], [36-40], [41-45], [46-50], [51-55], [56-60], [61-65], [66-70], [71-75], [76-80], [81-85], [86-90], [91-95], [96-110], [111-115], [116, 117], we tried to investigate the differences between PD-1 and PD-

(a)

(c)

(e)

(i)

FIGURE 6: Forest plots of comparison groups for grades 3-5. (a) The OR of rash for grades 3-5 checked using the random effect (RE) model in Group A (PD-1 or PD-L1 versus Chemotherapy): subgroup analyses were carried out based on tumor types. (b) The OR of rash for grades $3-5$ checked using the random effect (RE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on tumor types. (c) The OR of rash for grades 3-5 checked using the random effect (RE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out based on tumor types. (d) The OR of rash for grades 3-5 checked using the random effect (RE) model in Group G (PD-1 or PD-L1 plus CTLA-4 versus PD-1 or PD-L1): subgroup analyses were carried out based on tumor types. (e) The OR of rash for grades $3-5$ checked using the random effect (RE) model in Group F (PD-1 or PD-L1 plus Chemotherapy versus PD-1 or PD-L1): subgroup analyses were carried out based on the types of immune checkpoint inhibitors (PD-1 or PD-L1). (f) The OR of rash for grades 3-5 checked using the random effect (RE) model in Group H (PD-1 or PD-L1 versus CTLA-4). (g) The odds ratio of rash for grades 3-5 checked using the random effect (RE) model in Group M (PD-1 or PD-L1 versus Methotrexate/docetaxel/cetuximab). (h) The OR of rash for grades $3-5$ checked using the random effect (RE) model in Group K (PD-1 or PD-L1 plus Bevacizumab versus Sorafenib): subgroup analyses were carried out based on the name of immune checkpoint inhibitors. (i) The OR of rash for grades $3-5$ checked using the random effect (RE) model in Group J (PD-1 or PD-L1 plus CTLA-4 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on treatment regimens.

L1 subgroups and indirectly observe the differences of rash risk. Although the analyses indicated that the risk of rash differed between PD-1 and PD-L1-related subgroups (Figures 2(a), 3(a) and 4(a)), no statistically significant results were found due to the involvement of PD-1 or PD-L1 inhibitors [22-24], [26, 27, 32], [33, 37, 39], [41, 43-45], [47, 49, 53], [54, 59, 61, 66], [68, 71-74], [77-80], [82, 84, 86], [87, 90-92], [95-98], [100, 101, 103], [105, 107, 108], [111, 112]. However, compared with the PD-1 involved subgroup (Figure 4(e)), the participation of chemotherapy significantly increased the risk of rash in the PD-L1 subgroup ($p=0.03$) [63, 77, 80, 96].

The similar strategy was used to elucidate the influence of PD-1 or PD-L1 involved treatment lines on the risk of developing rash (Figures 2(b), 3(b), 4(b), 4(f), 5(c), and $5(e))$. Subgroup studies revealed an increased risk of rash when PD-1 or PD-L1 inhibitors were given together with other antitumor agents as the second-line choice (Figure 3(b), 4(f), and 5(c)) [27, 29, 37, 41, 45, 47, 53, 63, 66, $73,74,76-80,84,86,95,96,100,101,103,105$, $107,111,112,117$]. When PD-1 or PD-L1 inhibitors were given alone, this incidence trend was only seen in Group H (Figure 5(e)) [34, 67, 117]. The reasons leading to the above results might be related to the combined treatment drugs, and the specific reasons were still need to be further studied.

The formation of heterogeneity is inevitable in the course of detailed examination (Figures 2-6). By conducting adequate subgroup analyses and comparing the results of rash between all grades and grades $3-5$, the clinical trials responsible for the heterogeneity were identified, and further analyses revealed that the heterogeneity might be primarily due to the data themselves (Figure 6), implying that it would have little effect on the overall analysis results. Additionally, no noticeable publication bias was detected using funnel plots (S Figures 2-6). This further increased the reliability and rigor of this meta-analysis.

Although the correlation between skin toxicities and tumor regression had been reported frequently in some studies [10-12], no such data were found in all the enrolled clinical trials [22-25], [26-30], [31-35], [36-40], [41-45], [46-50], [51-55], [56-60], [61-65], [66-70], [71-75], [76-80], [81-85], [86-90], [91-95], [96-110], [111-115], [116, 117]. Therefore, to elucidate the correlation between the rash risk and tumor prognosis, more and more relevant clinical trials should be put into practice [13-15]. Furthermore, researchers needed to pay more attention to this kind of data and report it in a timely manner. In clinical work, we need to use treatment-related rashes cautiously to judge the treatment response and prognosis of patients.

5. Conclusions

The risk of developing rash would be enhanced whether PD1 or PD-L1 inhibitors were given alone or together with others. Furthermore, the incidence risk of rash appeared to be higher when PD-1 or PD-L1 inhibitors together with other antitumor drugs were given as the second-line choice. No statistically significant differences in the results of the rash between the PD-1 and PD-L1 subgroups were found due to the involvement of PD-1 or PD-L1 inhibitors.

Abbreviations

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PICOS: Participants, interventions, comparisons, outcomes, and study design
RCT: Randomized controlled trial
N/A: Not available
PD-1: Programmed cell death-1
PD-L1: Programmed cell death ligand 1
HR: Hazard ratios

OR:	Odds ratio
RD:	Risk difference
CI:	Confidence interval
RE:	Random effect
NSCLC:	Non-small-cell lung cancer
SCLC:	Small-cell lung cancer
NC:	Nasopharyngeal carcinoma
OC:	Ovarian cancer
TNBC:	Triple-negative breast cancer
HNSCC:	Head and neck squamous cell carcinoma
UC:	Urothelial carcinoma
GC/GJC:	Gastric or gastro-oesophageal junction cancer
RCC:	Renal cell carcinoma
ESCC:	Esophageal squamous cell carcinoma.

Data Availability

The data used to support the findings of this study are included within the article.

Ethical Approval

The study was not carried out in any human subjects, and no ethical issues were involved; hence, ethical approval was not needed.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' Contributions

Yuan Tian designed and wrote the draft of the manuscript. Chi Zhang, Qi Dang, Qian Liu, and Kaiyong Wang were responsible for PubMed search and data collection; all the data selection and analyses were carried out by Yuan Tian, Hongmei Liu, Heli Shang, Junyan Zhao, Yuedong Xu, Tong Wu , and Wei Liu; all authors reviewed the final draft and approved its submission. Yuan Tian was responsible for all the disagreement, controversy, and inconsistency. Mohammed Safi was appointed for grammar and sentence modification. Yuan Tian, Chi Zhang, Qi Dang, and Kaiyong Wang contributed equally to this work.

Acknowledgments

This study was funded by Medicine and Health Technology Development Plan of Shandong Province (2017WS878, Hongmei Liu).

Supplementary Materials

S Figure 1: a summary table of review authors' judgements for each risk of bias item for each study. S Figure 2: funnel plots of comparison in Group A (PD-1 or PD-L1 versus Chemotherapy). A: the OR of rash for all-grade checked using the fixed effect (FE) model: Subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). B: the OR of rash for all-grade checked using the fixed effect (FE) model: subgroup
analyses were carried out according to the treatment lines (first or second line). C: the OR of rash for all grades checked using the fixed effect (FE) model: Subgroup analyses were carried out based on drug name, tumor type, and immune checkpoint type. D: the OR of rash for all grades checked using the fixed effect (FE) model: subgroup analyses were carried out based on drug name, tumor type, immune checkpoint type, and I^{2} value. S Figure 3: funnel plots of comparison in combination regimens. A: the odds ratio of rash for all grades checked using the fixed effect (FE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). B: the odds ratio of rash for allgrade checked using the fixed effect (FE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out according to the treatment lines (first or second line). C: the odds ratio of rash for all grades checked using the fixed effect (FE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on tumor type. D : the odds ratio of rash for all grades checked using the fixed effect (FE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on tumor type and immune checkpoint type. E: the odds ratio of rash for all grades checked using the fixed effect (FE) model in Group C (Camrelizumab plus Chemotherapy versus Chemotherapy). F: the odds ratio of rash for all-grade checked using the fixed effect (FE) model in Group D (PD-1 or PD-L1 plus Chemotherapy plus Bevacizumab versus Chemotherapy plus Bevacizumab). S Figure 4: funnel plots of different comparisons. A: the OR of rash for all-grade checked using the fixed effect (FE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). B: the OR of rash for all grades checked using the fixed effect (FE) model in Group E (PD-1 or PDL1 versus Placebo): subgroup analyses were carried out according to the treatment lines (first or second line). C: the OR of rash for all grades checked using the fixed effect (FE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out based on tumor type. D: the OR of rash for all grades checked using the fixed effect (FE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out based on tumor type, and I^{2} value. E: the OR of rash for all grades checked using the fixed effect (FE) model in Group F (PD-1 or PD-L1 plus Chemotherapy versus PD-1 or PD-L1): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). F: the OR of rash for all grades checked using the fixed effect (FE) model in Group F (PD-1 or PD-L1 plus Chemotherapy versus PD-1 or PD-L1): subgroup analyses were carried out according to the treatment lines (first or second line). S Figure 5: funnel plots of comparison groups (Groups G-M). A: the OR of rash for all grades checked using the fixed effect (FE) model in Group G (PD-1 or PD-L1 plus CTLA-4 versus PD-1 or PD-L1): subgroup analyses were carried out according to
the types of immune checkpoint inhibitors (PD-1 or PDL1). B: the OR of rash for all grades checked using the fixed effect (FE) model in Group G (PD-1 OR PD-L1 plus CTLA4 versus PD-1 or PD-L1): subgroup analyses were carried out based on tumor type. C: the OR of rash for all grades checked using the fixed effect (FE) model in Group G (PD-1 or PD-L1 plus CTLA-4 versus PD-1 or PD-L1): subgroup analyses were carried out according to the treatment lines (first or second line). D: the OR of rash for all grades checked using the fixed effect (FE) model in Group H (PD-1 or PD-L1 versus CTLA-4). E: the OR of rash for all grades checked using the fixed effect (FE) model in Group H (PD-1 or PD-L1 versus CTLA-4): subgroup analyses were carried out according to the treatment lines (first or second line). F: the OR of rash for all grades checked using the fixed effect (FE) model in Group I (PD-1 or PD-L1 plus CTLA-4 versus Chemotherapy): subgroup analyses were carried out based on tumor type. G: the OR of rash for all grades checked using the fixed effect (FE) model in Group J (PD-1 or PDL1 plus CTLA-4 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on treatment regimens. H: the OR of rash for all grades checked using the fixed effect (FE) model in Group K (PD-1 or PDL1 plus Bevacizumab versus Sorafenib): subgroup analyses were carried out according to the types of immune checkpoint inhibitors (PD-1 or PD-L1). I: the OR of rash for all grades checked using the fixed effect (FE) model in Group L (PD-1 or PD-L1 plus CTLA-4 versus CTLA-4). J: the OR of rash for all grades checked using the fixed effect (FE) model in Group M (PD-1 or PD-L1 versus Methotrexate/docetaxel/cetuximab). S Figure 6: funnel plots of comparison groups for grades 3-5. A: the OR of rash for grades 3-5 checked using the fixed effect (FE) model in Group A (PD-1 or PD-L1 versus Chemotherapy): subgroup analyses were carried out based on tumor types. B: the OR of rash for grades 3-5 checked using the fixed effect (FE) model in Group B (PD-1 or PD-L1 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on tumor types. C: The OR of rash for grades 3-5 checked using the fixed effect (FE) model in Group E (PD-1 or PD-L1 versus Placebo): subgroup analyses were carried out based on tumor types. D: the OR of rash for grades 3-5 checked using the fixed effect (FE) model in Group G (PD-1 or PD-L1 plus CTLA-4 versus PD-1 or PD-L1): subgroup analyses were carried out based on tumor types. E: the OR of rash for grades 3-5 checked using the fixed effect (FE) model in Group F (PD-1 or PD-L1 plus Chemotherapy versus PD-1 or PD-L1): subgroup analyses were carried out based on the types of immune checkpoint inhibitors (PD-1 or PD-L1). F: the OR of rash for grades 3-5 checked using the fixed effect (FE) model in Group H (PD-1 or PD-L1 versus CTLA-4). G: the OR of rash for grades 3-5 checked using the fixed effect (FE) model in Group M (PD-1 or PDL1 versus Methotrexate/docetaxel/cetuximab). H: the OR of rash for grades 3-5 checked using the fixed effect (FE) model in Group K (PD-1 or PD-L1 plus Bevacizumab versus Sorafenib): subgroup analyses were carried out based on the name of immune checkpoint inhibitors. I: the OR of rash for grades 3-5 checked using the fixed effect
(FE) model in Group J (PD-1 or PD-L1 plus CTLA-4 plus Chemotherapy versus Chemotherapy): subgroup analyses were carried out based on treatment regimens. (Supplementary Materials)

References

[1] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, "Cancer statistics, 2021," CA: A Cancer Journal for Clinicians, vol. 71, no. 1, pp. 7-33, 2021.
[2] J. C. Del Paggio, "Cancer immunotherapy and the value of cure," Nature Reviews Clinical Oncology, vol. 15, no. 5, pp. 268-270, 2018.
[3] L. B. Kennedy and A. K. S. Salama, "A review of cancer immunotherapy toxicity," CA: A Cancer Journal for Clinicians, vol. 70, no. 2, pp. 86-104, 2020.
[4] Y. Tian, R. Li, Y. Liu et al., "The risk of immune-related thyroid dysfunction induced by PD-1/PD-L1 inhibitors in cancer patients: an updated systematic review and metaanalysis," Frontiers in Oncology, vol. 11, Article ID 667650, 2021.
[5] Y. Tian, A. Huang, Y. Yang et al., "Assessment of the clinical trials safety profile of PD-1/PD-L1 inhibitors among patients with cancer: an updated systematic review and meta-analysis," Frontiers in Oncology, vol. 11, Article ID 662392, 2021.
[6] Y. Tian, A. Gao, Q. Wen et al., "Immune-related neurological toxicities of PD-1/PD-L1 inhibitors in cancer patients: a systematic review and meta-analysis," Frontiers in Immunology, vol. 11, Article ID 595655, 2020.
[7] H. Liu, D. Xu, W. Wang et al., "Systematic assessment of risk of fever in solid tumor patients treated with PD-1/PD-L1 inhibitors: a systematic review and meta-analysis," Frontiers in Oncology, vol. 10, Article ID 570080, 2020.
[8] Y. Tian, Z. Zhang, X. Yang et al., "The risk ratio of immunerelated colitis, hepatitis, and pancreatitis in patients with solid tumors caused by PD-1/PD-L1 inhibitors: a systematic review and meta-analysis," Frontiers in Oncology, vol. 10, p. 261, 2020.
[9] Z. Si, S. Zhang, X. Yang et al., "The association between the incidence risk of peripheral neuropathy and PD-1/PD-L1 inhibitors in the treatment for solid tumor patients: a systematic review and meta-analysis," Frontiers in Oncology, vol. 9, p. 866, 2019.
[10] F. Berner, D. Bomze, S. Diem et al., "Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer," JAMA Oncology, vol. 5, no. 7, pp. 1043-1047, 2019.
[11] Z. Khan, F. Di Nucci, A. Kwan et al., "Polygenic risk for skin autoimmunity impacts immune checkpoint blockade in bladder cancer," Proceedings of the National Academy of Sciences, vol. 117, no. 22, pp. 12288-12294, 2020.
[12] V. Sibaud, "Dermatologic reactions to immune checkpoint inhibitors," American Journal of Clinical Dermatology, vol. 19, no. 3, pp. 345-361, 2018.
[13] X. Yang, J. Lin, D. Wang, L. Zhang, and H. Zhao, "Immunerelated adverse events (irAEs) predict for clinical efficacy: focusing on organ-specific irAEs and the critical role of steroids," Journal of Thoracic Oncology, vol. 14, no. 10, pp. e233-e234, 2019.
[14] J. Remon, N. Reguart, E. Auclin, and B. Besse, "Immunerelated adverse events and outcomes in patients with advanced non-small cell lung cancer: a predictive marker of efficacy?" Journal of Thoracic Oncology, vol. 14, no. 6, pp. 963-967, 2019.
[15] N. Pier Vitale, G. R. Pond, S. Abou Alaiwi et al., "Association of immune-related adverse events (irAEs) with clinical benefit in patients with metastatic urothelial carcinoma (mUC) treated with immune-checkpoint inhibitors (ICIs)," Journal of Clinical Oncology, vol. 37, no. 15, Article ID e16038, 2019.
[16] M. J. Page, J. E. McKenzie, P. M. Bossuyt et al., "The PRISMA 2020 statement: an updated guideline for reporting systematic reviews," $B M J$, vol. 372 , no. 71, 2021.
[17] J. A. C. Sterne, J. Savović, M. J. Page et al., "RoB 2: a revised tool for assessing risk of bias in randomised trials," $B M J$, vol. 366, Article ID 14898, 2019.
[18] M. Egger, G. Smith, M. Schneider, and C. Minder, "Bias in meta-analysis detected by a simple, graphical test," $B M J$, vol. 315, no. 7109, pp. 629-634, 1997.
[19] J. P. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, "Measuring inconsistency in meta-analyses," BMJ, vol. 327, no. 7414, pp. 557-560, 2003.
[20] T. B. Huedo-Medina, J. Sánchez-Meca, F. Marín-Martínez, and J. Botella, "Assessing heterogeneity in meta-analysis: Q statistic or I ${ }^{2}$ index?" Psychological Methods, vol. 11, no. 2, pp. 193-206, 2006.
[21] E. C. Norton, B. E. Dowd, and M. L. Maciejewski, "Odds ratios-current best practice and use," JAMA, vol. 320, no. 1, pp. 84-85, 2018.
[22] H. Borghaei, L. Paz-Ares, L. Horn et al., "Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer," New England Journal of Medicine, vol. 373, no. 17, pp. 1627-1639, 2015.
[23] J. S. Weber, S. P. D'Angelo, D. Minor et al., "Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial," The Lancet Oncology, vol. 16, no. 4, pp. 375-384, 2015.
[24] J. Brahmer, K. L. Reckamp, P. Baas et al., "Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer," New England Journal of Medicine, vol. 373, no. 2, pp. 123-135, 2015.
[25] R. J. Motzer, B. Escudier, D. F. McDermott et al., "Nivolumab versus everolimus in advanced renal-cell carcinoma," New England Journal of Medicine, vol. 373, no. 19, pp. 1803-1813, 2015.
[26] R. S. Herbst, P. Baas, D. W. Kim et al., "Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial," The Lancet, vol. 387, no. 10027, pp. 1540-1550, 2016.
[27] C. J. Langer, S. M. Gadgeel, H. Borghaei et al., "Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study," The Lancet Oncology, vol. 17, no. 11, pp. 1497-1508, 2016.
[28] M. M. Awad, S. M. Gadgeel, H. Borghaei et al., "Long-term overall survival from KEYNOTE-021 cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous NSCLC," Journal of Thoracic Oncology, vol. 16, no. 1, pp. 162-168, 2021.
[29] S. J. Antonia, J. A. López-Martin, J. Bendell et al., "Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, openlabel, phase $1 / 2$ trial," The Lancet Oncology, vol. 17, no. 7, pp. 883-895, 2016.
[30] R. L. Ferris, G. Blumenschein, J. Fayette et al., "Nivolumab for recurrent squamous-cell carcinoma of the head and neck," New England Journal of Medicine, vol. 375, no. 19, pp. 1856-1867, 2016.
[31] F. S. Hodi, J. Chesney, A. C. Pavlick et al., "Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial," The Lancet Oncology, vol. 17, no. 11, pp. 1558-1568, 2016.
[32] J. Bellmunt, R. de Wit, D. J. Vaughn et al., "Pembrolizumab as second-line therapy for advanced urothelial carcinoma," New England Journal of Medicine, vol. 376, no. 11, pp. 1015-1026, 2017.
[33] Y. K. Kang, N. Boku, T. Satoh et al., "Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial," The Lancet, vol. 390, no. 10111, pp. 2461-2471, 2017.
[34] J. Schachter, A. Ribas, G. V. Long et al., "Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006)," The Lancet, vol. 390, no. 10105, pp. 1853-1862, 2017.
[35] S. J. Antonia, A. Villegas, D. Daniel et al., "Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer," New England Journal of Medicine, vol. 377, no. 20, pp. 1919-1929, 2017.
[36] M. A. Socinski, R. M. Jotte, F. Cappuzzo et al., "Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC," New England Journal of Medicine, vol. 378, no. 24, pp. 2288-2301, 2018.
[37] L. Paz-Ares, A. Luft, D. Vicente et al., "Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer," New England Journal of Medicine, vol. 379, no. 21, pp. 2040-2051, 2018.
[38] L. Horn, A. S. Mansfield, A. Szczęsna et al., "First-line atezolizumab plus chemotherapy in extensive-stage smallcell lung cancer," New England Journal of Medicine, vol. 379, no. 23, pp. 2220-2229, 2018.
[39] S. J. Antonia, A. Villegas, D. Daniel et al., "Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC," New England Journal of Medicine, vol. 379, no. 24, pp. 2342-2350, 2018.
[40] L. Gandhi, D. Rodríguez-Abreu, S. Gadgeel et al., "Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer," New England Journal of Medicine, vol. 378, no. 22, pp. 2078-2092, 2018.
[41] S. Gadgeel, D. Rodríguez-Abreu, G. Speranza et al., "Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer," Journal of Clinical Oncology, vol. 38, no. 14, pp. 1505-1517, 2020.
[42] D. Rodríguez-Abreu, S. F. Powell, M. J. Hochmair et al., "Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: protocol-specified final analysis from KEYNOTE-189," Annals of Oncology, vol. 32, no. 7, pp. 881-895, 2021.
[43] T. Hida, R. Kaji, M. Satouchi et al., "Atezolizumab in Japanese patients with previously treated advanced non-smallcell lung cancer: a subgroup Analysis of the phase 3 OAK
study," Clinical Lung Cancer, vol. 19, no. 4, pp. e405-e415, 2018.
[44] A. M. M. Eggermont, C. U. Blank, M. Mandala et al., "Adjuvant pembrolizumab versus placebo in resected stage III melanoma," New England Journal of Medicine, vol. 378, no. 19, pp. 1789-1801, 2018.
[45] P. Schmid, S. Adams, H. S. Rugo et al., "Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer," New England Journal of Medicine, vol. 379, no. 22, pp. 2108-2121, 2018.
[46] L. A. Emens, S. Adams, C. H. Barrios et al., "First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis," Annals of Oncology, vol. 32, no. 8, pp. 983-993, 2021.
[47] M. D. Hellmann, T. E. Ciuleanu, A. Pluzanski et al., "Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden," New England Journal of Medicine, vol. 378, no. 22, pp. 2093-2104, 2018.
[48] M. Reck, T. E. Ciuleanu, J. S. Lee et al., "First-line nivolumab plus ipilimumab versus chemotherapy in advanced NSCLC with 1% or greater tumor PD-L1 expression: patient-reported outcomes from CheckMate 227 Part 1," Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, vol. 16, no. 4, pp. 665-676, 2021.
[49] T. Powles, I. Durán, M. S. van der Heijden et al., "Atezolizumab versus chemotherapy in patients with platinumtreated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial," The Lancet, vol. 391, no. 10122, pp. 748-757, 2018.
[50] L. Paz-Ares, M. Dvorkin, Y. Chen et al., "CASPIAN investigators. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial," Lancet, vol. 394, no. 10212, pp. 1929-1939, 2019.
[51] R. J. Motzer, K. Penkov, J. Haanen et al., "Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma," New England Journal of Medicine, vol. 380, no. 12, pp. 1103-1115, 2019.
[52] R. J. Motzer, P. B. Robbins, T. Powles et al., "Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial," Nature Medicine, vol. 26, no. 11, pp. 1733-1741, 2020.
[53] H. West, M. McCleod, M. Hussein et al., "Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial," The Lancet Oncology, vol. 20, no. 7, pp. 924-937, 2019.
[54] K. Kato, B. C. Cho, M. Takahashi et al., "Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial," The Lancet Oncology, vol. 20, no. 11, pp. 1506-1517, 2019.
[55] R. J. Motzer, B. I. Rini, D. F. McDermott et al., "Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase

3 trial," The Lancet Oncology, vol. 20, no. 10, pp. 1370-1385, 2019.
[56] B. I. Rini, T. Powles, M. B. Atkins et al., "Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial," The Lancet, vol. 393, no. 10189, pp. 2404-2415, 2019.
[57] R. J. Sullivan, O. Hamid, R. Gonzalez et al., "Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients," Nature Medicine, vol. 25, no. 6, pp. 929-935, 2019.
[58] M. D. Hellmann, L. Paz-Ares, R. Bernabe Caro et al., "Nivolumab plus ipilimumab in advanced non-small-cell lung cancer," New England Journal of Medicine, vol. 381, no. 21, pp. 2020-2031, 2019.
[59] Y. L. Wu, S. Lu, Y. Cheng et al., "Nivolumab versus docetaxel in a predominantly Chinese patient population with previously treated advanced NSCLC: CheckMate 078 randomized phase III clinical trial," Journal of Thoracic Oncology, vol. 14, no. 5, pp. 867-875, 2019.
[60] E. E. W. Cohen, D. Soulières, C. Le Tourneau et al., "KEYNOTE-040 investigators. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEY-NOTE-040): a randomised, open-label, phase 3 study," Lancet, vol. 393, no. 10167, pp. 156-167, 2019.
[61] T. S. K. Mok, Y. L. Wu, I. Kudaba et al., "KEYNOTE-042 Investigators. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial," Lancet, vol. 393, no. 10183, pp. 1819-1830, 4 May 2019.
[62] Y. L. Wu, L. Zhang, Y. Fan et al., "Randomized clinical trial of pembrolizumab vs. chemotherapy for previously untreated Chinese patients with PD-L1-positive locally advanced or metastatic non-small-cell lung cancer: KEYNOTE-042 China Study," International Journal of Cancer, vol. 148, no. 9, pp. 2313-2320, 20211.
[63] B. Burtness, K. J. Harrington, R. Greil et al., "KEYNOTE-048 Investigators. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study," Lancet, vol. 394, no. 10212, pp. 1915-1928, 2019.
[64] R. S. Finn, S. Qin, M. Ikeda et al., "Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma," New England Journal of Medicine, vol. 382, no. 20, pp. 1894-1905, 2020.
[65] R. Gutzmer, D. Stroyakovskiy, H. Gogas et al., "Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial," The Lancet, vol. 395, no. 10240, pp. 1835-1844, 2020.
[66] E. A. Mittendorf, H. Zhang, C. H. Barrios et al., "Neoadjuvant atezolizumab in combination with sequential nabpaclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triplenegative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial," The Lancet, vol. 396, no. 10257, pp. 1090-1100, 2020.
[67] P. A. Ascierto, M. Del Vecchio, M. Mandalá et al., "Adjuvant nivolumab versus ipilimumab in resected stage IIIB-C and stage IV melanoma (CheckMate 238): 4-year results from a
multicentre, double-blind, randomised, controlled, phase 3 trial," The Lancet Oncology, vol. 21, no. 11, pp. 1465-1477, 2020.
[68] R. S. Herbst, G. Giaccone, F. de Marinis et al., "Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC," New England Journal of Medicine, vol. 383, no. 14, pp. 1328-1339, 2020.
[69] L. A. Emens, F. J. Esteva, M. Beresford et al., "Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial," The Lancet Oncology, vol. 21, no. 10, pp. 1283-1295, 2020.
[70] J. Huang, J. Xu, Y. Chen et al., "Camrelizumab versus investigator's choice of chemotherapy as second-line therapy for advanced or metastatic oesophageal squamous cell carcinoma (ESCORT): a multicentre, randomised, open-label, phase 3 study," The Lancet Oncology, vol. 21, no. 6, pp. 832-842, 2020.
[71] T. Powles, S. H. Park, E. Voog et al., "Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma," New England Journal of Medicine, vol. 383, no. 13, pp. 1218-1230, 2020.
[72] T. André, K. K. Shiu, T. W. Kim et al., "KEYNOTE-177 investigators. Pembrolizumab in microsatellite-instabilityhigh advanced colorectal cancer," New England Journal of Medicine, vol. 383, no. 23, pp. 2207-2218, 2020.
[73] P. Schmid, J. Cortes, L. Pusztai et al., "Pembrolizumab for early triple-negative breast cancer," New England Journal of Medicine, vol. 382, no. 9, pp. 810-821, 2020.
[74] R. Jotte, F. Cappuzzo, I. Vynnychenko et al., "Atezolizumab in combination with carboplatin and nab-paclitaxel in advanced squamous NSCLC (IMpower131): results from a randomized phase III trial," Journal of Thoracic Oncology, vol. 15, no. 8, pp. 1351-1360, 2020.
[75] C. Zhou, G. Chen, Y. Huang et al., "Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): a randomised, openlabel, multicentre, phase 3 trial," The Lancet Respiratory Medicine, vol. 9, no. 3, pp. 305-314, 2021.
[76] L. Zimmer, E. Livingstone, J. C. Hassel et al., "Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, placebo-controlled, phase 2 trial," The Lancet, vol. 395, no. 10236, pp. 1558-1568, 2020.
[77] M. D. Galsky, J. Á. A. Arija, A. Bamias et al., "Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebocontrolled phase 3 trial," The Lancet, vol. 395, no. 10236, pp. 1547-1557, 2020.
[78] T. Powles, M. S. van der Heijden, D. Castellano et al., "DANUBE study investigators. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, open-label, multicentre, phase 3 trial," The Lancet Oncology, vol. 21, no. 12, pp. 1574-1588, 2020.
[79] C. M. Rudin, M. M. Awad, A. Navarro et al., "Pembrolizumab or placebo plus etoposide and platinum as first-
line therapy for extensive-stage small-cell lung cancer: randomized, double-blind, phase III KEYNOTE-604 study," Journal of Clinical Oncology, vol. 38, no. 21, pp. 2369-2379, 2020.
[80] K. Shitara, E. Van Cutsem, Y. J. Bang et al., "Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs. chemotherapy alone for patients with first-line, advanced gastric cancer," JAMA Oncology, vol. 6, no. 10, pp. 1571-1580, 2020.
[81] A. Ribas, A. Algazi, P. A. Ascierto et al., "PD-L1 blockade in combination with inhibition of MAPK oncogenic signaling in patients with advanced melanoma," Nature Communications, vol. 11, no. 1, p. 6262, 2020.
[82] E. P. Winer, O. Lipatov, S. A. Im et al., "Pembrolizumab versus investigator-choice chemotherapy for metastatic tri-ple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial," The Lancet Oncology, vol. 22, no. 4, pp. 499-511, 2021.
[83] N. Y. Lee, R. L. Ferris, A. Psyrri et al., "Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial," The Lancet Oncology, vol. 22, no. 4, pp. 450-462, 2021.
[84] D. Miles, J. Gligorov, F. André et al., "IMpassion131 investigators. Primary results from IMpassion131, a doubleblind, placebo-controlled, randomised phase III trial of firstline paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer," Annals of Oncology, vol. 32, no. 8, pp. 994-1004, 2021.
[85] Z. Ren, J. Xu, Y. Bai et al., "Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, openlabel, phase 2-3 study," The Lancet Oncology, vol. 22, no. 7, pp. 977-990, 2021.
[86] T. Powles, T. Csőszi, M. Özgüroğlu et al., "KEYNOTE-361 Investigators. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial," The Lancet Oncology, vol. 22, no. 7, pp. 931-945, 2021.
[87] D. F. Bajorin, J. A. Witjes, J. E. Gschwend et al., "Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma," New England Journal of Medicine, vol. 384, no. 22, pp. 2102-2114, 2021.
[88] A. Brufsky, S. B. Kim, Ž Zvirbule et al., "A phase II randomized trial of cobimetinib plus chemotherapy, with or without atezolizumab, as first-line treatment for patients with locally advanced or metastatic triple-negative breast cancer (COLET): primary analysis," Annals of Oncology, vol. 32, no. 5, pp. 652-660, 2021.
[89] R. Motzer, B. Alekseev, S. Y. Rha et al., "Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma," New England Journal of Medicine, vol. 384, no. 14, pp. 1289-1300, 2021.
[90] J. Bellmunt, M. Hussain, J. E. Gschwend et al., "Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial," The Lancet Oncology, vol. 22, no. 4, pp. 525-537, 2021.
[91] T. K. Choueiri, T. Powles, M. Burotto et al., "Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma," New England Journal of Medicine, vol. 384, no. 9, pp. 829-841, 2021.
[92] A. Sezer, S. Kilickap, M. Gümüş et al., "Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50% : a multicentre, openlabel, global, phase 3, randomised, controlled trial," Lancet (London, England), vol. 397, no. 10274, pp. 592-604, 2021.
[93] L. Paz-Ares, T. E. Ciuleanu, M. Cobo et al., "First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial," The Lancet Oncology, vol. 22, no. 2, pp. 198-211, 2021.
[94] P. Baas, A. Scherpereel, A. K. Nowak et al., "First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial," The Lancet, vol. 397, no. 10272, pp. 375-386, 2021.
[95] J. W. Goldman, M. Dvorkin, Y. Chen et al., "CASPIAN investigators. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): updated results from a randomised, controlled, open-label, phase 3 trial," The Lancet Oncology, vol. 22, no. 1, pp. 51-65, 2021.
[96] E. Pujade-Lauraine, K. Fujiwara, J. A. Ledermann et al., "Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or plati-num-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study," The Lancet Oncology, vol. 22, no. 7, pp. 1034-1046, 2021.
[97] R. J. Kelly, J. A. Ajani, J. Kuzdzal et al., "Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer," New England Journal of Medicine, vol. 384, no. 13, pp. 1191-1203, 2021.
[98] S. Sugawara, J. S. Lee, J. H. Kang et al., "Nivolumab with carboplatin, paclitaxel, and bevacizumab for first-line treatment of advanced nonsquamous non-small-cell lung cancer," Annals of Oncology, vol. 32, no. 9, pp. 1137-1147, 2021.
[99] Y. Yang, S. Qu, J. Li et al., "Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, doubleblind, phase 3 trial," The Lancet Oncology, vol. 22, no. 8, pp. 1162-1174, 2021.
[100] S. V. Liu, M. Reck, A. S. Mansfield et al., "Updated overall survival and PD-L1 subgroup Analysis of patients with ex-tensive-stage small-cell lung cancer treated with atezolizumab, carboplatin, and etoposide (IMpower133)," Journal of Clinical Oncology, vol. 39, no. 6, pp. 619-630, 20 Feb 2021.
[101] B. J. Monk, N. Colombo, A. M. Oza et al., "Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial," The Lancet Oncology, vol. 22, no. 9, pp. 1275-1289, 2021.
[102] T. K. Choueiri, P. Tomczak, S. H. Park et al., "Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma,"

New England Journal of Medicine, vol. 385, no. 8, pp. 683694, 2021.
[103] K. N. Moore, M. Bookman, J. Sehouli et al., "Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39)," Journal of Clinical Oncology, vol. 39, no. 17, pp. 1842-1855, 2021.
[104] H. Gogas, B. Dréno, J. Larkin et al., "Cobimetinib plus atezolizumab in BRAFV600 wild-type melanoma: primary results from the randomized phase III IMspire170 study," Annals of Oncology, vol. 32, no. 3, pp. 384-394, 2021.
[105] T. K. Owonikoko, K. Park, R. Govindan et al., "Nivolumab and ipilimumab as maintenance therapy in extensive-disease small-cell lung cancer: CheckMate 451," Journal of Clinical Oncology, vol. 39, no. 12, pp. 1349-1359, 2021.
[106] H. Luo, J. Lu, Y. Bai et al., "Effect of camrelizumab vs. placebo added to chemotherapy on survival and progression-free survival in patients with advanced or metastatic esophageal squamous cell carcinoma," JAMA, vol. 326, no. 10, pp. 916-925, 2021.
[107] N. Colombo, C. Dubot, D. Lorusso et al., "Pembrolizumab for persistent, recurrent, or metastatic cervical cancer," New England Journal of Medicine, vol. 385, no. 20, pp. 1856-1867, 11 Nov 2021.
[108] D. A. Fennell, S. Ewings, C. Ottensmeier et al., "Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): a multicentre, double-blind, randomised, phase 3 trial," The Lancet Oncology, vol. 22, no. 11, pp. 1530-1540, 2021.
[109] L. Pusztai, C. Yau, D. M. Wolf et al., "Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/ III breast cancer: results from the adaptively randomized I-SPY2 trial," Cancer Cell, vol. 39, no. 7, pp. 989-998, 2021.
[110] X. Zhu, Y. Cao, W. Liu et al., "RETRACTION: stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial," The Lancet Oncology, vol. 22, no. 8, pp. 1093-1102, 2021.
[111] J. M. Sun, L. Shen, M. A. Shah et al., "Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study," The Lancet, vol. 398, no. 10302, pp. 759-771, 2021.
[112] H. Q. Mai, Q. Y. Chen, D. Chen et al., "Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial," Nature Medicine, vol. 27, no. 9, pp. 1536-1543, 2021.
[113] E. Felip, N. Altorki, C. Zhou et al., "Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial," The Lancet, vol. 398, no. 10308, pp. 1344-1357, 2021.
[114] J. Larkin, V. Chiarion-Sileni, R. Gonzalez et al., "Five-year survival with combined nivolumab and ipilimumab in advanced melanoma," New England Journal of Medicine, vol. 381, no. 16, pp. 1535-1546, 2019.
[115] J. D. Wolchok, V. Chiarion-Sileni, R. Gonzalez et al., "Overall survival with combined nivolumab and ipilimumab
in advanced melanoma," New England Journal of Medicine, vol. 377, no. 14, pp. 1345-1356, 2017.
[116] F. S. Hodi, V. Chiarion-Sileni, R. Gonzalez et al., "Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial," The Lancet Oncology, vol. 19, no. 11, pp. 1480-1492, 2018.
[117] J. Larkin, V. Chiarion-Sileni, R. Gonzalez et al., "Combined nivolumab and ipilimumab or monotherapy in untreated melanoma," New England Journal of Medicine, vol. 373, no. 1, pp. 23-34, 2015.
[118] A. Tsimberidou, A. Drakaki, D. Khalil et al., "An exploratory study of nivolumab (nivo) with or without ipilimumab (ipi) according to the percentage of tumoral CD8 cells in advanced metastatic cancer," Journal of Clinical Oncology, vol. 39, no. 15, p. 2573, 2021.
[119] Y. Balagula, S. Wu, X. Su, and M. E. Lacouture, "The effect of cytotoxic chemotherapy on the risk of high-grade acneiform rash to cetuximab in cancer patients: a meta-analysis," Annals of Oncology, vol. 22, no. 11, pp. 2366-2374, 2011.
[120] E. Van Cutsem, S. Tejpar, D. Vanbeckevoort et al., "Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: the randomized EVEREST study," Journal of Clinical Oncology, vol. 30, no. 23, pp. 2861-2868, 2012.

