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A combined GWAS approach reveals key loci for
socially-affected traits in Yorkshire pigs
Pingxian Wu 1,4, Kai Wang1,4, Jie Zhou1, Dejuan Chen1, Anan Jiang1, Yanzhi Jiang2, Li Zhu1, Xiaotian Qiu3,

Xuewei Li1 & Guoqing Tang 1✉

Socially affected traits in pigs are controlled by direct genetic effects and social genetic

effects, which can make elucidation of their genetic architecture challenging. We evaluated

the genetic basis of direct genetic effects and social genetic effects by combining single-locus

and haplotype-based GWAS on imputed whole-genome sequences. Nineteen SNPs and 25

haplotype loci are identified for direct genetic effects on four traits: average daily feed intake,

average daily gain, days to 100 kg and time in feeder per day. Nineteen SNPs and 11 haplotype

loci are identified for social genetic effects on average daily feed intake, average daily gain,

days to 100 kg and feeding speed. Two significant SNPs from single-locus GWAS

(SSC6:18,635,874 and SSC6:18,635,895) are shared by a significant haplotype locus with

haplotype alleles ‘GGG’ for both direct genetic effects and social genetic effects in average

daily feed intake. A candidate gene, MT3, which is involved in growth, nervous, and immune

processes, is identified. We demonstrate the genetic differences between direct genetic

effects and social genetic effects and provide an anchor for investigating the genetic archi-

tecture underlying direct genetic effects and social genetic effects on socially affected traits

in pigs.
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Social interactions inevitably occur among groups of indivi-
duals and these interactions influence the genetic variation
of a trait in livestock1. In current pig production systems,

pigs are penned together into contemporary groups, social
interactions, and observed phenotypes genetically contribute to
socially affected traits of individuals and their group mates2.
Socially affected traits are influenced both by the genes of the
individual itself (direct genetic effects, DGE) and by the genotype
of other individuals in the same group (social genetic effects, SGE,
also called indirect genetic effects)2–5. Previous research has
proven that many phenotypes are affected by both DGE and SGE
and the contribution of SGE to total genetic variance is large in
pigs, such as growth rate, body weight (BW)6,7, feed intake,
backfat thickness (BFT), muscle depth2, behavior8,9, and average
daily gain (ADG)10,11. The existence of SGE affect the estimation
of DGE and therefore result in unfavorable consequence on
genetic improvement of complex traits. Until recently, the genetic
architecture of socially affected traits that involve both DGE and
SGE is still poorly understood in pigs.

With the availability of genomic information, GWAS have
increased the understanding of the contributions of genetic var-
iants toward various complex traits. However, previous studies
have mainly focused on DGE and have not considered the con-
tributions of SGE. For many phenotypes, DGE and SGE can be
directly quantified using a social genetic model2. Based on the
social genetic model, the classical (direct) genetic model is
expanded with SGE12. This model simultaneously contains both
DGE and SGE that enables researchers to simultaneously estimate
DGE and SGE values.

Detecting the genetic architecture of DGE and SGE may pro-
vide deeper insight into a better understanding of complex traits.
To date, only a few studies have identified some SNPs associated
with SGE. Using the Illumina 60 K SNP BeadChip, an important
SNP was identified to be associated with DGE and SGE in
chickens13. In pigs, five SNPs on chromosome 6 associated with
social ADG were detected with an Illumina panel14. Additionally,
in our previous study, a total of 27 SNPs associated with six
growth traits were identified using whole-genome sequences
(WGS) of 40 Yorkshire pigs (Zhejiang Tianpeng Group Co., Ltd.
Zhejiang, China)15. However, because of the limited sample size,
the study was not efficient in detecting credible associations with
DGE and SGE.

Assessing the impact of SGE on socially affected traits is chal-
lenging. Haplotype-based GWAS can capture those genetic var-
iants that are not detected by single-locus GWAS16. Therefore, to
better investigate the genetic architecture of socially affected traits
in pigs, the present study used both GWAS approaches to estimate
the DGE and SGE on each trait by employing a social genetic
model, WGS of 60 pigs, and genotyping of 1204 Yorkshire pigs
with Illumina 50 K SNP chips. Therefore, the main objectives of
this study were (i) to construct haplotype loci based on imputed
WGS data and identify associations between haplotype-DGE and
haplotype-SGE by GWAS; (ii) to perform single-locus analysis to
explore SNPs associated with socially affected traits by considering
both DGE and SGE in Yorkshire pigs; (iii) to compare the results
of GWAS based on haplotypes and SNPs for DGE and SGE; and
(iv) to combine single-locus and haplotype-based GWAS to reveal
important SNPs and genes for DGE and SGE in pigs.

Results
Phenotype statistics. Summary statistics for all phenotypic data
from 1204 Yorkshire pigs were shown in Table 1. Based on the
social genetic model, the estimated accuracies and deregressed
EBVs of DGE and SGE for each trait were presented in Table 2.
All the DGE and SGE values were used for further analysis.

Evaluation of sequencing data and genotype imputation. A
total of 60 pigs were sequenced and the statistic results were list in
Supplementary Data 1. After initial quality filtering, 3.0-TB clean
data with the average mapped read depth of 17.11 was retained.
The mean reads were 336,176,275 for each sample. After mapping
to the pig reference genome, the mean mapped reads and the
mean uniquely mapped reads were 312,374,099 and 293,904,451
for each sample, respectively. The average mapping and unmap-
ping ratios were 92.92 and 1.28% per individual, respectively.

This study conducted genotype imputation from a 50 K SNP
chip to WGS data in Yorkshire pigs using a two-breed reference
population (20 Landrace and 40 Yorkshire pigs). In total, 36,969
and 14,539,997 SNPs were identified in the target and reference
populations, respectively. Beagle 5.1 software was used to impute
the WGS reference panel across the 1204 genotyped pigs. After
genotype imputation, a total of 14,539,997 SNPs with an average
accuracy of 0.63 were available for this study. For each
chromosome, the average imputation accuracy was in the range

Table 1 Descriptive statistics of phenotypes for eight
socially–affected traits in Yorkshire pigs.

Trait Unit Number Mean ± SD Max Min

ADFI kg 1112 1.87 ± 0.34 2.84 0.53
ADG kg 1112 0.74 ± 0.14 1.26 0.15
B100 mm 1026 9.27 ± 2.34 19.98 4.23
D100 day 1112 183.61 ± 22.37 391.93 100
FCR kg/kg 1112 2.53 ± 0.31 3.74 1.51
RFI g 1112 7.89 ± 216.07 905.05 −923.5
TPD min/

day
1107 64.51 ± 15.91 123.24 28.09

FS g/min 1107 30.79 ± 8.01 57.76 13.51

ADFI average daily feed intake, ADG average daily gain, B100 backfat thickness to 100 kg, D100
days to 100 kg, FCR feed conversion ratio, RFI residual feed intake, TPD time in feeder per day, FS
feeding speed, Number number of phenotypic records, Mean arithmetic mean, SD standard
deviation, Max maximum, Min minimum.

Table 2 Summary of the estimated accuracies and
deregressed EBVs for direct genetic (DGE) and effects
social genetic effects (SGE) in Yorkshire pigs.

Trait Number Estimated
accuracies
(Mean ± SD)

Deregressed EBVs
(Mean ± SD)

DGE ADFI 1112 0.80 ± 0.17 1.77E-02 ± 0.22
ADG 1112 0.80 ± 0.17 5.40E-04 ± 0.18
B100 1026 0.40 ± 0.22 6.00E-02 ± 1.38
D100 1112 0.55 ± 0.22 7.85E-02 ± 19.49
FCR 1112 0.30 ± 0.21 7.64E-03 ± 0.24
RFI 1112 0.44 ± 0.24 14.43 ± 194.37
TPD 1107 0.55 ± 0.22 −6.09E-03 ± 8.07
FS 1107 0.44 ± 0.23 0.11 ± 3.87

SGE ADFI 1112 0.68 ± 0.19 2.99E-05 ± 0.07
ADG 1112 0.60 ± 0.21 3.95E-05 ± 0.07
B100 1026 0.40 ± 0.22 −1.37E-03 ± 0.62
D100 1112 0.23 ± 0.18 −8.67E-03 ± 7.99
FCR 1112 0.30 ± 0.21 8.16E-05 ± 0.16
RFI 1112 0.12 ± 0.14 0.08 ± 119.57
TPD 1107 0.51 ± 0.22 0.01 ± 2.55
FS 1107 0.44 ± 0.23 −1.02E-03 ± 1.63

ADFI average daily feed intake, ADG average daily gain, B100 backfat thickness to 100 kg, D100 days
to 100 kg, FCR feed conversion ratio, RFI residual feed intake, TPD time in feeder per day, FS feeding
speed, Number number of phenotypic records, Mean arithmetic mean, SD standard deviation.
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of 0.59–0.67 (Fig. 1). The SSC14 had the highest imputation
accuracy (0.67), while SSC10 had the lowest imputation accuracy
(0.59). After quality control, a total of 3,072,572 SNPs with an
average imputation accuracy of 0.90 were retained for further
analyses.

The average imputation accuracies of imputed SNPs with
different minor allele frequency (MAF) were calculated and are
shown in Fig. 2. The imputation accuracies were comparatively
stable for different MAFs where the MAF was higher than 0.1.
However, the imputation accuracy decreased sharply when the
MAF was lower than 0.1.

Single-locus GWAS for eight socially affected traits
For average daily feed intake (ADFI). The imputed-GWAS results
for DGE in ADFI are shown in Table 3, Supplementary Data 2,
and Fig. 3a. The imputed-GWAS identified 413 SNPs

(P < 3:25 ´ 10�7) associated with DGE at the suggestive thresh-
old. Of these 413 SNPs, the 17 SNPs (P < 1:63 ´ 10�8) located on
SSC6 and SSC8 showed a significant signal. The most significant
SNP (P ¼ 1:07´ 10�10) was located on SSC6: 46,448,592. In a
narrow 9.75 kb region (18.64–18.65 Mb) on chromosome 6,
there were ten consecutive genome-wide significant SNPs that
showed significant peaks. In the region of SSC8: 79.51–79.53Mb,
five genome-wide significant SNPs showed high signals. A λ of
less than 1.05 is considered to indicate a lack of population
stratification17. The λ calculated for the DGE on ADFI was 1.01;
implying no population stratification (Supplementary Fig. 1a).
For chip-based GWAS, the significant threshold was set at
P ¼ 2:70 ´ 10�5. On the basis of the 50-K chip data, a total of 97
SNPs were identified (Supplementary Fig. 2). Three SNPs from
the chip-based GWAS were also in the imputed GWAS
(P < 2:70 ´ 10�5, Supplementary Table 1).

For SGE on ADFI, a total of 26 SNPs reached the suggestive
threshold using imputed GWAS (Table 4, Supplementary Data 2,
and Fig. 3b). Among these, 14 genome-wide significant SNPs
were detected on chromosome 6, which had the highest signals
(Fig. 3b). The λ was equal to 1.00, which indicates no population
stratification (Supplementary Fig. 1b). A total of 89 SNPs were
found from the chip-based GWAS (Supplementary Fig. 2).
Among them, two overlapped with the imputed GWAS
(P < 2:70 ´ 10�5, Supplementary Table 1).

A comparison between the imputed GWAS of DGE and SGE on
ADFI revealed a total of 17 common SNPs shared between DGE
and SGE (Fig. 4). Notably, the use of SGE identified associations for
ADFI: two SNPs (SSC6: 25,649,764, P ¼ 1:67 ´ 10�9 and SSC6:
25,651,261, P ¼ 2:68 ´ 10�9) were significant for SGE but were not
significant for DGE (P > 1:00 ´ 10�7).

For ADG. On the basis of imputed GWAS, seven common SNPs
reached the genome-wide significant threshold (P ¼ 1:63 ´ 10�8)
and were identified for both DGE (Table 3 and Figs. 4, 5a) and
SGE in ADG (Table 4 and Figs. 4, 5b). Of these SNPs, five
consecutive loci located within SSC8: 79.51–79.53Mb were
identified with a P value of 1:85 ´ 10�9 for DGE and 3:17 ´ 10�9

for SGE. Ten consecutive SNPs were detected at a suggestive

Fig. 1 Imputation accuracy for each chromosome in Yorkshire pigs. Accuracy of imputation based on Beagle R2 before and after filtering (Beagle R2 < 0.8).
“Before filtering” for the blue part, “After filtering” for the red part.

Fig. 2 Imputation accuracy against minor allele frequency (MAF). SNPs
were divided into bins of SNPs with common MAF.
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threshold for DGE in ADG in the region between 18.64 and
18.65MB on chromosome 6 (Supplementary Data 2). The λ was
1.02 for DGE (Supplementary Fig. 1c) and 1.03 for SGE (Sup-
plementary Fig. 1d). These λ values were similar to the values
found for DGE and SGE in ADFI. Moreover, in the chip-based

GWAS, 87 SNPs were identified for DGE and 85 SNPs were
identified for SGE (P < 2:70 ´ 10�5, Supplementary Fig. 2).

For the other six traits. Using imputed GWAS, no significant
SNPs were identified for either DGE or SGE for the backfat

Table 3 Single-locus GWAS for direct genetic effects (DGE) in Yorkshire pigs.

Trait SSC Position (bp) Range (Mb) Allele P_value Candidate Gene

DGE_ADFI 6 18640605 18.14–19.14 A/G 4.09E–09 CDH1, CDH3, ZFP90, BBS2, MT4, MT3, MT1A, NUP93, MIR138-2, HERPUD1,
SLC12A3, NLRC5, CPNE2, FAM192A6 18635874 18.14–19.14 C/G 4.40E–09

6 18635895 18.14–19.14 A/G 4.40E–09
6 18639708 18.14–19.14 C/T 4.40E–09
6 18641480 18.14–19.14 C/T 4.40E–09
6 18642431 18.14–19.14 C/G 4.40E–09
6 18643649 18.14–19.14 A/G 4.40E–09
6 18644213 18.14–19.14 T/C 4.40E–09
6 18645373 18.15–19.15 A/T 4.40E–09
6 18645626 18.15–19.15 A/G 4.40E–09
6 46451435 45.95–46.95 A/G 5.89E–09 ZNF566, ZFP82, ZFP14, ZNF793, ZNF527, ZNF569, U2, ZNF570, ZFP30, WDR87
6 46448592 45.95–46.95 T/G 1.07E–10
8 79506792 79.01–80.01 C/T 5.98E–10 IQCM
8 79525267 79.03–80.03 A/T 5.98E–10
8 79529184 79.03–80.03 G/A 5.98E–10
8 79529190 79.03–80.03 T/C 5.98E–10
8 79529891 79.03–80.03 C/T 5.98E–10

DGE_ADG 6 25649764 25.15–26.15 C/T 2.21E–09 CDH11
6 25651261 25.15–26.15 T/C 2.43E–09
8 79506792 79.01–80.01 C/T 1.85E–09 IQCM
8 79525267 79.03–80.03 A/T 1.85E–09
8 79529184 79.03–80.03 G/A 1.85E–09
8 79529190 79.03–80.03 T/C 1.85E–09
8 79529891 79.03–80.03 C/T 1.85E–09

DGE_ADFI direct genetic effects of average daily feed intake, DGE_ADG direct genetic effects of average daily gain, SSC chromosome, Range range of significant chromosome region.

Fig. 3 GWAS results for direct genetic effects (DGE) and social genetic effects (SGE) in average daily feed intake (ADFI). a for DGE using imputed-
GWAS; b for SGE using imputed-GWAS; c for DGE using haplotype-based GWAS; d for SGE using haplotype-based GWAS. For imputed-GWAS, the
horizontal red and blue lines indicate the genome-wide (1.63 × 10−8) and suggestive (3.25 × 10−7) level, respectively. For haplotype-based GWAS, the
horizontal red and blue lines indicate the genome-wide (1.82 × 10−7) and suggestive (3.64 × 10−6) level, respectively.
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thickness to 100 kg (B100), days to 100 kg (D100), feed conver-
sion ratio (FCR), residual feed intake (RFI), time in feeder per day
(TPD), and feeding speed (FS) traits (Supplementary Fig. 3).
However, two peaks were found for D100; one of which was
located on SSC6 for DGE and the other on SSC5 for SGE. For
RFI, a distinct peak located on SSC10 was found for both DGE
and SGE.

In the chip-based GWAS, the total number of SNPs detected
(P < 2:70´ 10�5) was 4 for B100, 15 for D100, 20 for RFI, 3 for
FS, and 5 for TPD. For SGE, the total number of SNPs detected
(P < 2:70´ 10�5) was 1 for B100, 5 for RFI, 1 for FS, and 1 for
TPD (Supplementary Fig. 2). Among them, three SNPs were also

detected by imputed GWAS for the B100, D100, and FS traits
(P < 2:70 ´ 10�5, Supplementary Table 1).

Haplotype-based GWAS for eight socially affected traits
For ADFI. Four significant haplotype loci were identified for DGE
(Supplementary Table 2 and Fig. 3c) and seven for SGE (Sup-
plementary Table 3 and Fig. 3d). These were distributed on SSC1,
SSC6, SSC7, SSC10, and SSC12 (P < 1:82 ´ 10�7). Among these,
four common haplotype loci (HapL1834, HapL910, HapL1412,
and HapL1193) were shared by DGE and SGE. Only the MT3
gene was located within the haplotype HapL1412 “GGG”, with a
haplotype frequency of 0.05. Furthermore, 12 suggestive haplo-
type loci were detected for DGE and 17 for SGE
(1:82 ´ 10�7 < P < 3:64 ´ 10�6, Supplementary Table 4). The λ
was 1.06 for DGE (Supplementary Fig. 4a) and 1.08 for SGE
(Supplementary Fig. 4b); implying no population stratification.

For ADG. Three haplotype loci surpassing the significance
threshold (P ¼ 1:82 ´ 10�7) were detected for DGE (Supple-
mentary Table 2 and Fig. 5c) and one was detected for SGE
(Supplementary Table 3 and Fig. 5d). The haplotype loci
(HapL910) were shared by DGE and SGE. In addition, this
haplotype was shared by ADFI and ADG with a haplotype fre-
quency of 0.03. A total of ten suggestive haplotype loci were
identified for DGE and SGE (Supplementary Table 4). The λ was
1.04 for DGE (Supplementary Fig. 4c) and 1.03 for SGE (Sup-
plementary Fig. 4d); implying no population stratification.

For D100 and B100. When considering the DGE and SGE, we
identified 20 different haplotype loci that reached the significance
threshold (P ¼ 1:82 ´ 10�7) for D100 (Supplementary Tables 2, 3
and Figs. 6a, b). Among these, three common haplotype loci

Table 4 Single-locus GWAS for social genetic effects (SGE) in Yorkshire pigs.

Trait SSC Position (bp) Range (Mb) Allele P_value Candidate Gene

SGE_ADFI 6 18635874 18.14–19.14 C/G 8.94E–09 CDH1, CDH3, ZFP90, BBS2, MT4, MT3, MT1A, NUP93, MIR138-2, HERPUD1,
SLC12A3, NLRC5, CPNE2, FAM192A6 18635895 18.14–19.14 A/G 8.94E–09

6 18639708 18.14–19.14 C/T 8.94E–09
6 18641480 18.14–19.14 C/T 8.94E–09
6 18642431 18.14–19.14 C/G 8.94E–09
6 18643649 18.14–19.14 A/G 8.94E–09
6 18644213 18.14–19.14 T/C 8.94E–09
6 18645373 18.15–19.15 A/T 8.94E–09
6 18645626 18.15–19.15 A/G 8.94E–09
6 18640605 18.14–19.14 A/G 1.00E–08
6 25649764 25.15–26.15 C/T 1.67E–09 CDH11
6 25651261 25.15–26.15 T/C 2.68E–09
6 46451435 45.95–46.95 A/G 1.39E–08 OVOL3, POLR2I, TBCB, CAPNS1, COX7A1, ZNF146, ZNF565, ZNF567, ZNF461,

ZNF382, ZNF260, ZNF566, ZFP82, ZFP14, ZNF793, ZNF527, ZNF569, U2, ZNF570,
ZFP30, WDR87

6 46448592 45.95–46.95 T/G 3.63E–11

8 79506792 79.01–80.01 C/T 3.16E–08 IQCM
8 79525267 79.03–80.03 A/T 3.16E–08
8 79529184 79.03–80.03 G/A 3.16E–08
8 79529190 79.03–80.03 T/C 3.16E–08
8 79529891 79.03–80.03 C/T 3.16E–08

SGE_ADG 6 25649764 25.15–26.15 C/T 3.00E–09 CDH11
6 25651261 25.15–26.15 T/C 3.68E–09
8 79506792 79.01–80.01 C/T 3.17E–09 IQCM
8 79525267 79.03–80.03 A/T 3.17E–09
8 79529184 79.03–80.03 G/A 3.17E–09
8 79529190 79.03–80.03 T/C 3.17E–09
8 79529891 79.03–80.03 C/T 3.17E–09

SGE_ADFI social genetic effects of average daily feed intake, SGE_ADG social genetic effects of average daily gain, SSC chromosome, Range range of significant chromosome region.

Fig. 4 The common SNPs were shared by both direct genetic effects
(DGE) and social genetic effects (SGE). Venn diagram of common
significant SNPs of DGE and SGE in average daily feed intake (ADFI) and
average daily gain (ADG).
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(HapL36 HapL1601, and HapL213) were detected for DGE and
SGE. Eighteen candidate genes were located within these sig-
nificant regions. The SDK1 gene within the significant haplotype
HapL36 was shared by DGE and SGE. On basis of the suggestive
level (P ¼ 3:64 ´ 10�6), a total of 21 haplotype loci were detected
for DGE and 13 for SGE (Supplementary Table 4). For B100, no
haplotype loci were found to be associated with DGE (Supple-
mentary Fig. 5a) or SGE (Supplementary Fig. 5b).

For FCR and RFI. No significant haplotype loci were detected for
DGE or SGE (Supplementary Fig. 6); however, five suggestive
haplotype loci (1:82 ´ 10�7 < P < 3:64 ´ 10�6) were identified for
DGE (three for FCR and two for RFI) and one for SGE on RFI
(Supplementary Table 4 and Supplementary Fig. 6).

For TPD and FS. Significant haplotype loci located on SSC4:
130,340,342–130,390,531 were identified for the DGE on TPD

Fig. 5 GWAS results for direct genetic effects (DGE) and social genetic effects (SGE) in average daily gain (ADG). a for DGE using imputed-GWAS; b
for SGE using imputed-GWAS; c for DGE using haplotype-based GWAS; d for SGE using haplotype-based GWAS. For imputed-GWAS, the horizontal red
and blue lines indicate the genome-wide (1.63 × 10−8) and suggestive (3.25 × 10−7) level, respectively. For haplotype-based GWAS, the horizontal red and
blue lines indicate the genome-wide (1.82 × 10−7) and suggestive (3.64 × 10−6) level, respectively.

Fig. 6 Haplotype-based GWAS results for direct genetic effects (DGE) and social genetic effects (SGE). a for DGE in days to 100 kg (D100); b for SGE
in D100; c for DGE of the time in feeder per day (TPD); d for SGE of TPD. The horizontal red and blue lines indicate the genome-wide (1.82 × 10−7) and
suggestive (3.64 × 10−6) level, respectively.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02416-3

6 COMMUNICATIONS BIOLOGY |           (2021) 4:891 | https://doi.org/10.1038/s42003-021-02416-3 | www.nature.com/commsbio

www.nature.com/commsbio


(Fig. 6c) and significant haplotype loci were detected for the SGE
on FS (Supplementary Fig. 7). Furthermore, 15 different haplo-
type loci that surpassed the suggestive level (P ¼ 3:64 ´ 10�6)
were identified for DGE and SGE (Supplementary Table 4).

Comparing single-locus and haplotype-based GWAS.
Haplotype-based GWAS identified more associations than single-
locus GWAS for the DGE and SGE on the eight socially affected
traits in pigs. Importantly, the significant HapL1412 with hap-
lotype allele “GGG” overlapped with two significant SNPs (SSC6:
18,635,874 and SSC6: 18,635,895) for both DGE and SGE on
ADFI. A candidate gene, MT3, was found in these regions. Fur-
thermore, multiple significant SNPs and haplotype loci were
shared by different traits, which indicates the pleiotropism.

Discussion
The socially affected traits are influenced by multiple genes. This
study is designed to investigate DGE and SGE for eight socially
affected traits using imputed WGS, as there is strong evidence
that these traits are socially affected in pigs2,8–10,18. Using the
social genetic model12, we estimated the DGE and SGE of each
socially affected trait in Yorkshire pigs. Then the single-locus and
haplotype-based GWAS were performed to investigate associa-
tions for DGE and SGE using imputed data.

Different imputation strategies can result in different levels of
accuracy19. The use of multi-breed reference populations is an
effective way to improve the accuracy of imputation19,20. How-
ever, a large genetic distance between the reference and target
populations can result in extremely low accuracies (less than
0.49)21. Landrace and Yorkshire pigs are bred according to the
same breeding goals and are therefore likely genetically similar22.
Additionally, because of the small effective population size for
pigs23, the imputation parameter of effective population size was
set at 100 in the Beagle 5.1 software. After imputation, the average
accuracy at the whole-genome level was 0.63, and 3,072,572 SNPs
had a Beagle R2 higher than 0.80 in the imputed WGS dataset.
The imputation accuracy observed in the current study was
higher than that reported in other studies19–21, for example, a
study using a ten-breed reference population of 168 pigs and
using imputation from low- or high-density SNP data to WGS
resulted in relatively low accuracy (0.39–0.49)21. Our results were
more similar to the accuracy obtained from a multi-breed refer-
ence population of cattle (>0.70)19,20. Thus, the present study
indicates that using mixed reference populations with similar
genetic backgrounds can result in reasonable imputation accuracy
in pigs. The imputation accuracy increased with reference
population size24. In this study, a total of 40 sequenced pigs was
used. Although the reference population size is smaller than that
used in previous studies (>100) for pigs25, this study also obtained
a high imputation accuracy, and therefore, the imputed data can
provide important information regarding socially affected traits
in pigs.

Imputation accuracy is heavily affected by the MAF26. Rare
variants with a low MAF result in poor imputation accuracy and
therefore decrease the average imputation accuracy. In our study,
the accuracy decreased sharply when the MAF was lower than
0.10. Filtering out the SNPs with MAF < 0.10 from the imputed
data increased the average imputation accuracy from 0.63 to 0.71.
In our study, the imputation accuracy increased with the MAF,
which is in agreement with previous studies in livestock21,24,27,28.
Rare variants are expected to have larger effects on complex traits
than common variants29. It is also harder to construct the hap-
lotype background using rare SNPs and they decrease the set of
template haplotypes for genotype imputation because they
are observed only a few times in reference genotype datasets26.

Thus, genotype imputation of rare SNPs does not provide high
accuracy levels. It is important to investigate imputation methods
for rare variants in further studies.

In the processes of natural selection and the artificial selection
of pigs, complex traits have developed high levels of genetic
variation. The single-locus analysis focuses on identifying SNPs
and mining functional genes for complex traits13, but this method
has only identified a small fraction of genetic variants in pigs.
Haplotype-based GWAS is a complementary method that
intensifies the benefits from linkage disequilibrium (LD) and
enables the evaluation of the genetic determinants of complex
traits. The use of haplotype information in GWAS would likely be
beneficial for detecting further genetic variants30. However,
haplotype-based GWAS using imputed WGS has not yet been
reported in pigs. The rare variants may contribute large effects to
complex traits29. Our analysis were done on imputed sequence
data, which may contain imputation errors31. To alleviate this
issue, further quality control was also conducted on the imputed
sequence genotypes, rare variants with a MAF lower than 0.01
were moved. After quality control, the average MAF is 0.30 for
chip-based data, 0.27 for imputed data, and 0.09 for haplotype
alleles. Our results show that haplotype-based GWAS can be
effective and can provide more genetic information than single-
locus GWAS. These results are in agreement with previous stu-
dies; for example, haplotype-based GWAS in plants32 and cattle16

captured genetic variants that were not identified by single-locus
analysis. Importantly, by combining single-locus and haplotype-
based GWAS, we confirmed the presence of two important SNPs
(SSC6: 18,635,874 and SSC6: 18,635,895) for DGE and SGE in
ADFI. Therefore, our results highlight the advantages of
haplotype-based GWAS for detecting genetic variants that
influence complex traits in pigs. The power of GWAS is limited
by sample size and SNP density. Using the imputed WGS instead
of the 50 K SNP chip is powerful to investigate socially affected
traits in pigs. Although only 1204 imputed WGS were used in this
study, our results also provided important genetic variation for
socially affected traits. Further studies are recommended to
validate these results using a larger sample size.

Socially affected traits are known to be affected by SGE, but the
mechanisms of SGE are not fully known. Many studies have been
conducted to understand the genetic architecture of complex
traits and they have identified many important SNPs and genes
associated with these traits33. However, these studies have mainly
focused on investigations of DGE, despite the majority of com-
plex traits in pigs being affected by social interactions among
individuals2. Pigs are highly social animals, so ignoring SGE could
incorrectly estimate genetic variance and restrict genetic
improvement.

Recently, numerous studies have shown that using social
genetic models during genetic evaluation can enhance the genetic
improvement of socially affected traits in pigs1,10. However, few
studies have investigated the genetic architecture of DGE and
SGE in pigs14,15,34. On the basis of our GWAS results, we found
that the significant loci and candidate genes of DGE are different
from SGE for each trait in Yorkshire pigs. These results are in
agreement with previous studies, for example, a distinct difference
was found between DGE and SGE for socially affected traits in
laying hens13, and a study based on single-step GWAS found only
one QTL (SSC6: 19.9–20.9 Mb) for DGE and SGE on ADG in
pigs34. The population composition may affect the estimation of
DGE and SGE. An experimental design using groups comprising
two families is optimal for estimating SGE35. Our group’s com-
posed of numerous families because all pigs in our study were
from a commercial pig performance testing station. The group
design in this study may have affected the estimation of DGE and
SGE; however, it is difficult to conduct an experiment containing
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only two families from a commercial breeding program. More-
over, in our study, all pigs were derived from the same herd and
there were 20 pigs in each group, which made it easier to estimate
DGE and SGE5.

Our results provide further evidence for the genetic differences
in DGE and SGE with regard to socially affected traits. Eco-
nomically important traits are selected by artificial selection when
based on the classical model that only considers DGE. SGE is,
therefore, less frequently selected when compared with DGE. The
complex traits in pigs are highly polygenic, and more research is
required to understand the genetic architecture of the SGE on the
complex traits of pigs.

To assess whether the identified SNPs associated with socially
affected traits in our study replicate previously identified QTL, we
compared our results with the PigQTL database based on the
genome position of each SNP and QTL. A total of 78 important
QTL were found to overlap with previously identified QTL for
DGE of complex traits in pigs (Supplementary Table 5). No
previous QTL has been reported to be associated with SGE. SGE
has been evaluated to play an important role in livestock12. Thus,
the investigation of the genetic architecture of SGE has important
implications for pig breeding programs.

In our study, a total of 56 candidate genes associated with SGE
and DGE were detected. Gene enrichment analysis showed that
enriched pathways were associated with nucleic acid, calcium,
and metal ion binding (Supplementary Table 6). In particular,
two candidate genes, IQCM and CDH11, were associated with
both DGE and SGE on the ADG and ADFI traits. CDH11 gene
encodes a calcium-dependent glycoprotein and mediates calcium-
dependent cell-cell adhesion36. The CDH11 gene is essential for
tissue development, regulation of cell proliferation, and
survival37,38. This gene has also been associated with postnatal
bone development in mice39. Previous studies have shown that
the CDH11 gene is associated with growth traits in cattle
including weaning weight40 and RFI41. In pigs, this gene was
found to be associated with fat and meat quality traits42 and to
regulate neural development and cell motility43. In this important
chromosome region, six QTL for growth traits were overlapped,
including ADG44 and BW45 in pigs. Additionally, these sig-
nificant SNPs were located on the QTL for health traits46.

In the region of 45.95–46.95Mb on SSC6, numerous zinc-
finger protein family genes were found to be associated with both
DGE and SGE. The zinc-finger protein is one of the most
abundant classes of transcription factors and regulates cell growth
and differentiation. According to our gene ontology (GO) ana-
lysis, these genes regulate transcription, nucleic acid binding, and
metal ion binding. Furthermore, this chromosome region over-
lapped with four reported QTL affecting ADG44,47,48 and eating
behavior49 traits in pigs. Thus, daily interactions (SGE) between
group pigs would influence their health. Interestingly, the sig-
nificant SNPs within the region SSC6: 45.95–46.95Mb were
located within 20 QTL known to be associated with health
traits46,50 in pigs (https://www.animalgenome.org/).

In the region of SSC6: 18.14–19.14Mb,MT3 gene was found in
both single-locus and haplotype-based GWAS for socially affected
traits. This gene encodes a growth inhibitory factor that regulates
many biological processes, particularly within the nervous and
immune systems, and thereby influences health. MT3 plays an
important role in zinc homeostasis and cell death51, and inhibits
cell growth under zinc-deficient conditions52. Interestingly, our
study also identified numerous zinc-finger protein family genes to
be associated with DGE and SGE in SSC6: 45.95–46.95 Mb.

The previous studies identified several QTL on SSC6 for DGE
and SGE in pigs14,15,34. The QTL (SSC6: 18.14–19.14 Mb) in the
current study was close to the reported QTL (SSC6: 19.9–20.9
Mb) for both DGE and SGE on ADG in pigs34. Furthermore,

there were eight reported QTL associated with growth traits in the
region of SSC6: 18.14–19.14Mb. Among them, five QTL were
related to ADG53 and feeding intake54. The significant SNPs
associated with DGE and SGE are located in nine reported QTL
for health traits46. And, it was reported that three QTL located on
SSC6: 18.14–19.14 Mb in pigs were associated with social inter-
action traits, and health traits49,55.

In summary, we report the study employing combined single-
locus and haplotype-based GWAS to identify the genetic archi-
tecture of socially affected traits that are influenced by both DGE
and SGE in pigs. Our study shows the feasibility of mapping
genomic variants that underlie SGE and provides genomic
information for socially affected traits in pigs. These results
provide evidence that the genomic architecture of SGE and DGE
is different for socially affected traits. Hence, we recommend the
use of both DGE and SGE to evaluate genetic architecture for
socially affected traits in pigs.

Methods
Ethics declarations. All experimental procedures were performed in accordance
with the Institutional Review Board (IRB14044) and the Institutional Animal Care
and Use Committee of the Sichuan Agricultural University under permit number
DKY-B20140302.

Animals and housing. During the period of 2017–2019, phenotypic data were
collected for Yorkshire pigs from the national nucleus pig breeding farm of New
Hope Group, Co., Ltd. (Sichuan, China) using the Osborne FIRE Pig Performance
Testing System (Osborne, KS, United States). As target population, a total of 1204
Yorkshire pigs were placed in a temperature-controlled room at 25 ± 2 °C and
relative humidity of 65–80% during the period of performance test from 30 to 110
kg. As reference population, a total of 60 pigs (20 Landrace and 40 Yorkshire pigs)
were randomly selected from core populations. These pigs were group-housed in
cement-floor pens (20 pigs in each pen) and the nutrient requirements were met as
recommended by the National Research Council (NRC 2012).

Phenotypic data. A total of 1112 pigs’ phenotypic data were collected, including
ADG (kg/d), D100, B100, ADFI (kg/d), RFI, FCR, TPD (min/d), and FS (g/min). In
this study, each pig was labeled with a unique electric identification tag on ear that
was detected by the Osborne FIRE Pig Performance Testing System. The feed time,
feed consumption, and BW were recorded at each visit to the feeder for each pig. At
the end of the performance test, BFT between the third and fourth last ribs of each
pig was calculated by PIGLOG 105B ultrasound machine (SFK Technology,
Søborg, Denmark). ADG was calculated as linear regressions of BW from 30 to
110 kg on the performance test days. ADFI was calculated based on the total
amount of recorded total feed intake (TFI) divided by the number of corresponding
feed days at the feeder. TPD was calculated based on the total amount of recorded
total time divided by the number of corresponding feed days (min/d), and FS=
ADFI/TPD (g/min)56,57. FCR, D100, B100, and RFI were calculated as follows58:

FCR ¼ TFI
Weight2 �Weight1

ð1Þ

D100 ¼ tested daysþ ð100�Weight2Þ ´
tested days� A

Weight2
ð2Þ

B100 ¼ BFTþ 100�Weight2
� �

´
BFT

Weight2 � B
ð3Þ

RFI ¼ ADFI� 14:1ADG� 2:83BFT� 110:9AMW ð4Þ

AMW ¼ Weight1:62 �Weight1:61

� �

1:6 ´ Weight2 �Weight1
� � ð5Þ

where Weight1 and Weight2 are weights at the start and end of the performance
test, respectively; tested days is the duration of the performance test in days. A is
50.775 for males and 46.415 for females; B is −7.277 for males and −9.440 for
females. A and B were calculated based on an actual dataset of performance tests
involving 5000 pigs59. The true days and B100 were firstly obtained based on two
data that were the closest to 100 kg using linear interpolation. Then the nonlinear
models of D100 and B100 were constructed based on linear interpolation as models
(2) and (3). Finally, the A and B were calculated based on models (2) and (3) using
the NLIN procedure in SAS software, respectively. BFT is the tested backfat
thickness at the end of a performance test. AMW is an average metabolic BW.
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The deregressed EBVs of DGE and SGE. The DGE and SGE were estimated for
eight socially affected traits using a social genetic effect model12, as follows:

y ¼ Xbþ ZDaD þ ZSaS þWl þ Vg þ e ð6Þ

where y is the vector of phenotypic values; b is the vector of fixed effects, including
sex, test year and month, birth year and month effects; aD and aS are vectors of
DGE and SGE, respectively; l is the vector of random litter effects; g is the vector of
random group effects in which the pigs were penned during the performance test; e
is the random residual vector; X, ZD , ZS , W ,and V are the incidence matrices of b,
aD , aS , l, and g , respectively. This model was implemented by AI-REML in DMU
software60. The estimated accuracies of DGE and SGE were calculated based on the
formula r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2e=σ

2
a

p
, s2e is the error variance of DGE and SGE, σ2a is the

corresponding genetic variance. Based on the estimated accuracies of DGE and
SGE, their deregressed breeding values (EBVs) were obtained based on the formula
Deregressed EBVs ¼ gi=r

2
i , gi is the EBVs of ith individual, r2i is the square of

estimated accuracies for ith individual61. Then, the deregressed EBVs were used to
implement for association analysis.

Genomic DNA extraction. The ear tissue samples were collected and stored in
75% alcohol. Genomic DNA from 1264 ear tissues was extracted using the Tissues
Genomic DNA (Omega Bio-Tek, Norcross, GA, USA) kit according to the man-
ufacturer’s instructions, and then the quality and quantity were measured using a
Nanodrop-2000 spectrophotometer. The genomic DNA with the ratio of light
absorption (A260/280) between 1.8 and 2.0, concentration ≥50 ng/µL, and total
volume ≤50 µL were eligible.

Genotyping by Illumina Porcine SNP50K BeadChip. A total of 1204 Yorkshire
pigs, 442 boars and 762 gilts, were genotyped by the Illumina Porcine 50K SNP Chip
(Neogen, Lincoln, NE, USA), which contained 50,697 SNPs. Firstly, the SNPs with no
position information and located on sex chromosomes were removed from the gen-
otype data, which contains 11,874 SNPs. Then, quality control of the genotype data
was performed using PLINK software62. The SNPs with call rate < 0.90, MAF < 0.05,
and Hardy–Weinberg equilibrium test (HWE) <10−6, were excluded from the dataset.
After quality control, a total of 1854 SNPs were removed. Finally, a total of 36,969
SNPs were used as target genotype data.

Whole-genome sequencing and SNP calling. The WGS reference data were
obtained for 60 pigs (20 Landrace and 40 Yorkshire pigs), with 150 bp paired-end
reads on the Illumina HiSeq PE150 platform. The sequencing was performed by
BGI Co., Ltd. (Wuhan, China). After sequencing, the quality of raw reads was
checked with a Phred score of 20 as the minimum to filter the adapter polluted
reads and multiple N reads (where N > 10% of one read) to produce clean reads by
FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Then the clean
reads were mapped to the pig reference genome (Sscrofa11.1) using BWA (version
0.7.15) software with the parameters mem -t 10 -k 32 -M63. The SAM files pro-
duced from BWA were converted to BAM files using SAMtools (version 1.19)64.
The potential PCR duplicates were removed by MarkerDuplicates utility in Picard
release 1.119 (https://sourceforge.net/projects/picard/files/picardtools/1.119/).
After that, BAM files were used to call SNPs using GATK (version 3.5) software65

with multi-sample approaches. The raw SNPs generated from GATK were filtered
with QualByDepth (QD) < 2.0, FisherStrand (FS) < 60.0, RMSMappingQuality
(MQ) < 40.0, MappingQualityRankSumTest < –12.5, and ReadPosRankSumTest
< –8.0. After the initial filtering, a total of 21,104,245 SNPs remained. For further
analyses, the SNPs with MAF >0.05, missing rate <0.1, HWE <10−6, read depth
(dp) >6, and the SNPs located on autosomes were considered as reference
genotype data.

Imputation from 50 K chip to WGS. Genotype imputation between target and
reference genotype data were performed by Beagle (version 5.1)66 with default
parameter settings, except for setting the effective population size to 10022. The
imputation accuracy of each SNP was assessed using the Beagle R2, which is the
estimated squared correlation between the estimated allele dosage and the true
allele dosage67. A two-breed reference population (20 Landrace and 40 Yorkshire
pigs) with a small genetic distance22 was used to perform genotype imputation
from 50 K SNPs to WGS. After imputation, to maintain a balance between the
average accuracy and the number of SNPs, SNPs with a Beagle R2 < 0.8 were
excluded. Furthermore, SNPs with MAF less than 0.01 and HWE less than 10−6

were removed from imputed data. Finally, a total of 3,072,572 SNPs were retained
for further analyses.

Constructing haplotype loci. Haplotype loci were identified from the imputed
WGS data in 1204 pigs. Haplotype loci were detected for each chromosome as
proposed by Gabriel et al.68 using PLINK v1.90 software62. The parameters were
set to “-blocks no-pheno-req -blocks-max-kb 1000 -blocks-strong-lowci 0.8 -geno
0.1”. A haplotype block containing two or more SNPs with high LD was defined,
and loci with a confidence interval of r2 higher than 0.8 were considered into one
block. Then, the haplotype calling and identification of haplotype alleles were
performed by GHap package69. Furthermore, haplotype loci were transformed into

multi-allelic markers, and the haplotype genotype matrix was used to perform
GWAS. Using the imputed data with 3,072,572 SNPs, a total of 33,708 haplotype
loci were constructed and each haplotype loci contained 34.8 alleles. Finally,
274,741 haplotype alleles with MAF >0.01 were retained.

Association analysis. GWAS were performed independently for eight socially
affected traits by considering both DGE and SGE using GEMMA software65. Before
association analysis, the centered genotypes were used to estimate the n × n
genomic relationship matrix between the individuals. The genomic relatedness
matrix was calculated as follows:

G ¼ 1
p
∑
p

i¼1
Xi � 1n�xi
� �

Xi � 1n�xi
� �T ð7Þ

where G is the genomic relatedness matrix between the individuals; n is the number
of individuals; p is the number of genotypes; i represents the ith SNP; X denote n ×
p matrix of genotypes; Xi as its ith column representing genotypes of ith SNP; �xi as
the sample mean of ith SNP; 1n as a n × 1 vector of 1’s.

The deregressed EBVs were used to perform single-locus GWAS (including
chip-based GWAS and imputed-GWAS) and haplotype-based GWAS, the
following unified mixed linear model was used:

y ¼ XmþWaþ e ð8Þ

a � MVN 0;Gσ2a
� �

e � MVN 0; Iσ2e
� �

where y is the vector of the deregressed EBVs of DGE or SGE; m is the SNP effects;
a is the vector of residual polygenic effects; e is the vector of random residuals; X
and W are the incidence matrices for m and a, respectively; G is a genomic
relationship matrix, I is an identity matrix; MVN denotes multivariate normal
distribution.

The genome-wide significant threshold value was determined using the
Bonferroni correction method70. For chip-based GWAS, the genome-wide
significant and suggestive levels were set as P= 0.05/N1= 1.35 × 10−6 and P= 1/
N1= 2.70 × 10−5, respectively, where N1 is the number of analyzed SNPs. For
imputed-GWAS, the genome-wide significant and suggestive levels were set as P=
0.05/N2= 1.63 × 10−8 and P= 1/N2= 3.25 × 10−7, respectively, where N2 is the
number of analyzed SNPs. For haplotype-based GWAS, the genome-wide
significant and suggestive levels were calculated as P= 0.05/N3= 1.82 × 10−7 and
P= 1/N3= 3.64 × 10−6, respectively, where N3 is the number of studied haplotype
alleles.

The Manhattan plots were drawn using qqman package71. Genomic inflation
factor (λ) was calculated to judge the extent of false-positive signals with estlambda
function in GenABEL package (λ ¼ the observed P values

the expected P values)
72.

Candidate genes and functional analysis. The region within a 1Mb region
centering each significant SNP was defined as the QTL region. The candidate
functional genes were searched within the identified QTL regions on the pig
genome assembly 11.1 (https://asia.ensembl.org/Sus_scrofa/Info/Index). Then, the
biological functions of these candidate genes were investigated on PubMed (https://
www.ncbi.nlm.nih.gov/pubmed) and the reported literature. For functional anno-
tation, GO analysis was performed on DAVID Bioinformatics Resources (https://
david.ncifcrf.gov). The Fisher’s test was used to assess the significance of the
determined enriched terms73,74. Enriched GO terms (P < 0.05) were selected to
investigate the genes involved in biological processes75.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets supporting the results of this article are included within the article. All
genotypic, phenotype data, and supplemental material were deposited at the figshare
repository (https://doi.org/10.6084/m9.figshare.12611786). All other data are available
from the corresponding authors upon reasonable request.
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