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ABSTRACT

Ortholog identification is a crucial first step in com-
parative genomics. Here, we present a rapid method
of ortholog grouping which is effective enough to
allow the comparison of many genomes simulta-
neously. The method takes as input all-against-
all similarity data and classifies genes based on the
traditional hierarchical clustering algorithm UPGMA.
In the course of clustering, the method detects
domain fusion or fission events, and splits clusters
into domains if required. The subsequent procedure
splits the resulting trees such that intra-species
paralogous genes are divided into different groups
so as to create plausible orthologous groups. As a
result, the procedure can split genes into the domains
minimally required for ortholog grouping. The
procedure, named DomClust, was tested using the
COG database as a reference. When comparing
several clustering algorithms combined with the
conventional bidirectional best-hit (BBH) criterion,
we found that our method generally showed better
agreement with the COG classification. By compar-
ing the clustering results generated from datasets
of different releases, we also found that our method
showed relatively good stability in comparison to the
BBH-based methods.

INTRODUCTION

Because of the rapid accumulation of data from various
high-throughput technologies, comprehensive gene or protein
classification is one of the central issues in bioinformatics
(1,2). Although classification schemes based on functional
roles, molecular interactions or reaction networks have

recently become of increasing interest, classification schemes
based on sequence or structural similarities are still of funda-
mental importance. Especially, the accumulation of complete
genomes enhances the need for large-scale sequence com-
parison in light of comparative genomics.

To date, many schemes have been developed to classify
proteins into homologous groups, or families. While motifs
or profiles that characterize families are helpful for putting the
existing knowledge to use (3,4), most of the automated
schemes use some clustering techniques applied to precom-
puted pairwise similarities (5–11). Typically, the focus of
these researches has been on either the grouping of weakly
similar homologs, or the identification of the building blocks
of proteins, termed domains, whose combinations generates
the variety of naturally existing proteins.

On the other hand, it has long been recognized that orthol-
ogy, a kind of homology derived from speciation, should be
distinguished from paralogy, a kind of homology derived from
duplication (12). The problem of distinguishing orthologs
from paralogs has been formulated as a problem of fitting a
gene tree to a species tree (13,14). Recently, the importance of
ortholog identification has been widely recognized in the
context of comparative genomics. Ortholog identification is
crucial for function prediction, since gene functions are typi-
cally conserved between orthologs, whereas paralogs can
share similar but different functions. Especially, exhaustive
ortholog classification is an essential first step in the recently
proposed methods of inferring functional linkages between
proteins, such as the phylogenetic profile method (15), the
domain fusion method (16,17) and the gene neighborhood
method (18) [reviewed in (19,20)]. Phylogenetic profiles
can also be used to predict more specific functions when
phenotypic traits of each organism are available (21).

Despite its importance, however, a scheme for large-scale
ortholog grouping for multiple genome comparison is yet to be
established. The conventional approach to the identification of
orthologs between two genomes is the so-called bidirectional
best-hit (BBH) criterion, where two genes, a and b, in the
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genomes A and B, respectively, are considered to be orthologs
if a is the best-hit of b in genome A and vice versa. For three or
more genomes, orthologous groups can be constructed by
extending the BBH relationships with a clustering algorithm.
The Clusters of Orthologous Groups (COGs) Database, a
widely used curated database for ortholog grouping, was con-
structed basically through this approach (22). However, ortho-
log grouping is not a simple task; the overall COG construction
process has included additional complex procedures such as
the addition of species-specific paralogs, the splitting of pro-
teins into multiple domains if required, as well as other case-
by-case manual modifications (23). Although several methods
have been developed recently to solve some aspects of the
ortholog identification problem (24–31), none of them is suit-
able for any large-scale exhaustive classification comparable
to COGs.

Here, we present an efficient algorithm for clustering many
protein sequences at the domain level. Our algorithm,
DomClust, which was originally developed for our compar-
ative microbial genome database (MBGD) (32), is a natural
extension of the traditional hierarchical clustering algorithm
and is suitable for splitting genes into the domains minimally
required for ortholog grouping.

MATERIALS AND METHODS

Calculation of sequence similarities

Our procedure takes the results as input of all-against-all
pairwise protein sequence comparison containing similarity
scores and the beginning and ending positions of the aligned
segments. We use the following notations: sim(a,b) ¼
(score(a,b), aliab, aliba) is the similarity relationship between
the sequences a and b, where score(a,b) is the score between a
and b and aliab ¼ [from, to] is the segment on a that is locally
aligned against b. We use square brackets to represent a
segment and aliab.fr and aliab.to to refer to the individual
endpoints.

Basically any sequence alignment program can be used, but
here we used the following protocol: for each significant match
found by the BLASTP program (33) with an adjusted E-value
of <0.001, rigorous local alignment (34) was calculated using
the JTT PAM250 scoring matrix (35). Here, we fixed the
search space size to 109 for every BLASTP search, and the
resulting E-value was further adjusted with E · lq ls · 10�5,
where lq and ls are the lengths of the query and the subject
sequences, respectively; this adjustment favors global matches
between short sequences to short local matches between long
sequences.

For measuring relatedness, either the similarity score or the
distance can be used. While distance is generally more suitable
for evolutionary analysis, similarity is a more appropriate
measure of local alignment. Here, we used similarity.

Hierarchical clustering as graph contraction

The above data are used to construct a similarity graph,
G ¼ (S,H), where S is the set of protein sequences (vertices)
and H is the set of homologous relationships (edges). Our
clustering procedure is basically a successive contraction of
this graph (Figure 1) by the traditional hierarchical clustering

method known as the unweighted pair-group method using
arithmetic averages (UPGMA) (36). In each iteration, the
procedure takes the best similarity edge, say sim(s1,s2), and
replaces the vertices s1 and s2 with a new vertex, sM,
representing the merged cluster. In addition, for each vertex
s3 2 S � {s1,s2}, it also replaces the edges sim(s1,s3)
and sim(s2,s3) with sim(sM,s3), assigning score score(sM,
s3) ¼ avg12[score(s1,s3), score(s2, s3,)], where avgAB (xA, xB)
� (xA|A| + xB|B|)/(|A| + |B|) is the group-average function for
the quantity x, where |A| denotes the cardinality of the set A.
The procedure is repeated until the best score becomes worse
than the given cutoff, c.

While the usual UPGMA requires a complete similarity
matrix, many edges are actually missing in our similarity
graph G, because we consider only significant similarities.
Thus, for each iteration with the best edge sim(s1,s2),
we must consider only a set of vertices S(s1,s2) �
{s3 | sim(s1,s3) 2 H _ sim(s2,s3) 2 H}. When one of the
two edges is missing, say sim(s1,s3) =2 H, we assign a fixed
score (parameter), m < c, to score(s1,s3) for calculating the
average (Figure 1). While maintaining the algorithmic
logic, this modification reduces the computational cost of
UPGMA from O(|S|2) to O(|H|). Hereafter, we call this simple
method ‘gUPGMA’ to distinguish it from the normal
UPGMA, where the ‘g’ stands for ‘graphical’ or ‘gap-filling’.

Note that the parameter m combined with the cutoff c can
control the granularity of the clustering: m!c approaches the
single linkage method, while m!�1 approaches the com-
plete linkage method. Through a validation test with the COG
database as a reference (see below), we found that better
results are obtained when m is close to c (data no shown).
We set m ¼ 0.95c throughout the present work. See Supple-
mentary Table S1 for list of parameters used in this work.

Domain splitting: an overview

An exhaustive sequence comparison often reveals a number
of domain fusion or fission events (37). Although such events
often provide valuable information for predicting functional
linkage (16,17), they complicate the sequence grouping
task. To treat these events, we added a process for domain
splitting to the basic procedure outlined above (Figure 2). In
each iteration with the best edge sim(s1,s2), a merged vertex
was split into at most five vertices according to the aligned
segment of the best scoring edge: the aligned segment itself
and the left and right overhangs on either of the sequences

Figure 1. Hierarchical clustering as graph contraction. The best similarity edge
is indicated by the thick line, and the missing edges to which a fixed score is
assigned are indicated by the broken lines.
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(or clusters); we denoted them sM, sL1
, sL2

, sR1
and sR2

. For
each s3 2 S(s1,s2), the edges sim(s1,s3) and sim(s2,s3) were
reconnected to one or more of the new segments, say sM, and
the information in these edges, say sim(sM,s3) ¼ (score(sM,s3),
aliM3, ali3M), was updated appropriately, by averaging
the alignment lengths as well as the scores over all of the
relationships included in the merged edges.

Figure 2 shows a simplified example, which contains
clusters constituted from six domains, A–F, each of which
is 100 residues long. One can easily validate this artificial
example, since all alignment boundaries are simply equivalent
to the domain boundaries, but this assumption generally does
not hold in real cases. For practical implementation, it is
necessary to answer the following questions: (i) how do we
determine the exact positions to be split on the sequences s1

and s2, and (ii) how do we update the information in the edges
sim(s1,s3) and sim(s2,s3) for each s3 2 S(s1, s2)?

The resulting structure is a directed acyclic graph rep-
resenting overlapping trees, as shown in Figure 2C; it is further
processed for orthologous grouping (see below).

Some concepts: segment overlap, position mapping and
alignment consistency

Before describing the procedure precisely, we will introduce
some definitions. Let |a| denote the length of the segment a,
i.e. |a| ¼ a.to�a.fr + 1. For the two segments a and b,
a [ b ¼ [min(a.fr,b.fr), max(a.to,b.to)] and a \ b ¼
[max(a.fr,b.fr), min(a.to,b.to)]; we define [p,q] ¼ f if p > q.
The segments a and b are overlapped if |a \ b| > Lov; we
denote this by the predicate overlap(a,b). We also introduce a
partial order, 
, between non-overlapping segments: a 
 b if
a.to < b.fr + Lov. Here, the minimum overlap length, Lov,
between the segments a and b is determined by
Lov(a,b) ¼ min{rovl min(|a|,|b|), max(lmin, rov2 max(|a|,|b|))}
with three parameters, 0 < rov2 < rov1 < 1 and lmin. We set
(rov1, rov2, lmin) ¼ (0.6, 0.3, 50).

The position mapping, Tji(x), is defined as the position of
the sequence j aligned against the position x of the sequence i.
Although this mapping can be directly obtained from the
alignment information, positions other than the endpoints of

each alignment need to be mapped by interpolation since our
algorithm remembers only the endpoints. Here, we used a
simple linear interpolation:

TjiðxÞ �
ðx � f ijÞðtji � f jiÞ=ðtij � f ijÞ þ f ji ðf ij < x < tijÞ
x � f ij þ f ji ðx < f ijÞ
x � tij þ tji ðtij < xÞ

‚

8<
:

where fij ¼ aliij.fr and tij ¼ aliij.to. We also denote the map-
ping of the segment S ¼ [S.fr,S.to] by Tji(S), which is equiva-
lent to the segment [Tji(S.fr), Tji(S.to)]. For example, the
equality aliji ¼ Tji(aliij) always holds by definition.

In gUPGMA, we consider the three sequences s1, s2 and s3

at once. Although we usually assume that all pairwise align-
ments between them are embedded in a common multiple
alignment, sometimes this assumption does not hold (espe-
cially when there is an internal repetitive structure). To test
this, we checked the equivalency of the overlapping patterns
between the two segment pairs: {ali31, ali32} on s3 and {ali13,
T12(ali23)} on s1; we denote this by the predicate consis-
tent(s1,s2,s3). An overlapping pattern is defined by the order
of the four endpoints of the segment pair along each sequence.
There are 13 possible patterns, among which we defined an
equivalency allowing some flexibility (see Supplementary
Figure S1).

Determination of domain boundaries

We must determine up to four boundaries, i.e. the left and
right boundaries on the sequences s1 and s2; we denote them
B1 ¼ ½bL1

‚bR1
� and B2 ¼ ½bL2

‚bR2
�. The problem would be

trivially solved as B1 ¼ ali12 and B2 ¼ ali21 if the alignment
boundaries simply correspond to the domain boundaries.
Although this strategy works in typical cases, because the
best-scoring alignments usually have the highest reliability,
it can also yield spurious splits when the alignment boundary
leads to a partial covering of a domain. Moreover, our purpose
here is to split genes into the domains minimally required
for ortholog grouping. Therefore, the procedure checks each
s3 2 S(s1,s2) and extends the boundary when s3 supports the
extension (Figure 3A), and splits the sequence when some of
the s3 sequences supports the split (Figure 3B).

Figure 2. Overview of the domain splitting procedure. (A) A similarity graph that has 7 clusters (vertices) containing 12 sequences, which are constituted from six
domains, A–F, each of which is 100 residues long. The numbers in brackets on each edge indicate the coordinates of the aligned segments. The best similarity edge,
sim(s1,s2), that is selected for merging is colored red. At the bottom is the schematic illustration of the alignment between s1 and s2. (B) A similarity graph, after the two
clusters have been merged and split. The newly created nodes are colored red. (C) The resulting clustering tree. The process of merging ABCD and BCDE, at the
center of the figure, corresponds to the process shown in (A) and (B). In this case, CD is not actually split, because D is always adjacent to C, and neither is EF.
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We will now focus on the boundary, bR1
. Starting from

the initial boundary, b
0

R1
¼ ali12:to (the prime indicates a

tentative extended boundary), the procedure examines ali13

and ali23 for each s3 2 S(s1,s2) and extends the boundary to
the right when the following conditions are met (Condition I;
Figure 3A): (i) sim(s3,s1) 2 H and sim(s3,s2) 2 H, (ii) con-
sistent(s1,s2,s3), (iii) overlap(ali13, ali12) and overlap(ali23,
ali21) and (iv) ali13.to > ali12.to and ali23.to > ali21.to. Let
S1 � S(s1,s2) be a set of s3 satisfying Condition I. Then, the
boundary is updated as b

0

R1
¼ maxs32SI

fminðali13:to‚
T12ðali23:toÞÞg.

On the other hand, if there is a s3 2 S(s1, s2) satisfying the
following conditions (Condition II; Figure 3B), we should split
the sequence: (i) ali12 
 ali13 but not ali21 
 ali23 (typically
sim(s3,s2) =2 H, but domain swapping or repetitive structures
may yield other patterns), (ii) |ali31| > rcov|s3| with a coverage
parameter, 0 < rcov < 1 and (iii) score(s1, s3) > csplit with
another cutoff score, csplit > c. Only the first condition is
essential, which suggests that ali13 and ali12 belong to different
domains, while the other conditions are useful to prevent spur-
ious splits from arising when the similarity of ali13 is too weak
for an orthologous match.

Let SII � S(s1, s2) be a set of s3 satisfying Condition II. We
split the sequence at bR1

¼ b
0

R1
if either of the following con-

ditions is satisfied: (i) |SII| > nsplit and jsR1
j ¼ js1j�b

0

R1
> Lmin,

where |SII| denotes the number of sequences within the clusters
contained in the set SII, or (ii) jsR1

j > Lmax > Lmin regardless
of SII; otherwise, we set bR1

¼ js1j. The first condition requires
that at least nsplit sequences satisfy Condition II, whereas the
latter allows a sufficiently large (>Lmax) unaligned segment to
be treated as an independent domain. Here, we set nsplit ¼ 1,
Lmin ¼ 40 and Lmax ¼ 400.

Finally the segment sM is constructed by merging the
segments B1 and B2 (Figure 3C). More precisely, it consists
of three parts: the aligned segment with the length
lMM ¼ avg12(|ali12|,|ali21|) and the left and right unaligned
segments with the lengths lML ¼ maxðali12:f r�bL1

‚
ali21:f r�bL2

Þ and lMR ¼ maxðbR1
�ali12:to‚bR2

�ali21:toÞ,
respectively. Using these equations, the aligned region on
sM is expressed as [lML + 1, lML + lMM]. Consequently, the
correspondence between s1, s2 and sM can be represented as
aliM1 ¼ aliM2 ¼ [lML + 1,lML + lMM], ali1M ¼ ali12 and

ali2M ¼ ali21 (Figure 3C), and can be used for mapping
positions between the original and merged sequences (through
the function TM1, etc.).

Updating the alignment information

Next, the alignment information between each s3 2 S(s1,s2)
and each new segment (sM, sL1

, etc.) is updated (Figure 3C).
The procedure is rather straightforward, although somewhat
tedious. Here, we briefly list the key points:

(i) Determine the domain boundaries on s3 (denoted by
B3 ¼ ½bL3

‚bR3
�). If consistent(s1,s2,s3) holds, set

B3 ¼ avg12 (T31(B1),T32(B2)), but here we consider only
the boundaries that are actually split. Otherwise, prioritize
the sequence with better scoring alignment. For example,
when score(s1,s3) > score(s2,s3), then B3 ¼ T31(B1).

(ii) Determine the endpoints of the alignment between s3 and
sM. If consistent(s1,s2,s3) holds, then merge the two
alignments to construct the new alignment with
aliM3 ¼ (TM1(ali13) [ TM2 (ali23)) \ [1,|sM|] and
ali3M ¼ ðali31 [ ali32Þ \ ½bL3

‚bR3
�. Otherwise, take the

alignment with the better score for the new alignment.
For example, when score(s1,s3) > score(s2,s3), then
aliM3 ¼ TM1(ali13) \ [1,|sM|] and ali3M ¼ ali31 \
½bL3

‚bR3
� (this includes the case sim(s3,s2) =2 H).

(iii) Determine the endpoints of the other alignments.
For example, the alignment between s3 and sL1

is given
by aliL13 ¼ ali13 \ ½1‚bL1

�1� and ali3L1
¼ ali31\

½1‚bL3
� 1�, and the alignment between s3 and sR1

is
given by aliR13 ¼ ðali13 \ ½bR1

þ 1‚ js1j�Þ � bR1
(subtrac-

tion means translation) and ali3R1
¼ ali31 \ ½bR3

þ 1‚ js3j�.
(iv) Assign a score to each new alignment. As described pre-

viously, score(sM, s3) ¼ avg12(score(s1,s3),score(s2,s3)),
where the missing edges are assigned the score m; on
the other hand, scoreðsL1

‚s3Þ¼scoreðs1‚s3Þ: Do not split
the score even when the alignment is split into multiple
domains.

Phylogenetic-tree cutting

In the structure shown in Figure 2C, one can identify the
clusters of homologous domains by traversing it from top

Figure 3. Detail of the domain-splitting procedure. Here, s1 and s2 are the sequences to be merged, and s3 is a sequence similar to either s1 or s2. The aligned segments
on each sequence are indicated by rectangles which have the same pattern for corresponding segments. (A) Condition I: the domain boundaries will be extended. (B)
Condition II: the sequence (in this case, s1) will be split. (C) Updating the alignment information. In this example, s1 and s2 (upper half) are merged and split into sM

and sR1
(lower half). The thick lines indicate the extended regions. See text for details.
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to bottom. Also, one can trace the domain-splitting history of
each gene by traversing it in reverse direction. One can split
genes into the domains minimally required for ortholog group-
ing by specifying a set of internal nodes as roots.

To do this, we can fit the gene tree into the species tree
(13,14) if we can safely assume that there are no horizontal
transfers and know both the true gene tree and the true species
tree. However, this assumption does not hold in practice, espe-
cially in microbial genomes, where a substantial number of
horizontal transfers have occurred. Here, we took a simpler but
more practical approach: each root node is recursively cut
until the two clusters merged at that node share no or few
intra-species paralogous genes (Figure 4A). More precisely, a
root node with two child nodes, A and B, is cut when |Ph(A) \
Ph(B)| / min(|Ph(A)|,|Ph(B)|) > p with a given cutoff para-
meter, p, where Ph(A) denotes the set of species contained
in cluster A (phylogenetic pattern). Strictly speaking, the
parameter p must be 0 according to the definition of orthologs,
but actually we found that relaxed conditions, around p ¼ 0.5,
often generated a more plausible classification. Here, one can
incorporate taxonomic relations by counting closely related
species only once. In the validation test described below, we
adopted this strategy using the set of related species that
are assigned the same code in the COG database (see Supple-
mentary Table S2).

After the set of root nodes is determined, the domain bound-
aries on each sequence are determined by mapping the bound-
ary positions stored in each internal node on to its leaf nodes by
applying the mapping functions T1M and T2M recursively.

Rejoining adjacent domains

Sometimes, the tree-cutting procedure violates the domain-
splitting criteria given above. Therefore, the program reexa-
mines the criteria for each adjacent pair of domains in the final
step: two adjacent clusters are rejoined when (i) all members
in one of the clusters are included in the other, and (ii) the
average length of the included cluster is shorter than Lmax. We
also considered more aggressive rejoining at the final step: the
two clusters A and B are joined when either of the following
conditions is satisfied (Figure 4B): (i) |adj(A,B)| > radj1

max(|A|,|B|), where adj(A,B) is the set of adjacent segments
belonging to the clusters A and B, or (ii) |adj(A,B)| > radj2

min(|A|,|B|) and the average length of the smaller group is

shorter than Lmax; the latter is a relaxed version of the
above original criteria. Here we considered two parameters,
0 < radj1 < radj2 < 1, and found the best values through the
COG recovery test described below. This procedure could
improve the clustering quality, since split genes found only
in one or a few genomes often have abnormal split points,
which are unlikely to correspond to meaningful domain
boundaries.

Validation test

Our program, DomClust, was implemented in the C program-
ming language. The program was validated using the COG
database (http://www.ncbi.nlm.nih.gov/COG/) as a reference.
Here we mainly used the 2002 update of the COG database
(23) (referred to as ‘COG02’; 43 genomes, 104 094 sequences,
3307 COGs) but we also used the 2003 update of the COG
database (38) (referred to as ‘COG03’; 66 genomes, 185 898
sequences, 4873 COGs) for comparison. Orthologous groups
were reconstructed from the set of sequences in order to create
the COGs, which were obtained from the COG web site.
Throughout the work, as the original definition of a COG,
we considered only orthologous groups comprising genes of
at least three phylogenetically distinct organisms (defined by
Supplementary Table S2). After eliminating entries that did
not satisfy this condition, we retained 3192 COGs in the
COG02 set. From this set, we further eliminated groups con-
taining too many paralogs to be considered orthologous
groups, and groups conserved in only a few species, which
are generally biased and less interesting. For this, we defined a
‘well-defined orthologous group’ (WDOG) somewhat arbitra-
rily as a group G such that |G|/|Ph(G)| < 2 and |Ph(G)| > 5.
We extracted 2360 WDOGs.

To evaluate the agreement between the two grouping
systems, we first identified a set of corresponding group
pairs; for each reference (COG) group, the best compatible
group was selected from the target groups. The compatibility
between the reference (R) and the target (T) groups was evalu-
ated using Jaccard’s coefficient |R ^ T| / (|R| + |T| � |R ^ T|),
where R ^ T denotes a set of segment pairs overlapping
between R and T. Here, we considered that the segments a
and b are overlapped if |a \ b|/max(|a|,|b|) > 0.5. After the set
of corresponding group pairs was identified, the total agree-
ment was evaluated by the number of matching group pairs

Figure 4. Post-processing of the clustering algorithm. (A) The phylogenetic-tree cutting procedure. The procedure recursively checks whether child clusters of each
root node share intra-species paralogs. The three-letter code on each leaf indicates the species name, and the number at each internal node indicates the number of
species shared by its child clusters (|Ph(A)\ Ph(B)|). (B) Rejoining adjacent clusters. Two clusters, A and B, are joined when most of the segments (cutoff ratio radj1)
belonging to each cluster are adjacent to each other [the segment set adj(A,B)], or almost all of the segments (cutoff ratio radj2) belonging to the smaller clusters are
adjacent to the other cluster.
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(MGPs). For this, we introduced the following MGPs: an exact
MGP is a group pair satisfying |R ^ T| ¼ |R| ¼ |T|, a phylo-
MGP is a group pair satisfying |Ph(R ^ T)| ¼ |Ph(R)| ¼
|Ph(T)| and | R| > |T|, and a m%-MGP is a group pair satisfying
|R ^ T| / |R| > m/100 and |R ^ T| / |T| > m/100. Let MEx, MPh,
M80 and M60 be the number of exact, phylo-, 80%-, 60%-
MGPs, respectively. The total agreement was evaluated by
MTot ¼ MEx + MPh + M80 + M60. Note that there are overlaps
between the various types of MGP, e.g. an exact MGP is also
any other type of MGP, and therefore is weighted 4 times as
much as a proper 60%-MGP.

For the purpose of comparison, we also tested the following
clustering methods: (i) single linkage clustering (SLink),
(ii) ‘triangular linkage clustering’ (TriLink), which is our
implementation of the original method described in the
COG paper (22) and consists in the merging of triangles in
the graph of the best hits when they share the same side and
(iii) the TribeMCL algorithm (9) (the program available at
http://micans.org/mcl), which uses the equilibrium probabil-
ities of a Markov chain defined on the similarity graph for
evaluating transitive similarities, a method recently applied to
the ortholog grouping problem (30).

For these methods, the BBH relationships were used as
input. Here, we used a relaxed criterion: a gene pair (a, b)
of the genomes A and B is considered to be in a BBH rela-
tionship when the genes satisfy score(a,b) > rBH max
{maxy2B[score(a,y)],maxx2A[score(b,x)]}, with one para-
meter, 0 <rBH < 1 (rBH ¼ 1 corresponds to the rigorous
BBH). Intra-species homologs were also included when a
gene pair (a,b) of the genome A satisfied score(a,b) > rBH

max {maxx2G�A[score(a,x)],maxx2G�A[score(b,x)]}, where
G–A denotes all genomes except A. In addition, we also pre-
pared BBH relationships from which alignments with low
coverage, defined as max(|ali12|/|s1|,|ali21|/|s2|) < rcov, were fil-
tered out. During the evaluation, we systematically changed
the parameters rBH and rcov together with the score cutoff c (for
SLink and TriLink) or the inflation parameter I (for
TribeMCL) to find the parameter set that gives the best
MTot. On the other hand, all similarity relationships were
used in DomClust, since the algorithm already includes
such best-hit-first criteria.

Stability of the clustering methods

We evaluated the stability of the clustering methods by
comparing two sets of clusters created from two different
datasets, COG02 (old) and COG03 (new). For each method,
the same parameters as those selected above (i.e. those giving
the best MTot for the COG02 set) were used. After clustering,
sequences only in the new dataset were eliminated. In the
comparison, we examined which new clusters the members
of each old cluster belonged to, and classified each old cluster
(Cold) into the following six categories: (i) unchanged: there
is a unique new cluster that consists of the same members as
Cold; (ii) group-merged: Cold is merged with other old clusters
into a new cluster; (iii) group-divided: Cold is divided into
multiple new clusters, each of which contain no member of
the other old clusters; (iv) domain-merged: similar to group-
merged, but allowing different domains (usually adjacent to
one another) to fuse into one; (v) domain-divided: similar to
group-divided, but allowing splits of a sequence into multiple

domains; (vi) others, including more complex cases. We con-
sidered the ratio of ‘unchanged’ clusters as an indication of
stability. See Supplementary data for the precise definition.

RESULTS

DomClust took about a minute or more to classify the
entire COG02 dataset (|H| ¼ 3.5 · 106) on a 2.4 GHz Xeon
machine. This was more than four times faster than TribeMCL
with BBH relationships when using the selected set of para-
meters, even though TribeMCL used a smaller input (Table 1).
DomClust has been available on the MBGD server (http://
mbgd.genome.ad.jp/) (32), on which there are more than
200 classified microbial genomes (the DomClust program
itself is available at http://mbgd.genome.ad.jp/domclust/),
but here we focused on the validation of the method using
this smaller dataset. At first, as an example of DomClust
classification containing domain fusion or fission events, we
show the orthologous groups of RNA polymerase beta (RpoB)
and beta’ (RpoC) subunits (Figure 5). These subunits are fused
into one gene in the genomes of two strains of Helicobacter
pylori, 26695 (Hpy) and J99 (jHp), while in most archaea,
each subunit is further divided into two genes. The history
of domain splitting can be traced by traversing the tree in a
bottom-up manner (Figure 5A): the algorithm first joined the
fused genes of Hpy and jHp, and then it divided the cluster into
two domains when joining the cluster with the RpoC ortholog
of the Campylobacter jejuni (Cje) genome; the remainder
domain was subsequently joined with the RpoB ortholog of
Cje. By repeating this procedure, DomClust finally identified
five orthologous domains (Figure 5B).

Evaluation of the clustering methods: the
COG recovery test

To evaluate the DomClust algorithm, we performed COG
recovery tests using as a reference the set of 2360 WDOGs
from the COG02 dataset. First, we performed extensive tests to
determine the parameters giving the best agreement with the
COG, according to the total agreement value, MTot (Supple-
mentary Table S1). Next, we compared the results with those
of the other clustering methods (SLink, TriLink and
TribeMCL) applied to the BBH similarity data (Table 2
and Figure 6). For each method, the best parameter set was
again selected using the agreement value MTot (Table 2). In
addition, we also tested the DomClust algorithm without a
domain-splitting procedure, i.e. gUPGMA with the
phylogenetic-tree cutting procedure (designated simply as
gUPGMA).

Table 1. CPU time required for clustering the entire dataset

Methods COG02 dataset COG03 dataset
T a(s) |H|b T/|H|

(· 10�6)
T (s) |H| T/|H|

(· 10�6)

DomClust 65.2 3 500 593 18.6 281.3 12 250 884 23.0
TribeMCLc 277.5 846 210 327.9 1231.5 2 833 190 434.7

aCPU time on a 2.4 GHz Xeon machine.
bThe number of pairwise similarities used as input.
cBBH relationships (with the selected parameters, rBH ¼ 0.7 and rcov ¼ 0.4)
were used as input.
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DomClust recovered 1060 WDOGs (44.9%) exactly and
1429 WDOGs (60.6%) as phylo-MGPs. These values were
greater than those of the other methods (Figure 6). The res-
ulting order of MTot values was SLink (4296) < TriLink
(4702) < TribeMCL (5638) < gUPGMA (5827) < DomClust
(6176). Note that the TriLink method taken from the original
COG construction protocol did not recover the COG groups
well, suggesting that the actual COG construction process was
far more complex.

We tested the significance of the differences between
the methods adjacent in the above inequality with the sign
test, where the numbers of entries that showed better/worse
agreement were counted, and the P-value was calculated
using binomial distribution with a success probability of
0.5. As a result, we found all the differences highly significant
(P < 10�10), except the difference between TribeMCL
and gUPGMA, which was only marginally significant
(P ¼ 0.004) (see Supplementary Figure S2). The performance

superiority of DomClust over gUPGMA indicates that the
domain-splitting procedure was indeed effective. The differ-
ence between TribeMCL and gUPGMA was less clear, but the
advantage of gUPGMA over TribeMCL appeared to be the
larger MPh value: while the MEx values of TribeMCL (930) and
gUPGMA (945) were almost the same, a clearer difference
was observed between the MPh values of TribeMCL (1229)
and gUPGMA (1305).

According to the definition, two distinct subfamilies that
share the same phylogenetic pattern should always be para-
logous. This is the key point of our phylogenetic-tree cutting
procedure. However, in the COG database, the subfamilies A
and B are sometimes merged even if Ph(A) � Ph(B). One of
the examples is COG0593 (ATPase involved in DNA replica-
tion initiation), in which the DnaA orthologs conserved
throughout the bacteria are merged with a distinct subfamily
distributed among some gram-negative bacteria. In such a
case, the counterpart of phylo-MGP (with the same phyloge-
netic pattern but with a smaller group size) can be more appro-
priate than the COG group. In this sense, we consider the
MPh value to be a good indication of the classification per-
formance. This feature of gUPGMA and DomClust also
appears in the average number of inparalogs (Table 2); the

Figure 5. Orthologous groups of RNA polymerase beta (RpoB) and beta’ (RpoC) subunits. (A) Hierarchical clustering trees created by the DomClust program. Each
domain is drawn in a different color. An abbreviated species name (taken from the COG database; see Supplementary Table S2) is shown on each leaf, which is
colored according to the kingdom: salmon, bacteria; khaki, archaea; sky-blue, eukaryotes. (B) Schematic illustration of the gene structures of RpoB and RpoC in
selected genomes.

Figure 6. Comparison of the various clustering methods with the COG recovery
test, where evaluation was done according to the numbers of exact, phylo-,
80%- and 60%-MGPs against the 2360 WDOG reference set.

Table 2. Summary of the selected clusters

Methods Selected parametersa No. of clustersb

rBH rcov Cutoffc Total Splitd Maxsizee Inparalogsf

SLink 1.0 0.8 80 2910 — 3901 1.60
TriLink 0.8 0.4 60 3134 — 1757 1.66
TribeMCL 0.7 0.4 1.5 3652 — 1100 1.52
gUPGMA — — 60 4126 — 473 1.39
DomClust — — 60 4412 1302 396 1.41
COG — — — 3192 971 806 1.65

aThe parameter set yielding the best agreement with the COG classification
(MTot). Note that DomClust uses more parameters. See Supplementary Table S1
for a detailed list.
bThe number of clusters comprising genes of at least three phylogenetically
distinct organisms.
cCutoff scores for SLink, TriLink, gUPGMA and DomClust, and the inflation
parameter for TribeMCL.
dThe number of clusters containing genes that were split into multiple domains.
eThe maximum cluster size.
fThe average number of inparalogs, which is defined as the sum of cluster sizes
divided by the sum of the numbers of organisms included in all clusters. The term
‘inparalog’ is adopted from ref. (41).

Nucleic Acids Research, 2006, Vol. 34, No. 2 653



clusters generated by these methods contain fewer inparalogs
than those generated by other methods.

Note that the phylogenetic pattern itself can play an import-
ant role in function prediction (15). Therefore, our results, in
which the agreement of the phylogenetic patterns between the
automatic and the manual classification was at most 60%,
suggest that the limitation of this approach may be in the
definition of orthologous groups. Note also that there is also
an erroneous phylo-MGP pattern, i.e. the incorrect elimination
of some lineage-specific paralogs. This pattern typically
appears when a simple BBH strategy is used. From the nature
of the algorithm, though, we can safely rule out this possibility
for the gUPGMA and DomClust methods.

Validation of domain boundaries

During the test described above, DomClust identified 5377
split points in 4630 sequences, whereas the COG02 groups
contained 3794 split points in 3117 sequences (here, we also
counted the domains that were excluded from the final set of
clusters due to the lack of orthologs in phylogenetically dis-
tinct organisms). The number of clusters containing genes that
were split into multiple domains was 1302 (DomClust) or
971 (COG02); about 30% of the clusters contained such
genes in either classification (Table 2). There were 1913
sequences (41.3% for DomClust and 61.2% for COG) that
were commonly split by both methods (Table 3). The number
of split points actually depended on the parameters, especially
the rejoining parameters radj1 and radj2. By reducing (radj1,
radj2) from (1, 1) to (0.8, 0.95), the selected set, we could
reduce the number of split points to 68.7% (5377/7822),
while the number of sequences commonly split was only
slightly reduced (1913/1978, 96.7%) (Table 3). This means
that many of the partially matched orthologs were probably
lineage-specific fission (rather than fusion) genes, some of
which might have resulted from frameshift mutations or errors
(37); these were in many cases treated as a single cluster
rather than split clusters in the COG database. However,
it is very difficult to find clear-cut general criteria for deter-
mining whether the clusters should be split or not. Indeed,
although we were able to reduce the number of split points
by further reducing the rejoining parameters, we could not
improve the agreement ratio substantially (Table 3).

We also examined the positional differences between cor-
responding (i.e. nearest) boundaries on the 1913 sequences
commonly split by the two methods. In total, 1498 split points
(66.9% of the 2240 split points) were located within

±50 residues (Table 3). We think that this correspondence
is fairly good, considering that our main purpose was to
group sequences correctly rather than to determine accurate
domain boundaries.

Clustering stability

It is a desirable feature of clustering methods to avoid extreme
changes between releases. To test the stability of each method,
we compared the clustering results created from the COG02
and COG03 datasets with the same method and parameters
(Figure 7A). First of all, the manually maintained COG
database was extremely stable: about 75% of the clusters
were ‘unchanged.’ This is probably because the actual COG
updating process was incremental (38). The automated meth-
ods were generally less stable, but TriLink was extremely
unstable. This instability seems to be related to the emergence
of a ‘giant component’ in the COG03 clusters (Supplementary
Figure S3), which is a common problem of SLink and related
methods. On the contrary, SLink appeared to be relatively
stable at first glance (note that very stringent conditions
were set for SLink; see Table 2). However, when the total
effect was evaluated based on the number of cluster members
(Figure 7B), the ratio of unchanged entries in SLink was
substantially reduced, indicating that a relatively large number
of small clusters accounts for a large proportion of
‘unchanged’ clusters (see Supplementary Figure S3).

On the whole, gUPGMA showed relatively good stability.
Here, the ‘group-merged’-to-‘group-divided’ ratio appeared
to be balanced in contrast to SLink, TriLink and TribeMCL,
where the ratios were biased toward ‘group-merged’ clusters
(it is a logical consequence of the SLink algorithm that all
changes must be ‘group-merged,’ although exceptions may
arise due to the BBH selection step). DomClust showed a
similar tendency but was less stable than gUPGMA, probably

Table 3. Total number of splitting points and the number of splitting points that

agree with COG for each parameter

Parameters No. of splitting points (No. of sequences)
radj1 radj2 Total Agreement

with COGa
Within 50
amino acidsb

1.0 1.0 7822 (6665) 2418 (1978) 1562 (1474)
0.8 0.95 5377 (4630) 2240 (1913) 1498 (1410)
0.7 0.9 4374 (3799) 1998 (1716) 1337 (1260)

aThe number of sequences split by both DomClust and COG and the number of
splitting points on these sequences in DomClust.
bThe number of splitting points in DomClust that were located within 50 resi-
dues of their corresponding splitting points in COG.

Figure 7. Stability of the clustering methods measured through a comparison of
the clusters created from the COG02 and COG03 datasets. Five automatic
classification methods and the original COG database (COG) were examined.
(A) The ratios of the number of clusters created from the COG02 datasets
classified into each category. (B) The ratios of the number of entries belonging
to the clusters classified into each category. Note that ‘domain-merged’ and
‘domain-divided’ are counted only in DomClust and COG.
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due to the additional complexity of the domain-splitting
procedure (see below). In terms of the effects of domain split-
ting, the COG database was again extremely stable. Note that
extreme stability can also be a drawback, in that an extremely
stable method is unable to catch up with meaningful changes
between different releases.

Change in orthologous-domain organization:
an example

As an example of DomClust groups whose domain organi-
zations were changed between different datasets, here we
show the orthologous groups of ModE protein, a
molybdate-responsive transcription regulator (Figure 8) (in
the following example, we used different parameters from
the default ones to simplify the example). When using the
COG02 dataset, DomClust split the Escherichia coli ModE
protein into two domains belonging to the groups referred to
here as Group A and Group B, respectively (Figure 8A); Group
B, the C-terminal one, also included individual proteins
(e.g. HI1370) annotated as molybdopterin-binding proteins,
MopI. On the other hand, when using the COG03 dataset,
DomClust did not split the ModE protein, but classified it
into a different group (Group C) than that containing MopI
(Group D) (Figure 8B). It is known that ModE consists of
two domains: the N-terminal domain carrying a helix–turn–
helix motif (LysR type) for binding to DNA and the C-terminal
domain containing the molybdate-binding site, which is
similar to MopI (39,40); indeed, the C-terminal domain
contains two TOBE domains (Pfam ID: PF03459). Therefore,
the domain splitting shown in Figure 8A is reasonable, but this
does not mean that these are indeed reasonable ‘orthologous’
domains. So how did this organizational change occur?

Actually, in this case, the phylogenetic-tree cutting pro-
cedure was responsible for this change. When using the
COG02 dataset, the algorithm directly generated two separate
domains corresponding to Group A and Group B, respectively
(Figure 8C), since in this case the criterion for tree cutting was
not fulfilled at either of the root nodes (encircled in Figure 8C).
On the other hand, when using the COG03 dataset, the algo-
rithm separated Group D from Group C at the node indicated
by the blue horizontal bar in Figure 8D, because the phylo-
genetic pattern of the right subtree largely overlapped that of
the left subtree (Figure 8D). As a result, the algorithm rejoined
the domain in the remaining (overlapping) subtree with the
adjacent domain and generated Group C.

This example clearly illustrates the complexity and diffi-
culty of the orthologous-domain classification problem, which
are quite different from those of the usual domain classifica-
tion problem. Probably this complexity reduces the clustering
stability of DomClust; nonetheless, we would like to empha-
size that the stability of DomClust is not worse than that of the
BBH-based methods tested here (Figure 7).

DISCUSSION

DomClust as a tool for orthologous-domain
classification: summary

We presented here a method useful for grouping orthologous
domains in multiple genomes. To our knowledge, this is the

first report of a fully automated method of large-scale ortho-
logous grouping at the domain level, and it is also the first
direct application of the traditional UPGMA to this kind of
problem. Although most of the previous studies have relied on
the BBH criterion, BBH pairs are not always orthologs. Two
non-orthologous genes may become a BBH pair when both of
their respective orthologs have been lost. Lineage-specific
paralogs, or inparalogs (41), can complicate the problem,
although it can be overcome by some elaborate methods
such as Inparanoid (24). A more serious problem is probably
the fact that the extension of pairwise ortholog relationships to
multiple genomes by SLink or its relatives such as TriLink is
generally not relevant, because of the non-transitive nature of
orthologous relationships (42). UPGMA, on which our algo-
rithm is based, can solve the problems naturally. Indeed, we
have shown here that UPGMA-based methods have an advant-
age over the BBH-based ones in terms not only of validity,
measured through the COG recovery test, but also of stability.
The main feature of our algorithm is its integration of the
domain-splitting procedure into UPGMA. A comparison of
DomClust with simple gUPGMA with the COG recovery
test has clearly corroborated this advantage.

DomClust as a tool for homologous-domain
classification

Although DomClust was developed mainly for ortholog
grouping, it is also applicable to general homologous-
domain classification by simply omitting the phylogenetic-
tree cutting procedure. To date, numerous methods have
been developed to address this issue (1,43). Since homology
is a transitive relationship, SLink may be the natural solution
to the problem of grouping homologs. However, since SLink is
known to chain different domains, such a method requires
either implicit or explicit handling of multidomain structures.
Clearly, DomClust belongs to the latter (explicit handling)
class of methods, but first we note that gUPGMA without
domain splitting already has some properties common to
methods of the former (implicit handling) class: (i) ProtoMap
(8) and CluSTr (44) use hierarchical clustering schemes that
are recursive applications of SLink clustering with various
cutoff values. They are similar to gUPGMA, but require a
series of arbitrary cutoff values. A more seamless approach
is taken by ProtoNet (5), a recent replacement of ProtoMap,
whose clustering scheme (45) is probably very similar to
gUPGMA, especially when using the geometric means of
the E-values as merged scores. (ii) GeneRAGE (11) is based
on SLink clustering, but it uses a simple criterion to detect
multidomain proteins and splits clusters using this informa-
tion. The criterion is based on a violation of transitivity in
similarity relations, which can be represented as the incom-
plete triangle shown in Figure 1. gUPGMA imposes a penalty
on such a relationship by assigning it a bad score, which
prevents multidomain proteins from connecting different
domain clusters, although DomClust treats this issue more
explicitly. (iii) The normalized cut algorithm (25) and Tri-
beMCL (9) are more sophisticated methods which use a
network flow model on a similarity graph. Although these algo-
rithms are quite different from gUPGMA, all of these methods
take both the similarity scores (as edge weights) and graph
connectivity into consideration in the clustering processes.
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Figure 8. Orthologous groups containing the E.coli ModE protein, an example of DomClust groups whose domain organizations were changed between the COG02
and COG03 datasets. These clusters were generated using the cutoff score of 80. (A) Domain organization of the ModE orthologs generated from the COG02 dataset.
(B) Domain organization of the ModE orthologs generated from the COG03 dataset. The genes added to the COG03 database but not to the COG02 database are
indicated by italic letters. (C) Hierarchical clustering tree for Group A and Group B. The root node of each group is encircled. The intraspecies paralogs appearing in
both subtrees of the root node of Group B are indicated by bold green text. Here, Hin (Haemophilus influenzae) and Pmu (Pasteurella multocida) are counted only
once, since they are closely related organisms. Consequently, the effective number of overlapping organisms is 2, just half of the total number of organisms in each
subtree. This does not satisfy the phylogenetic-tree cutting criterion with the cutoff value of 0.5. (D) Hierarchical clustering tree for Group C and Group D. The
horizontal bars indicate the points of tree cutting, which generated Group C and Group D. The intraspecies paralogs appearing in both subtrees of the original root
node of Group D are indicated by bold green text. In this case, the effective number of overlapping organisms is 4, which exceeds the cutoff of the tree cutting.
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Among the classification methods which explicitly treat the
domain structure, such as ProDom (6), DOMO (7) and ADDA
(10), the salient feature of the DomClust algorithm is again its
integration of a domain splitting procedure into the hierarch-
ical clustering scheme. Because of the greedy nature of the
algorithm, it can be a cost-effective solution to the domain
splitting problem, just as the progressive alignment method is
a cost-effective solution to the problem of gap insertion in
multiple alignment. In fact, DomClust was even much faster
than TribeMCL in our COG recovery test (Table 1). However,
we must note some limitations. First, domain boundaries can
become very ambiguous near the root node. This is partly
because the procedure averages the boundaries at each clus-
tering step. Moreover, the alignment qualities generally
become worse between less similar sequences. Second, the
procedure cannot handle repetitive structures correctly. This
difficulty derives from step (ii) of the alignment updating
procedure. These problems are partly due to the fact that
DomClust does not calculate explicit sequence alignment,
which generally requires much computation time. However,
in practice these problems have relatively little effect on
ortholog grouping.

Difficulty of the ortholog grouping problem

In the original definition by Fitch (12), orthology is a
well-defined concept in terms of evolution, and knowledge
of the correct evolutionary history (gene and species trees)
is the only prerequisite for ortholog grouping. It is interesting
to imagine that a hierarchical structure such as the one shown
in Figure 5A might truly illustrate the evolutionary history
of complex domain structures. Although this poses an inter-
esting problem, unfortunately currently we cannot expect
so much; the similarity score does not exactly reflect the
evolutionary distance, and the UPGMA algorithm often
fails to reconstruct an evolutionary tree unless the molecular
clock assumption holds.

In fact, the definition of orthologous groups is still
somewhat obscure. Although this is not stated in Fitch’s ori-
ginal definition, many biologists strongly expect an ortholo-
gous group to be a group of functionally equivalent genes. In
addition, for prokaryotic genomes, the original definition
based on speciation has already been violated due to the
existence of horizontal transfers. Domain fusion/fission events
add further complexity to the problem. In this context, a
similarity-based clustering method can be a practical solution
to the problem of gene classification. In the COG database,
many difficulties were overcome by manual modifications.
However, COG grouping is not the only ‘correct’ classifica-
tion; indeed, orthologous relationships may be different
according to the set of organisms considered (24,32). More-
over, manual maintenance will soon become impractical, as
the number of genomes increases. In this study, we incorpo-
rated many complex classification processes into a relatively
simple framework with parameters adjusted using the COG
database as a reference. But there is still room for improve-
ment, in that a more rigorous scheme based on the original
ortholog definition must be implemented, especially for eukar-
yotic genome comparison. We believe that our method is
flexible enough to adapt to more rigorous schemes which
might be developed in the future, and that it provides efficient

ways of creating orthologous groups from huge numbers of
genomes, which is the crucial first step in large-scale com-
parative genomics.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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