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Abstract: The trend across the whole of society is to focus on natural and/or biodegradable materials
such as cellulose (Cell) over synthetic polymers. Among other usage scenarios, Cell can be combined
with electroactive components such as multiwall carbon nanotubes (CNT) to form composites, such
as Cell-CNT fibers, for applications in actuators, sensors, and energy storage devices. In this work, we
aim to show that by changing the potential window, qualitative multifunctionality of the composites
can be invoked, in both electromechanical response as well as energy storage capability. Cell-CNT
fibers were investigated in different potential ranges (0.8 V to −0.3 V, 0.55 V to −0.8 V, 1 V to −0.8 V,
and 1.5 V to −0.8 V), revealing the transfer from cation-active to anion-active as the potential window
shifted towards more positive potentials. Moreover, increasing the driving frequency also shifts
the mode from cation- to anion-active. Scanning electron microscopy (SEM) and energy dispersive
X-ray (EDX) spectroscopy were conducted to determine the ion species participating in charge
compensation under different conditions.

Keywords: Cell-CNT fibers; linear actuation; organic electrolyte; change of actuation; potential range

1. Introduction

Smart materials are defined as materials with collaborative functionalities that either
sense or respond to an external, typically electrical, signal [1]. The modern trend has
been to create smart materials from natural, biodegradable, and biocompatible polymers,
such as cellulose (Cell), to which electroactive materials such as carbon nanotubes (CNT)
or other carbon materials such as graphene nanoplatelets [2] are added. Cellulose can
be dissolved in ionic liquids [3], and the mixture with CNT can be processed into fibers
through extrusion [4] or wet spinning [5]. The material is regenerated in an anti-solvent, for
which water is in most cases applied [6]. Cell-CNT fiber composites can find applications
in sensors [7], supercapacitors [8], other energy storage devices [9], smart textiles [10], and
actuators [11,12]. The combination of hydroxypropyl cellulose with wax/halloysite hybrid
microspheres formed nanocomposite films showing potential applications in heat and
energy storage [13]. Numerous attempts have been made to apply CNT material or its
cellulose composites in sensory applications, including for the detection of volatile organic
compounds [14], water [15], or ion selectivity, mostly in aqueous solutions [16].

The basic electromechanical mechanism behind the actuation properties stems from
the CNT inside the cellulose, whose electromechanical responsiveness was first introduced
by Baughman et al. [17] and is brought about by the charging of CNT as in an electrochem-
ical capacitor [18]. The charge injected into CNT is balanced by the electrical double layer,
formed in a non-faradaic process of bringing ions from the surrounding electrolyte close
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to the CNT surface, where high charge concentration leads to changes in C–C covalent
bonds [19]. Some researchers have also suggested a mixed non-faradaic and faradaic
process [20] due to the observation of (apparent) oxidation and reduction waves in cyclic
voltammetry. Some others have proposed that with more negative potential, the faradaic
component is increased [21]. The CNT actuation mechanism has, therefore, still not been
fully understood, and more basic research needs to be carried out.

To shed light on the processes and the overall electromechanical response of the
composites as a function of driving potential and frequency, Cell-CNT fibers [22] are
studied here in an organic electrolyte, to broaden the applicable potential window.

The stress and strain response of the fibers driven by cyclic voltammetry in potential
ranges of 0.8 V to −0.3 V, 0.55 V to −0.8 V, 1.0 V to −0.8 V, and 1.5 V to −0.8 V, as well as
square wave potential steps at frequencies from 2.5 mHz to 0.1 Hz, was determined. To
investigate the sensor properties, chronopotentiometric measurements in potential ranges
of 0.55 V to −0.8 V and 1.5 V to −0.8 V were performed, and the specific capacitances
were determined. Flexible multifunctional materials such as Cell-CNT fiber can give a new
direction to smart materials either as actuators or energy storage materials in wearable
applications.

The Cell-CNT fibers were characterized using SEM micrographs of the cross-sections,
and conductivity was determined before and after driving cycles. The ion content in
positively and negatively charged states was determined by EDX spectroscopy.

2. Materials and Methods
2.1. Materials

Multiwall carbon nanotubes (MWCNT, Baytubes® C150P; amorphous carbon content
0%) with an average outside diameter of 13 nm, inside diameter of 4 nm, and length over
1 µm were obtained from Bayer Material Science (Leverkusen, Germany) and used as supplied.
1-Ethyl-3-methylimidazolium chloride (EMIMCl, >97%), bis(trifluoromethane)sulfonimide
lithium salt (LiTFSI, 99.9%), ethanol (technical), and propylene carbonate (PC, >99%) were
purchased from Sigma-Aldrich (Taufkirchen, Germany). Deionized water Milli-Q+ (Tallinn,
Estonia) was used as supplied.

2.2. Cell-CNT Fiber Formation

Cellulose was dissolved in EMIMCl, known for breaking down hydrogen bonds,
and 50 wt.% MWCNT was dispersed in the solution by ultrasonication for 15 min (Ultra-
sonicator, Hielscher UP200S, Teltow, Germany). The suspension was filled in a syringe
(0.76 mm inner diameter needle) and pressed into anti-solvent (Milli-Q+), forming cellulose
multiwall carbon nanotube (Cell-CNT) fibers, as described in more detail recently [4]. The
Cell-CNT fibers (at least three fibers from independent batches were studied) were washed
several times with ethanol to remove excess of the ionic liquid EMIMCl and dried in an
oven for 24 h at 40 ◦C (2 mbar). The diameter and length of the applied Cell-CNT fibers
at different potential ranges was found to be in an average range of 0.98 mm × 0.44 mm,
with the weight of fibers in the range of 1.2 ± 0.1 mg.

2.3. Electromechanical Deformation

The Cell-CNT fiber samples were cut into lengths of 4.4 ± 0.4 mm and stored for 24 h
in the LiTFSI-PC electrolyte before measurements. The thickness of the Cell-CNT fibers
was measured with a screw gauge (Eiscolab, Rochester, NY, USA) and found to be, in
diameter, in the range of 0.98 ± 0.08 mm. The linear actuation of Cell-CNT fiber samples
was performed on a linear analyzer setup with an in-house software [23], connected to a
potentiostat (Biologic PG581, Seyssinet-Pariset, France), recording the mechanical changes
as a response to the electrochemical signals in real time. The Cell-CNT fibers were fixed
between a clamp with gold contacts (functioning as the working electrode) and a force
sensor (TRI202PAD, Panlab, Barcelona, Spain) in a three-electrode cell with a platinum
counter electrode and an Ag/AgCl (3 M KCl) reference electrode. The linear analyzer
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setup has two modes: one to measure the mass change (calculated to stress σ = weight x
gravimetric constant g/fiber cylindrical area) at a constant fiber length of 1 mm (length
between lower clamp and force sensor); the other to measure the length change of the fiber
(calculated to strain ε = ∆L/L × 100%, ∆L = L − L1 with L being the original length and
L1 the length change) with constant force of 0.5 mN applied. The linear muscle analyzer
setup contains a movable stage to measure the stiffness k (mg µm−1) before the length
change measurements, showing the stiffness of the Cell-CNT fiber to be in the range of
837 mg µm−1 (elastic modulus of 0.62 ± 0.05 MPa).

Before the measurement commenced, the Cell-CNT fibers were stretched in the linear
muscle setup in a range of 0.1% for 12 h in 0.1 M LiTFSI-PC electrolyte. Cyclic voltammetry
and square wave potential step measurements at 2.5 mHz to 0.1 Hz of fiber samples were
performed applying one of the potential ranges: 0.8 V to −0.3 V, 0.55 V to −0.8 V, 1 V
to −0.8 V, and 1.5 V to −0.8 V. Chronopotentiometric measurements were performed by
applying current densities j and frequencies such as ±0.015 A g−1 (0.0025 Hz), ±0.03 A g−1

(0.005 Hz), ±0.06 A g−1 (0.01 Hz), ±0.15 A g−1 (0.025 Hz), ±0.3 A g−1 (0.05 Hz), and
±0.6 A g−1 (0.1 Hz). The charge density at each applied current density and frequency
was constant at ±3 C g−1. From the potential time curves at each applied current density
and frequency, the slopes of the discharging curves (after IR drop) were taken, and with
Equation (1), the specific capacitance Cs was calculated [24].

Cs =
j

−slope
(1)

2.4. Characterization

Scanning electron microscopy (SEM) micrographs of the fiber surface and cross-
section were recorded with a Vega Tescan (Tescan Orsay Holding, Brno-Kohoutovice,
Czech Republic); energy dispersive X-ray spectroscopy (EDX, Oxford Instruments with
X-Max 50 mm2 detector, High Wycombe, USA) was performed from the cross-sections after
linear actuation measurements in charged and discharged state for each applied potential
range after additional polarization at the final potential for 5 min. Raman spectroscopy
applying a 514 nm argon-ion laser (Renishaw plc, resolution 2 cm−1, Wotton-under-Edge,
UK) was performed for cellulose, Cell-CNT, and pristine CNT samples. The electronic
conductivity (via resistivity R) of dried Cell-CNT fibers was determined directly after
formation using a digital multimeter (LCR200 Meter, EXTECH instruments, Nashua, New
Hampshire, USA). With the length l and the area A (cylindrical surface) of the fiber samples
inserted in Equation (2), the electronic conductivity σe was calculated.

σe =
l

R · A
(2)

3. Results and Discussion

As electromechanical transducers, Cell-CNT fibers can have potential applications
in bending actuation [12] or linear actuation [22]. It has been observed recently that the
electromechanical response of Cell-CNT fibers depends both quantitatively and qualita-
tively on the driving frequency as well as potential [22]. However, as in the present study
the potential range was limited by the electrochemical window of water as the solvent,
the full picture can be more complex. In organic solvents, the available electrochemical
window is significantly larger; hence, it is expected that this will provide a much deeper
understanding and perhaps allow us to establish a clearer understanding of the underlying
mechanisms. The potential ranges 1–4 (0.8 V to −0.3 V, 0.55 V to −0.8 V, 1.0 V to −0.8 V,
and 1.5 V to −0.8 V) were considered in this work. The choice of potential ranges covers
limited negative charging (0.8 V to −0.3 V), limited positive charging (0.55 to −0.8 V), and
increased positive charging at ranges 1.0 V to −0.8 V and 1.5 V to −0.8 V. EDX spectroscopy
was performed from the cross-section of Cell-CNT fibers to establish the nature of the ions
accompanying the positive and negative charging in each of the potential ranges. The
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characterization regarding FTIR was shown in previous research [22], and there was no
difference whether 10 wt.% CNT was loaded or 50 wt.% as applied in this research.

3.1. Characterizations of Cell-CNT Fibers

The SEM micrograph of Cell-CNT fibers directly after formation is shown in Figure 1a. The
cross-section of the inner core of the fiber in higher resolution before actuation measurements
is presented in Figure 1b. Raman spectra of cellulose, Cell-CNT, and pristine CNT are shown
in Figure 1c.

Figure 1. SEM micrographs (positively charged state), showing in (a) the Cell-CNT fiber surface (scale bar 200 µm) and in
(b) the cross-section of the inner core (scale bar 100 µm), with magnification of the inner section (scale bar 20 µm) displayed
in (c). Raman spectra (1800 cm−1–1200 cm−1, 514 nm, ion-argon laser) of cellulose (Cell, black line), Cell-CNT (red line),
and pristine CNT are presented in (d).

The fiber image of the CNT-Cell (Figure 1a) shows a bulky, rough-surfaced shape,
similar to what has been observed before [25], owing to the fact that on the surface mostly
cellulose is found. The cross-section of Cell-CNT fibers (Figure 1b) with higher magnifica-
tion of the inner section shown in Figure 1c revealed no visible CNT clusters, but a compact
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section likely representing CNT surrounded by cellulose concentrated in the inner core; this
is in contrast to the 10 wt.% MWCNT loaded fibers studied before [22]. The conductivity of
all Cell-CNT samples was found to be in the range of 1.15 to 1.2 ± 0.1 mS cm−1, which is a
nearly 6-fold improvement over the 10 wt.% CNT loading [22]. As a comparison, Cell-CNT
with 4 wt.% CNT loading made by electro-spinning and with a much lower fiber diameter
(in the range of 90 µm) showed a volume conductivity [14] of 0.8 mS cm−1.

Raman shifts of cellulose shown in Figure 1d [26,27] belonging to C-H in plane bending
vibrations are found at 1333 cm−1, and the 1380 cm−1 peak corresponds to the vibration
deformation of the cellulose backbone, overlapped in Cell-CNT with the strong MWCNT
peaks. The 1414 cm−1 peak (C–O–H), 1453 cm−1 peak (hydrogen bonding [28]), and the
characteristic 1478 cm−1 peak (found in the literature at 1481 cm−1 [26]) belong to CH2
bending vibrations and are also observed in Cell-CNT with small shoulders. The pristine
MWCNT (Figure 2a) with in-plane C–C bonds [29] are characterized by Raman shifts of the
D peak at 1344 cm−1 and the G peak at 1575 cm−1. The peaks are shifted in Cell-CNT to a
lower frequency with the D peak at 1340 cm−1 and G peak at 1570 cm−1, which was found
to be the reason for CNT bundling at high loadings [30] shown with CNT centered in the
middle of the fibers (Figure 1b). The ratios of intensities of ID/IG peaks of pristine CNT and
Cell-CNT, 1.06 and 1.03, respectively, were in a similar range, meaning no alterations to the
CNT material had taken place during regeneration and formation into Cell-CNT fibers.

Figure 2. Cyclic voltammetry (scan rate 10 mV s−1) drives the linear actuation of Cell-CNT fibers in potential ranges 1
(0.8 V to −0.3 V, black curve), 2 (0.55 V to −0.8 V, red curve), 3 (1.0 V to −0.8 V, green curve), and 4 (1.5 V to −0.8 V, blue
curve) in the LiTFSI-PC electrolyte. The results are presented in terms of (a) stress σ, (b) strain ε, (c) current density j, and
(d) charge density Q against potential E. The arrows indicate the direction of the scans.
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3.2. Electromechanical Response

The true mechanism of the electromechanical behavior of CNT composites has re-
mained somewhat of a matter of dispute. There has been a lot of discussion in the literature
about whether CNT material behaves as faradaic [20] or non-faradaic material. Other
research on CNT yarns has pointed out that the size of the applied ions (either cations
or anions) determines the direction as well the extent of stroke [31]. Not much has been
reported regarding CNT composites’ actuation mechanism, with most attention given to
non-faradaic processes [17]. In view of linear actuation, it is essential to have only one
active species and actuation direction addressed, as mixed-mode actuation reduces the
potential applications of such materials. Therefore, the electromechanical response as a
function of driving potential range was studied. Two driving mechanisms, namely, cyclic
voltammetry and square wave potential steps, in the frequency range of 2.5 mHz to 0.1
Hz were considered, to study the potential range effect also as a function of driving signal
and frequency.

3.2.1. Cyclic Voltammetry

Cyclic voltammetric measurements of Cell-CNT fibers in different potential ranges
were performed; the resulting stress and strain curves are presented in Figure 3a,b, re-
spectively. The current density vs. potential curves are presented in Figure 3c, and the
coulo-voltammetric results are shown in Figure 3d.

Figure 3. Square wave potential steps response of Cell-CNT fibers in the different potential ranges 1 (0.8 V to −0.3 V,
··�··, black line), 2 (0.55 V to −0.8 V, ··•··, red line), 3 (1.0 V to −0.8 V, ··J··, green line), and 4 (1.5 V to −0.8 V, ··F··, blue
line) in LiTFSI-PC electrolyte showing in (a) the stress σ and in (b) the strain ε against time at 5 mHz, two subsequent
cycles (3–4). The stress difference ∆σ and the strain ε at potential ranges 1–4 against frequency (log f) are presented in
(c) and (d), respectively.
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As seen from the stress and strain curves (Figure 2a,b), in potential ranges 1–3, there is
major expansion at negative charging. The stress response is higher for potential ranges that
reach higher positive values (0.8 V) but the clipping of negative potentials to −0.3 V appears
to reduce the maximum strain response. While range 3 already hints at the introduction of
mixed-mode response, with stress increasing both upon positive and negative polarization,
it is clearly manifested in range 4, where strain response also has two maxima, one at either
polarization. Mixed response modes reduce the (net) strain difference and stress difference
values, and in general, are not beneficial for an electromechanical system. The cyclic
voltammetry shapes in Figure 2c for potential ranges 1–3 correspond to typical capacitor-
like behavior, while the potential range 4 shows a distinguishable wave at −0.46 V. As no
coupled wave is found on the positive polarization side, it could be related to impurities
left in the CNT materials [32].

With charge densities (Figure 2d), there was a clear relation between the charge
density and the width of the potential window—the broader the window, the larger the
charge exchanged, as expected. The largest increase was observed between ranges 3 and 4,
explained by the 500 mV potential window width difference. Further studies with square
wave potential steps were performed to investigate the responses of Cell-CNT fibers at
different applied potential ranges and frequencies under a more abrupt driving regime.

3.2.2. Square Wave Potential Steps

The square wave potential steps responses of Cell-CNT fibers as stress and strain at
5 mHz in different potential ranges are shown in Figure 3a,b. The current density curves
at the same frequency are shown in Figure S1. The stress difference (absolute stress values)
and strain-frequency dependence of Cell-CNT fibers are presented in Figure 3c,d. The charge
densities in different potential ranges at each frequency upon positive and negative charging
are presented in Figure S2a,b, respectively. For each potential range, at least three samples
were measured; the results presented are the mean values. Positive strain represents expansion
upon negative charging, while negative strain refers to expansion on positive charging.

As in the CV response above, the response to square wave potential steps (Figure 3a,b)
in the potential ranges 1 and 2 shows the main expansion at negative charging with stress
and strain slightly higher for potential range 1. The stress differences and strain in the
potential ranges 1 and 2 decreased with increasing driving frequency, as can be expected.

In potential ranges 3 and 4, the more or less continuous trends in each cycle were
replaced by the development of peaks (Figure 3a,d), which are significantly more dominant
for potential range 4. Similar developments, alas to a much lesser extent, have also
been observed before [22]. Carbide-derived carbon actuators in ionic liquids [33] have
shown similar peaks, as well as to a lesser extent CNT fibers made by dielectrophoretic
methods [34]. The switch from increasing to decreasing stress and strain during a single
polarization step can only mean a shift in the composition of the fiber, or that of the double
layer in particular.

In range 4, the main expansion is already at positive charging. Moreover, the change
in response direction was not only observed during a potential step; it appeared also as a
response to the change in driving frequency (Figure 3c,d). So, unlike the other potential
ranges, in range 4 there was an increase in stress from 2.5 mHz to 25 mHz, while further up
to 0.1 Hz the stress decreased. In range 3, the frequency dependence was non-monotonous
as well, but with an initial decrease in stress difference until the same turning point at
25 mHz. While charge densities for potential range 3 were approximately 1.6 times higher
compared with those in range 1, the potential range 4 showed 2-fold higher charge densities
at low frequencies (Figure S2). To visualize the change in actuation direction in potential
ranges 3 and 4, the respective stress response curves at 1 mHz, 25 mHz, and 0.1 Hz are
shown in Figure 4a–c and the strain curves in Figure S3a–c.
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Figure 4. Square wave potential steps response of Cell-CNT fibers in potential range 3 (green curve) and potential range 4
(blue curve) showing stress σ against time in two subsequent cycles (3 to 4): (a) 10 mHz, (b) 25 mHz, and (c) 0.1 Hz.

In potential range 4 (Figure 4a–c), the stress response evolved with increasing driving
frequency from mixed-mode with dominant expansion on positive charging at 0.01 Hz to
virtually pure anion-dominated response by 0.1 Hz. In comparison, in potential range 3, the
response at 0.01 Hz is dominated by cation-active expansion on negative charging, shifting
to more and more expansion on positive charging with increasing frequency. Therefore,
there is a clear shift towards the dominance of anions in the charge compensation with
increasing driving frequency.

To elaborate on which mechanism is underlying such a change of response, the nature
of the hydrophilic cellulose surrounding the hydrophobic CNT bundles in the core of the
Cell-CNT fiber needs to be discussed. While it has been found that the aprotic PC solvent
has only a slight influence on expansion rate [22], the behavior of the Li+ cations and
TFSI− anions needs to be considered here as well as the interaction of both ions during the
positive/negative charging. The Li+ cations are solvated with 3–4 PC molecules [35], while
the amphiphilic TFSI− anions have been found to be very weakly solvated [36], assumed
to be moving as a separate entity. Therefore, with increasing driving frequency, there is less
and less time for a solvated cation to move in and out of position, and the role of charge
compensation shifts to anions, which may have to rush in to compensate the charge of the
remaining cations.

To gain more insight into which ions are participating during the charging/discharging
process, EDX spectroscopy was performed for Cell-CNT fiber samples after linear actuation
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measurements. The EDX spectra were measured on the inner core of the Cell-CNT fiber
(Figure 1c). The results are shown in Figure 5a–d.

Figure 5. EDX spectra of cross-sections of Cell-CNT fibers after actuation cycles in positively charged state (5 min
polarization, black line) and in negatively charged state (5 min, red line) showing in (a) potential range 1 (0.8 V to −0.3 V),
(b) potential range 2 (0.55 V to −0.8 V), (c) potential range 3 (1.0 V to −0.8 V), and (d) potential range 4 (1.5 V to −0.8 V).

All spectra in Figure 5 show a strong carbon peak (C) at 0.27 keV from CNT and
cellulose and an oxygen peak (O) at 0.52 keV, which relate to the cellulose units. Peaks of
lower intensities were found at 0.68 keV for fluorine (F) and at 2.32 keV for sulfur (S), which
relate to the anion TFSI− of the applied LiTFSI-PC electrolyte (Li+ is not detected by EDX).
The chlorine (Cl) peak at 2.52 keV refers to the EMIMCl ionic liquid, which is still after
several washing cycles partly present in the Cell-CNT fibers, as also seen previously [22].
The solvent applied here—PC—plays a role, as lower swelling than in the case of water [21]
allows less residual EMIMCl to be removed. The EDX spectra of Cell-CNT after cycling in
potential ranges 1 and 2 (Figure 5a,b) had no big change in charging/discharging lines with
nearly the same intensities as fluorine and sulfur. In general, the existence of such peaks
after negative polarization led to the conclusion that TFSI− anions remain incorporated
in the CNT bundles, and all charge compensation is due to Li+ flux. Higher charging,
up to 1.0 V in the potential range 3, led to a decrease in fluorine and sulfur peaks after
negative charging at −0.8 V. Further increase in charging potential to 1.5 V resulted in
strong peaks of fluorine and sulfur, but a clear (nearly 70%) decrease in these peaks after
negative polarization; hence, the anions are mobile enough to leave in these conditions. As
the ion content in the material indicates the mobile species accompanying the charging and
double layer formation, it also has a direct influence on the electromechanical response of
the material.
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In summary, it is not just the amplitude of stress or strain response of Cell-CNT fibers
in the LiTFSI-PC electrolyte that depends on the potential range and the driving frequency,
but also the “sign” of the response. The higher the potential range extends to the positive
side, the larger is the part of the anions in the charge compensation, which is logical.
Furthermore, the higher the driving frequency, the lower the potential required to switch
from cation-dominated to anion-dominated charge compensation.

As any potential application in soft robotics or biomedical devices of Cell-CNT fibers
likely would benefit from a single response direction, one needs to consider both the poten-
tial range and the driving frequency in order to ensure consistent and controllable response.

3.3. Energy Storage

CNT materials either in pristine fiber or as a composite with cellulose as shown here
are known for their energy storage capability [37]. In order to determine the specific
capacitance (Equation (1)), chronopotentiometric measurements were performed.

As discussed above, the potential ranges 1 and 2 had main expansion upon negative
charging with a virtually constant intensity of fluorine observed in EDX (Figure 5a,b);
therefore, it must be assumed that the cations Li+ are the charge carriers. For potential
range 4, the intensity of fluorine increases significantly upon positive charging; therefore,
TFSI− is mostly participating in the electrical double layer. The following analysis is shown
for potential ranges 2 and 4, where in the linear actuation response analysis (Figure 3),
expansion on negative charging (potential range 2, 0.55 V to −0.8 V) and expansion at
positive charging (potential range 4, 1.5 V to −0.8 V) were observed, respectively. The
potential time curves in the selected potential ranges 2 and 4 are shown in Figure 6a. The
specific capacitance against applied current density is presented in Figure 6b.

Figure 6. Chronopotentiometric measurements of Cell-CNT at current densities ± 0.015 A g−1 to ± 0.6 A g−1 (frequencies
2.5 mHz to 0.1 Hz) in LiTFSI-PC electrolyte. The potential time curves (2 subsequent cycles, 3–4) of Cell-CNT in the potential
ranges 0.55 V to −0.8 V (black line) and 1.5 V to −0.8 V (blue line) are shown with current density j at ± 0.03 A g−1 (dashed
line) at 5 mHz in (a). The specific capacitance Cs against applied current density j of Cell-CNT in potential ranges 0.55 V to
−0.8 V (�) and 1.5 V to −0.8 V (F) is presented in (b).

The potential time curves of both the selected potential ranges (Figure 6a) revealed
that there are differences in the shapes, with more positive voltage for range 4 (Epos.charg
0.49 V, Eneg.charg. 0.29 V) in comparison to range 2 (Epos.charg. 0.17 V, Eneg.charg. −0.13 V). The
discharging curves in Figure 6a of range 2 (0.55 V to −0.8 V) had a steeper slope, which
influences the calculated specific capacitance (Equation (1)). The specific capacitance Cs
for potential range 4 was at ±0.015 A g−1 in the range of 21 ± 2 F g−1, nearly 1.5 times
higher than that of potential range 2 at 14 ± 1 F g−1. At each current density, the specific
capacitance in the potential window 4 was higher. The values compare well with those
of cellulose paper with aligned MWCNT [38] of 22 F g−1. In general, MWCNT-based
materials [39] have shown specific capacitances in the range of 18–46 F g−1, while pristine
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MWCNT fiber made by dielectrophoresis [34] can reach 60 F g−1. CNT yarns have shown
specific capacitance in the range of 23 F g−1 in an organic electrolyte [40]. Cellulose paper
with aligned CNT [41] in 50 wt.% loadings has shown maximum specific capacitance in
the range of 46 F g−1.

In summary, the Cell-CNT fibers can be considered truly multifunctional, showing
electromechanical response varied by both potential range and driving frequency, but also
as having energy storage capability with specific capacitance up to 21 F g−1.

Table 1 gives a comparison with previously studied electroactive Cell-CNT composite
materials, in the form of fiber or other types of actuators.

Table 1. Comparison of the electrochemical data of electroactive composites of cellulose with
MWCNT and other combinations.

Electrochemical Actuators
Electrolyte

Applied Voltage
Current Density

Specific Capacitance
(F g−1) Actuation

Regenerated Cellulose +
coating with MWCNT [12]

Ionic liquids
1.0 V to 0.0 V

0.25–0.4 mA cm−2

(20 mV s−1)

0.89
(20 mV s−1)

Trilayer, ±5 V
Anion-dominated

0.7–1.5 cm displacement

Cellulose regenerated +
MWCNT + rGO + MnO2 +

PANI [42]

Ionic electrolyte membrane
1.0 V to 0.2 V
0.58 mA cm−2

(20 mV s−1)

1.4
(1 A g−1)

Trilayer, ±5 V
1.6 cm displacement

Anion-dominated

MWCNT fiber
Dielectrophoresis [34]

TBACF3SO3-PC
0.6 V to −0.55 V

1 mA cm−2,(5 mV s−1)

62
(0.2 A g−1)

Linear actuation
Cation-dominated

0.1% strain

MWCNT yarn
CVD, twisted [31]

TBAPF6/acetonitrile
±1.0 V

50 mV s−1
-

Linear actuation
Mixed actuation

−1.0 V: 0.035% strain
+1.0 V: 0.065% strain

This work
Regenerated Cellulose + 50

wt.% MWCNT fiber

LiTFSI-PC
1.5 V to −0.8 V

(10 mV s−1)
~2 mA cm−2

21
(0.015 A g−1)

Linear actuation
Mixed actuation
−0.8 V: 0.07%
+1.0 V: 0.05%

Electrochemical actuators shown in Table 1 fall into categories of bending (in general
a trilayer system) and linear length change. MWCNT can either form coatings or be inside
the composites. High DC voltage is needed to achieve sufficient bending in air with
either IL or ionic electrolyte membranes (polymer electrolyte). The actuation direction
has been governed by anion influence with displacement at positive charging, with the
exception of MWCNT fiber of dielectrophoretic formation (DEP) with cation-dominated
actuation direction (expansion at negative charging). Several studies have seen mixed-
mode response, and the differences have been explained by relative ion sizes [31]. While
high absolute values in strain or specific capacitance were not aimed for, as the main focus
was actuation direction control, the materials still compare favorably in several aspects.
Further optimization can easily be performed, with increased conductivity as the main tool
for higher performance.

4. Conclusions

The electromechanical response of Cell-CNT fibers in LiTFSI-PC as stress and strain
was investigated as a function of driving potential range as well as driving regime and
frequency. With potential ranges leaning on the negative potential side, the charge com-
pensation was achieved largely by the flux of cations, as confirmed by the EDX analysis.
As the driving potential range was extended towards positive potentials, increasing anion
participation could be observed, being more pronounced if the driving regime is more
abrupt in nature, like with the square potential steps as opposed to the more gradual cyclic
voltammetry. Moreover, the shift to anion activity arrived sooner in potential ranges with
increased driving frequency. Such perhaps unexpected behavior can be explained by the
different solvation strengths of the anions and cations considered. Mixed-ion activity is
typically best avoided in applications; therefore, depending on the driving frequency, some
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potential ranges are more favorable than others for consistent electromechanical response.
The energy storage capacity of the Cell-CNT fibers was also found to be significant, adding
to the beneficial multifunctional character of these remarkable composites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
polym13244439/s1, Figure S1: Current density time curves at frequency 0.005 Hz of Cell-CNT fiber in LiTFSI-PC
electrolyte applied at different potential range 1 (0.8 V to −0.3V, black curve), potential range 2 (0.55 V to −0.8 V,
red curve), potential range 3 (1.0 V to −0.8 V, green curve) and potential range 4 (1.5 V to −0.8 V, blue curve),
Figure S2: Square wave steps of Cell-CNT fibers in LiTFSI-PC electrolyte at different potential ranges 1–4 with 1
(0.8 V to −0.3 V, ··�··), 2 (0.55 V to −0.8 V, ··•··), 3 (1.0 V to −0.8 V, ··J··) and 4 (1.5 V to −0.8V, ··F··) showing
in a: charge densities at positive charging Qcharg and in b: charge densities at negative charging Qdischarg against
a logarithmic scale of frequencies (0.0025 Hz−0.1 Hz), Figure S3: Square wave steps of Cell-CNT fibers in a
potential range 3 (green curve) and potential range 4 (blue curve) showing strain ε of two subsequent cycles
(3rd to 4th) against time t at different frequencies in a: 10 mHz, b: 25 mHz and c: 0.1 Hz.
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