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Abstract: Autophagy is an evolutionarily conserved process that occurs in yeast, plants, and animals.
Despite many years of research, some aspects of autophagy are still not fully explained. This mostly
concerns the final stages of autophagy, which have not received as much interest from the scientific
community as the initial stages of this process. The final stages of autophagy that we take into
consideration in this review include the formation and degradation of the autophagic bodies as well
as the efflux of metabolites from the vacuole to the cytoplasm. The autophagic bodies are formed
through the fusion of an autophagosome and vacuole during macroautophagy and by vacuolar
membrane invagination or protrusion during microautophagy. Then they are rapidly degraded by
vacuolar lytic enzymes, and products of the degradation are reused. In this paper, we summarize the
available information on the trafficking of the autophagosome towards the vacuole, the fusion of the
autophagosome with the vacuole, the formation and decomposition of autophagic bodies inside the
vacuole, and the efflux of metabolites to the cytoplasm. Special attention is given to the formation
and degradation of autophagic bodies and metabolite salvage in plant cells.
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1. Introduction

Autophagy, which literally means “self-eating”, plays a crucial role in the degradation of useless or
damaged cell components such as macromolecules, protein complexes, and organelles. Autophagy also
plays a role in the degradation of foreign elements for cells, such as bacteria, viruses or sperm residues
after egg cell fertilization. It is a conserved process that occurs in a similar way in fungal, animal and
plant cells. This process was first observed in the 1960s, and for decades it was thought to involve
non-selective degradation of cellular elements [1–3]. However, the results of studies performed in the
last three decades reveal that autophagy is a highly advanced and specific process necessary for the
proper functioning of the cell [4]. Under normal conditions, autophagy occurs at low intensity, but as a
result of various abiotic and biotic stress factors (e.g., carbon or nitrogen starvation, salinity, drought,
high temperature, reactive oxygen species or pathogens) the process is dramatically intensified [5–11].
In mammals, autophagy plays an important role during normal growth and development, starting from
early embryogenesis [12]. It is important for maintaining good health because its efficient operation
prevents the development of many diseases, including cancer, diseases of the liver, muscles, and
heart, neurodegenerative diseases (e.g., Huntington’s disease), inflammation, pathogen infections,
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and aging [13–19]. In plants, autophagy participates in the circulation of cell components and acts
as a quality control mechanism. It also functions in some developmental processes such as pollen
maturation, aging, and cell death, including programmed cell death [6,7,20–23].

Some stages of autophagy are currently subject to intensive study, and our knowledge is gradually
increasing. Areas of strong research interest include the initiation of autophagy, formation and elongation
of the phagophore, and identification of the receptors and scaffold proteins involved in selective kinds
of autophagy. However, despite many years of research, some aspects of autophagy are still not fully
understood. Our knowledge about some stages of autophagy is poor, even fragmentary, and in addition,
these stages are currently not of interest to many scientists. These include the final stages of autophagy,
in particular, the degradation of autophagic bodies and the recovery of metabolites constituting the
final products of autophagy. We specifically focus on the formation and degradation of autophagic
bodies and metabolite salvage in plant cells and we compare this knowledge to data related to yeast.

2. Formation of the Autophagic Body during Macroautophagy

2.1. Formation and Trafficking of Autophagosome

Macroautophagy is by far the best-studied and described type of autophagy. The first visible
symptom of macroautophagy is the appearance in the cytoplasm of a cup-shaped structure, called the
phagophore (Figure 1). The phagophore elongates, surrounding and simultaneously separating the
fragment of the cytoplasm together with organelles or other components of the cell that are intended
for degradation. The final stage of phagophore differentiation is the complete surrounding of the cargo
and its sequestration inside the autophagosome. This is a vesicle with a double, bilayer lipid-protein
membrane, containing cargo intended for autophagic degradation [24–29]. The mechanisms of these
initial stages have been intensively studied and described in numerous review papers, e.g., [30–33].
In yeast and plants, the autophagosome fuses with the vacuole creating an autophagic body that
is quickly degraded by vacuolar lytic enzymes [34–37]. In animals, the autophagic body is not
formed because autophagosome fuses with the lysosome, which delivers lytic enzymes enabling the
degradation of the cargo inside the autolysosome (Figure 1) [29,38].
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Figure 1. Schematic diagram of macroautophagy in cells of yeast and plants (upper part of the drawing)
and in cells of animals (bottom part of the drawing). In yeast and plant cells, the autophagosome fuses
to the tonoplast, creating the autophagic body inside the vacuole. In animal cells, the autophagosome
fuses with the lysosome, giving the autolysosome. The autophagic body inside the vacuole and the
content of autolysosome are rapidly degraded, allowing reuse of metabolites.
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Components of the cytoskeleton play an important role in the cytoplasmic transport of
autophagosomes [39]. It is also suggested that the cytoplasmic transport of autophagosomes is
enabled by the microtubule network controlled by endosomal sorting complexes required for transport
(ESCRT) [25]. The occurrence of ESCRT was evidenced in yeast [40,41] and plants [42,43]. An important
role in this transport is played by fully developed autophagosomes with the outer-membrane-anchored
Atg8 and phosphatidylinositol 3-phosphate (PI3P) in yeast (Figure 2, Table 1) and plants (Figure 3,
Table 1) [44–48]. The protein FYCO1 (FYVE and coiled-coil domain-containing protein 1) is also important
in the association of the autophagosome membrane and microtubules, and it has a modular structure
composed of four amino acid domains and spiral signaling domain FYVE [46,49]. Due to its structure,
FYCO1 interacts with the autophagosome surface simultaneously in two places—with Atg8 and PI3P
(both in yeast and plants). These two sites for recognition and linking of the autophagosome with the
FYCO1 make it possible to distinguish between mature autophagosomes and phagophores [46,50,51]
because only on the surface of the mature autophagosomes are there simultaneously proteins necessary
to form stable and double bonds with FYCO1. Attached to the surface of the autophagosome, FYCO1 also
binds to GTP-binding protein 7 (Ypt7) in yeast and Ras-related protein RAB7 (RAB7) in plants [49,52,53],
creating an autophagosome-FYCO1-Ypt7/RAB7 system that allows the binding of the autophagosome
to microtubules. The autophagosome-FYCO1-Ypt7/RAB7 system moves to the plus end of microtubules
by the binding of Ypt7/RAB7 to the kinesin motor proteins [52,54].
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Figure 2. Schematic diagram depicting trafficking and fusion of the autophagosome to the vacuole
and degradation of the autophagic body inside the vacuole in yeast. PI3P and Atg8 anchored in
the outer membrane of the autophagosome are involved in autophagosome trafficking and bind
autophagosome with FYVE and coiled-coil domain-containing protein 1 (FYCO1). The complex
autophagosome-FYCO1-Ypt7 moves along microtubules in the direction of the plus end by the binding
of Ypt7 to kinesin motor proteins. Proteins Vam3, Vam7, Vti1, Ykt6, Ypt7, and complexes Ccz1-Mon1
and HOPS are involved in the fusion of the autophagosome and vacuole. The newly formed autophagic
body inside the vacuole is rapidly degraded by lytic enzymes. Proteins involved in the degradation
of the autophagic body are proteinase A (Pep4), proteinase B (Prb1), and putative lipase Atg15.
Other proteins that are probably involved in the degradation of the autophagic body are Atg22, Atg42,
Prc, and Ybr139. It is suggested that Atg22, Avt3, and Avt4 are involved in metabolite efflux from the
vacuole to the cytoplasm. Question marks indicate the hypothetical involvement of proteins in the
degradation of the autophagic body and metabolite efflux from the vacuole to the cytoplasm.
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Figure 3. Schematic diagram depicting trafficking and fusion of the autophagosome to the vacuole
and the degradation of the autophagic body inside the vacuole in plants. PI3P and ATG8 anchored
in the outer membrane of the autophagosome are involved in autophagosome trafficking and bind
autophagosome with FYCO1 protein. The complex autophagosome-FYCO1-RAB7 moves along
microtubules in the direction of the plus end by the binding of RAB7 to kinesin motor proteins.
Protein VTI12 is involved in the fusion of the autophagosome and vacuole. RABG3B is located on the
surface of the autophagosome but the involvement of this protein in the fusion of the autophagosome
and vacuole in plants remains unclear. It is suggested that the homologous yeast proteins Ykt6,
Vam3, Ypt7, and complex HOPS are involved in the fusion of autophagosome and vacuole in plants.
Additionally, it is suggested that plant proteins CHMP1, FREE1, VPS2.1, CFS1, and the complex
EXO70B1 are involved in the autophagosome trafficking, autophagosome-vacuole fusion, and the
release of the autophagic body into the vacuole lumen. The newly formed autophagic body inside the
vacuole is rapidly degraded by lytic enzymes. One of them can be the vacuolar processing enzyme γ

(VPEγ). Proteins involved in metabolite efflux from the vacuole to the cytoplasm during autophagy
in plants have not been described so far. Only permease AVT3 was confirmed in Arabidopsis thaliana,
but the involvement of this permease in the transport of metabolites coming from the degradation of
the autophagic body is not confirmed. Question marks indicate the hypothetical involvement of plant
proteins and complexes, or plant homologs of yeast proteins, during autophagy.

2.2. Fusion of the Autophagosome with the Vacuole and Formation of the Autophagic Body

During the fusion of the autophagosome with the vacuole in yeast, the outer membrane of the
autophagosome is connected and incarnated to the tonoplast, while the inner membrane together with
the content becomes the autophagic body inside the vacuole (Figure 1, Figure 2) [24,25,55,56]. In yeast,
during fusion, protein Ypt7 and complex HOPS are involved (Figure 2, Table 1) [57,58]. Ypt7 is involved
in autophagy in Magnaporthe oryzae, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces
pombe [59–65]. Ypt7 is recruited to the surface of the autophagosome by the interaction with the calcium
caffeine zinc sensitivity 1-monensin sensitivity 1 complex (Ccz1-Mon1), which is the Ypt7 guanine
nucleotide exchange factor. Furthermore, in the fusion of the autophagosome and tonoplast in yeast
such proteins as cis-Golgi membrane traffic (Vti1) [66], syntaxin VAM3 (Vam3) [67], syntaxin VAM7
(Vam7) [68–70], and Ykt6 are involved (Figure 2, Table 1) [58,71–73].

In plants, the fusion of autophagosome and vacuole and the mechanisms regulating this process are
poorly understood. So far, only the involvement of protein VTI12 has been confirmed in the fusion of
autophagosome and vacuole in plants (Figure 3, Table 1). This protein belongs to the complex named
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soluble N-ethylmaleimide-sensitive factor activating protein receptors (SNARE proteins). Plant VTI12 is
the ortholog of yeast Vti1 (Figure 2, Table 1). In Arabidopsis mutants with T-DNA VTI12 insertion, growing
in rich-nutrient conditions, presented a normal phenotype, whereas under nutrient-poor conditions
accelerated aging was observed, confirming that VTI12 is involved in autophagy in plants [25,74–77].
This protein also participates in the transport of storage proteins from the cytoplasm to the vacuole [76].
Although plants express many SNARE proteins that are involved in a variety of processes such as defense
against pathogen attack [78] or intracellular transport [79], VTI12 is the only SNARE protein that has
been proven to be involved in the fusion of the autophagosome and vacuole in plants (Figure 3, Table 1).
Other protein that may be involved in the fusion of autophagosome and vacuole in plants is RABG3B
(Figure 3, Table 1). So far, the occurrence of RABG3B has been confirmed in Arabidopsis and Populus
and it participates in, among other processes, the formation of the wood conductive elements when
programmed cell death occurs [80,81]. The protein RABG3B is located at the surface of the autophagosome,
however, it remains unclear whether RABG3B can regulate the fusion of the autophagosome and vacuole
in plants. It is suggested that the homologous yeast proteins such as Ykt6, Vam3, Ypt7, and complex
HOPS are involved in the fusion of autophagosome and vacuole in plants [46,82]. Moreover, it is
also suggested that the plant components of the ESCRT complex, such as the charged multi-vesicular
body protein 1 (CHMP1), FYVE-domain protein required for endosomal sorting 1 (FREE1), vacuolar
protein sorting 2.1 (VPS2.1), cell death-related endosomal FYVE/SYLF protein 1 (CFS1), and plant exocyst
complex component EXO70B1 (EXO70B1) are involved in trafficking of the autophagosome, the fusion of
autophagosome and vacuole, and the release of the autophagic body into the vacuole [25]. Nevertheless,
the detailed localization and function of these proteins and complexes are not known.

Table 1. Proteins involved, or hypothetically involved, in trafficking and fusion of the autophagosome
to the vacuole and formation of the autophagic body during macroautophagy.

Protein Organism Function References

PI3P, Atg8 yeast,
plant autophagosome trafficking and fusion [46,47]

Vti1 yeast autophagosome formation, autophagosome-vacuole fusion [66]

Ykt6 yeast retrograde transport, vacuole homotypic fusion, vesicles and
vacuole fusion [71–73]

Vam3 yeast endosome-autophagosome fusion, autophagosome
maturation, autophagosome-vacuole docking and fusion [66,67,70]

Vam7 yeast autophagosome-vacuole fusion [68–70]

Ccz1-Mon1, Ypt7 yeast autophagosome-vacuole fusion [59,63]

HOPS
yeast autophagosome-vacuole fusion [57,58]

plant probably autophagosome-vacuole fusion [46,82]

VTI12 plant
probably autophagosome formation, docking, and

autophagosome-vacuole fusion, storage protein transport
from cytoplasm to vacuole

[74–77]

RABG3B plant
autophagy enhancement during xylem development and
pathogen-induced cell death, probably autophagosome

formation and autophagosome-vacuole fusion
[78,79]

CHMP1, FREE1,
VPS2.1, CFS1,

EXO70B1
plant probably autophagic trafficking, autophagosome-vacuole

fusion, release of autophagic body [25]

3. Formation of the Autophagic Body during Microautophagy

The amount of data in the literature that describes the process of microautophagy in fungi, animals
and plants, including its course, regulation mechanisms, and importance for the cell, is much smaller
than the information on macroautophagy. During microautophagy, an autophagosome is not formed,
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but the tonoplast creates an invagination into which the cargo moves. The invagination of the tonoplast
increases and the cargo is engulfed into the vacuole forming an autophagic body (Figure 4) [83–85].
Microautophagy can also occur through the formation of an arm-shaped protrusion of the tonoplast
when a portion of the cytoplasm is captured into the vacuole (Figure 4). So far, the formation of
the protrusion has been confirmed for microautophagic degradation of peroxisomes in Pichia pastoris
and degradation of anthocyanin aggregates in Arabidopsis thaliana [86,87]. However, the best-known
mechanism of microautophagy is the absorption of the cargo into the vacuole by membrane invagination.
It occurs as a result of changes in the organization of the structure of the vacuolar membrane, mainly
through changes in the content of lipids and large transmembrane proteins [88]. The membrane is
invaginated, and the speed and extent of these changes are regulated in yeast by Vps1p [89] (Table 2).
Environmental factors, such as carbon or nitrogen starvation, also have a significant influence on the
process of membrane differentiation, formation of an invagination, and the subsequent formation of
an autophagic tube and autophagic body [88,90]. The formation of the autophagic tube in yeast is an
ATP-dependent process [91]. Moreover, the processes of membrane differentiation and formation of the
autophagic tube and autophagic body are regulated by numerous Atg proteins and signaling complexes.
Two Atg7-dependent ubiquitin-like conjugation systems (UBLC) are involved in the regulation of
microautophagy. The first of these consists of Atg8 coupled with phosphatidylethanolamine (Atg8-PE)
by Atg7 as an E1-like enzyme and Atg3 as an E2-like enzyme. Moreover, in this UBLC system, cysteine
protease Atg4 proteolytically removes the C-terminal of Atg8 [92,93]. The second UBLC system includes
Atg12 covalently linked to Atg5 through a ubiquitin-dependent conjugation system consisting of Atg7 as
an E1-like enzyme, and Atg10 as an E2-like enzyme. The Atg12-Atg5 dimer oligomerizes with Atg16 to
stimulate the formation of the Atg8-PE complex [94,95]. Furthermore, the Atg7-dependent UBLC system,
called the vacuolar transporter chaperone (VTC) complex, plays an important role in the formation
of the autophagic tube in yeast by controlling the distribution of proteins in different regions of the
membrane [89,96]. In addition, the VTC complex is a potential site for calmodulin activation and thus
initiation of membrane invagination. Calmodulin is a factor stimulating tonoplast invagination during
microautophagy and the formation of the autophagic tube. The top of the autophagic tube expands to
form a pre-vesicular structure. The autophagic tube and the pre-vesicular structure are formed based on
sorting mechanisms and differences in the density of proteins and lipids occurring in the structure of the
autophagic tube. The newly formed vesicles expand due to the action of E1 and E2-like enzymes, and
then bud from the end of the tube, forming the autophagic body inside the vacuole [89,97].
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Figure 4. Schematic diagram of microautophagy in yeast and plants. Microautophagy may occur
by vacuolar membrane invagination, which increases, creating the autophagic tube in yeast, and
the cargo is enclosed inside the vacuole, forming a vesicle surrounded by a single two-layer
membrane—an autophagic body. The occurrence of the autophagic tube in plants has not been
confirmed. The autophagic body may also be formed by an arm-shaped protrusion of the tonoplast
capturing a cargo into the vacuole.
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Microautophagy, similarly to macroautophagy, can occur in a selective manner. One example
of selective microautophagy is micropexophagy—an autophagic degradation of peroxisomes [98].
During micropexophagy peroxisomes are surrounded by an arm-shaped protrusion of vacuole
membrane, the vacuolar sequestering membranes (VSM). It is suggested that the key structure
involved in the formation of VSM is a perivacuolar structure (PVS), which is a structure similar to
the pre-autophagosomal structure (PAS) in yeast macroautophagy. Moreover, PVS participates in
the formation of the micropexophagy-specific membrane apparatus (MIPA) [99]. MIPA is also a
key structure necessary for the complete surrounding peroxisomes intended for degradation during
micropexophagy. MIPA is a double-membrane, small, cup-shaped structure whose fusion with VSM
closes the peroxisomes inside the vacuole [100–102]. Inside the vacuole, a single-membrane vesicle
containing peroxisomes is released, and the forming autophagic body is called a micropexophagic
body. In contrast to macroautophagy, proteins Atg1, Atg11, Atg26, Atg28, Atg30, and Atg35 are
necessary for microautophagy to occur in Pichia pastoris. It has been suggested that these proteins
play a role in the early stages of microautophagy such as recognition and mobilization of peroxisomes
intended for autophagic degradation [102,103]. Proteins Atg3, Atg4, Atg7, Atg8, Atg26, Atg28, and
Atg30 are involved in the formation of MIPA [100,103–106]. Proteins specific for VSM formation during
micropexophagy are Atg11, Atg17, Atg30, and Atg37 [105,107] (Table 2). Another type of selective
microautophagy is micromitophagy, i.e., autophagic degradation of mitochondria. Micromitophagy
occurs by transferring mitochondria from the cytoplasm to the lumen of the vacuole by invagination
of the vacuolar membrane [88,90,108,109]. The increasing invagination of the vacuolar membrane
engulfs the mitochondria intended for degradation and forms an autophagic tube. At the end of
the autophagic tube, the mitochondria-containing autophagic body is formed. Two UBLC systems,
kinase-Atg1, Atg9, Atg11, Vac8, and Vam7 are involved in micromitophagy in yeast [108,110] (Table 2).
In addition to micropexophagy and micromitophagy, the piecemeal microautophagy of the nucleus
(PMN) is described as a selective type of microautophagy. This is the autophagic degradation of a part
of the cell nucleus. This process is initiated by the fusion of membranes of the cell nucleus and vacuole.
The tonoplast protein Vac8 and protein Nvj1, being a part of the nuclear envelope, are involved in
the fusion [111] (Table 2). The next stage is the formation of tonoplast invagination that increases and
transforms into an intra-vacuolar vesicle consisting of three membranes (tonoplast and two nuclear
envelope membranes) and a portion of the nucleoplasm. After the formation of the intra-vacuolar
vesicle, the cell nucleus and vacuole separate and the autophagic body is formed. Effective degradation
of nuclear elements during PMN requires the expression of core Atg genes [112,113]. However, the
participation of Atg proteins seems to be limited to the final stages of this process, namely, the stage of
the detachment of a fragment of the cell nucleus and closing of the tonoplast [114].

Table 2. Proteins involved in the formation of the autophagic body during microautophagy.

Protein Organism Function References

Vps1p yeast regulation of vacuole membrane
invagination [89]

Atg12, Atg5,
Atg10, Atg16 yeast

differentiation of vacuole membrane,
formation of autophagic tube, autophagic

body formation
[92–95]

Atg3, Atg4, Atg7,Atg8,
Atg26, Atg28, Atg30 yeast

formation of the micropexophagy-specific
membrane apparatus (MIPA) during

micropexophagy
[100,103–106]

Atg11, Atg17, Atg37 yeast formation of the vacuolar sequestering
membranes during micropexophagy [102,105]

Vac8, Nvj1 yeast fusion of cell nucleus and vacuole [111]
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4. Degradation of the Autophagic Body and Metabolite Efflux from the Vacuole to the Cytoplasm

Only a few publications describe the degradation of the autophagic body and is often written about
using generalities, predictions, and suggestions. The degradation is rapid and begins immediately after
its appearance inside the vacuole. Compared to the initial stages of autophagy, the mechanism and
regulation of the degradation of the autophagic body and the efflux of metabolites from the vacuole to
the cytoplasm are very poorly investigated and understood. However, these are key stages on the path
to recycling cellular components in the entire autophagy process.

Proteins involved in the degradation of the autophagic body in yeast are proteinase A (Pep4) and
proteinase B (Prb1) (Figure 2, Table 3). These proteins are involved in the activation of cascades of other
vacuolar proteases and hydrolases, which are indicated as key factors involved in the degradation
of the autophagic body in yeast [34,115,116]. However, the cascades involved in autophagic body
degradation have not yet been identified in detail. The best-known and described protein involved in
the degradation of the autophagic body in yeast is Atg15, a putative lipase (Figure 2, Table 3). It has been
proven that this protein plays a role in the degradation of the autophagic body, not only through the
decomposition and recycling of components of the autophagic body membrane but also due to it being
a key protein involved in the degradation of the cargo located inside the autophagic body [34,117–120].
In addition to those described above, there are several other proteins that are thought to be involved
in the degradation of the autophagic body in yeast, but their mechanism of action and functions are
not yet fully understood. Proteins whose participation in the degradation of the autophagic body has
not yet been undeniably confirmed are Atg22, Atg42, Ybr139, and Prc [121–123] (Figure 2, Table 3).
After the degradation of the autophagic body, the metabolites must be transported to the cytoplasm.
Unfortunately, there is minimal knowledge available about this stage of autophagy. It is thought that the
putative vacuolar permease Atg22 is the protein that may be responsible for this transport. This protein
may cooperate with two other vacuolar permeases Avt3 and Avt4 [123–125], which mediate the
transport of leucine and other amino acids from the vacuole to the cytoplasm [123–126]. Nevertheless,
the involvement of Avt3 and Avt4 in the transport of amino acids derived from the degradation of the
autophagic body during autophagy in yeast is still hypothetical (Figure 2, Table 3) [123–125].

So far, in plants, the events occurring during and after the degradation of the autophagic body
inside the vacuole are poorly understood. Only one protein has been described in plants that is likely to
be involved in the degradation of the autophagy body. The VPEγ protein described in Arabidopsis thaliana
is likely to act similarly to yeast Pep4 by activating cascades of other hydrolases that are responsible for
the hydrolysis of various structures found inside vacuoles, including the autophagic body (Figure 3,
Table 3) [127]. However, these hydrolases are not precisely indicated. In the literature, there are no
reports of plant proteins being involved in the efflux of metabolites released during the degradation of
the autophagic body from the vacuole to the cytoplasm. Only the existence of vacuolar permease AVT3
was confirmed in Arabidopsis thaliana [128], but it is not known how important this permease is in the
transport of metabolites coming from the degradation of the autophagic body in plants.
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Table 3. Proteins involved, or hypothetically involved, in the degradation of the autophagic body and
metabolite efflux from the vacuole to the cytoplasm during macroautophagy.

Protein Organism Function References

Pep4
(Proteinase A),

Prb1
(Proteinase B)

yeast activation of protease and hydrolase cascades by
proteolytic processing [34,115,116]

Atg15, yeast
degradation of autophagic body, decomposition

and recycling of autophagic body membrane,
proaminopeptidase I maturation

[34,117–120]

Atg22 yeast

tonoplast protein with limited homology to
permeases, putative vacuolar transporter involved
in the efflux of metabolites from the vacuole to the

cytoplasm

[122,123]

Atg42, Ybr139,
Prc1 yeast probably degradation of the autophagic body [56]

Avt3, Avt4 yeast
vacuolar efflux transporters potentially involved in
the efflux of leucine and other amino acids derived

from the degradation of the autophagic body
[123–126]

VPEγ Arabidopsis
thaliana

probably autocatalytically converted into a smaller
active form, which, like yeast’s Pep4, might be

involved in proteolytically downstream processes
that are responsible for the degradation of various

vacuolar constituents

[127]

AVT3 Arabidopsis
thaliana

vacuolar efflux transporter potentially involved in
the efflux of metabolites derived from the

degradation of the autophagic body
[128]

5. Regulation of Autophagic Body Degradation

The regulation of the whole autophagy process is an extensive topic, which has been intensively
studied for several decades. In short, autophagy under normal conditions occurs at a low intensity;
however, this process is clearly enhanced as a result of various types of abiotic and biotic stresses
mboxciteB29-ijms-741503,B129-ijms-741503,B130-ijms-741503,B131-ijms-741503. In yeast, the main
factors that increase the intensity of autophagy are carbon, nitrogen and phosphate starvation [24,129].
In plants, it is known that carbon or nitrogen starvation significantly increases the intensity of
autophagy [7,24,29,36,132,133]. In yeast, animal and plant cells, mTOR kinase is the main intracellular
center of signal collection associated with autophagy. Amino acids are involved in the activation of
mTOR kinase, which apart from autophagy regulates such processes as growth, proliferation, cell
movement, and protein translation [134–136]. It has also been proven that autophagy plays a key
role in maintaining the level of free amino acids in the cell and protein synthesis under stress [137],
but it has not been explained how amino acids as one of the end products of autophagy regulate this
process. Furthermore, in contrast to the well-known mechanisms regulating autophagy in general,
surprisingly little is known about the regulation of the degradation of the autophagic body, which is
one of the final stages of autophagy. So far in plants, it has only been observed that the degradation of
the autophagic body is clearly inhibited by asparagine during sugar starvation-induced autophagy
in cells of lupin (Lupinus spp.) embryo axes during seed germination [133]. Enhanced autophagy
was found in sugar-starved cells of lupin embryo axes, which was evidenced, among other things,
by a high degree of vacuolization and a clear decrease in phosphatidylcholine content [133,138,139].
Under such conditions, the autophagic bodies were rapidly degraded and they were not observed in
the enlarged vacuoles. Nevertheless, asparagine, a central amino acid in the metabolism of germinating
protein lupin seeds [140], caused clear inhibition in the degradation of autophagic bodies and their
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accumulation in highly enlarged vacuoles. Such accumulation of autophagic bodies inside enlarged
vacuoles proves that asparagine only inhibits the degradation of autophagic bodies, but does not reduce
the intensity of autophagy in general. The effect of asparagine is similar to the action of concanamycin
A (an inhibitor that slows down the breakdown of the autophagic body by lowering the pH of the
vacuole); however, the mechanism of the inhibitory action of asparagine is not known [133].

6. Conclusions and Future Perspectives

Research on autophagy is currently being carried out in many research centers around the world
and is the focus of interest for many research teams. The research on autophagy has two faces. On one
hand, the initial stages of autophagy, selective types of autophagy and its significance in the etiology,
course, and prevention of diseases is being studied intensively, while on the other hand, there are
still many aspects of autophagy that are not popular among the scientific community. The events
occurring in the final stages of autophagy have been explored only marginally and require a lot of
research to be fully understood. Knowledge regarding the formation and, in particular, degradation of
the autophagic body is sparse. Also, the efflux of metabolites from the vacuole to the cytoplasm is
poorly investigated and understood. These stages of autophagy have not been intensively studied,
indeed, they have been analyzed somewhat incidentally and are often written about using generalities
and conjecture. Nevertheless, these latter stages are very important stages, because they complete
the entire process of autophagy. Although autophagy has been known since the 1960s, and in the last
two or three decades our knowledge on autophagy has increased dramatically, there are still many
unanswered questions. For example, is the autophagic body degraded by nonspecific vacuolar lytic
enzymes, or is the autophagic body degraded by some specific autophagy-related enzymes? Or do both
of these enzymes participate in the degradation of the autophagic body? Another poorly understood
stage of autophagy in plants is the transport of metabolites from the vacuole to the cytoplasm after
autophagic body degradation. Also, in this case, there are other unanswered questions such as
whether the constitutive vacuolar membrane transporters are involved in the transport of metabolites
to the cytoplasm or whether some autophagy-related transporters are necessary for the metabolite
salvage at the end of autophagy. It is also unknown whether, and how the spectrum and level of
vacuolar lytic enzymes and membrane transporters change during enhanced autophagy occurring
under different stresses, for example, during carbon or nitrogen starvation. In summary, so far, we
have only discovered the tip of the iceberg and there remains much to be explored on the way to a full
understanding of the whole process of autophagy.
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Abbreviations

Atg Autophagy related proteins
Avt Amino acid vacuolar transporter
Ccz1-Mon1 Calcium caffeine zinc sensitivity 1-monensin sensitivity 1 complex
ESCRT Endosomal sorting complexes required for transport
FYCO1 FYVE (Zinc finger FYVE) and coiled-coil domain-containing protein 1
HOPS Homotypic vacuole fusion and protein sorting
MIPA Micropexophagy-specific membrane apparatus
mTOR Serine/threonine-protein kinase mTOR
Nvj1 Nucleus-vacuole junction protein 1
PAS Phagophore assembly site or Pre-autophagosomal structures
Pep4 Proteinase A
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PI3P Phosphatidylinositol 3-phosphate
PMN Piecemeal microautophagy of the nucleus
Prb1 Proteinase B
Prc Tail-specific protease precursor
PVS Perivacuolar structure
RAB Ras-related protein
UBLC Ubiquitin-like conjugation systems
Vac8 Vacuolar protein 8
Vam Vesicle-associated membrane protein
VPEγ Vacuolar processing enzyme γ

Vps1p Vacuolar protein sorting-associated protein 1
VSM Vacuolar sequestering membranes
VTC Vacuole transporter chaperone
Vti1 Cis-Golgi membrane traffic
Ybr139 Putative serine carboxypeptidase YBR139W
Ypt GTP-binding proteins or Ras-like guanine nucleotide-binding proteins
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