
RESEARCH ARTICLE

BOOME: A Python package for handling

misclassified disease and ultrahigh-

dimensional error-prone gene expression

data

Li-Pang ChenID*

Department of Statistics, National Chengchi University, Taipei, Taiwan, ROC

* lchen723@nccu.edu.tw

Abstract

In gene expression data analysis framework, ultrahigh dimensionality and measurement

error are ubiquitous features. Therefore, it is crucial to correct measurement error effects

and make variable selection when fitting a regression model. In this paper, we introduce a

python package BOOME, which refers to BOOsting algorithm for Measurement Error in

binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic

regression and probit models with responses, predictors, or both contaminated with mea-

surement error. The BOOME aims to address measurement error effects, and employ boost-

ing procedure to make variable selection and estimation.

1 Introduction

1.1 Motivation

Analysis of gene expression data is a popular topic and deserves careful research development.

A motivating example in this paper is a gene expression microarray data collected by [1] and

explored in some references (e.g., [2]). The full dataset can be found in the R package SIS.

The data contain binary responses, acute myeloid leukemia (AML) and acute lymphoblastic

leukemia (ALL), and 7128 gene expression levels that were measured using Affymetrix oligo-

nucleotide arrays. In addition, samples with size 72 come from the two classes, with 47 speci-

mens in class ALL and 25 specimens in class AML. The primary objective of this study is to

characterize the relationship between leukemia and gene expression values, and see how gene

expression values interpret leukemia. To achieve this goal, a commonly used approach is to

build a regression model by treating leukemia and gene expression values as binary responses

and the predictors, respectively. To model a binary response, logistic regression or probit mod-

els are perhaps frequently implemented parametric approaches.

According to this gene expression data, ultrahigh dimensionality (p� n) is a challenging

feature. Since not every gene expression value is informative, using irrelevant predictors in

regression models may affect the performance of classification and induce wrong conclusions.

Therefore, making variable selection and retaining important ones are needed. While variable

selection techniques have been widely explored (e.g., [3–5]), those strategies may fail to handle

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chen L-P (2022) BOOME: A Python

package for handling misclassified disease and

ultrahigh-dimensional error-prone gene expression

data. PLoS ONE 17(10): e0276664. https://doi.org/

10.1371/journal.pone.0276664

Editor: Angelo Moretti, Utrecht University:

Universiteit Utrecht, NETHERLANDS

Received: May 7, 2022

Accepted: October 11, 2022

Published: October 27, 2022

Copyright: © 2022 Li-Pang Chen. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The gene expression

data considered in the manuscript are available in

the R package SIS. In this package, one can insert

two inputs leukemia.train and leukemia.test to get

the dataset, where the first 7129 columns are gene

expression values, and the last column is AML

(labeled 1) and ALL (labeled 0).

Funding: Chen’s research was supported by the

Ministry of Science and Technology (MOST 110-

2118-M-004-006-MY2). No, the funders had no

role in study design, data collection and analysis,

https://orcid.org/0000-0001-5440-5036
https://doi.org/10.1371/journal.pone.0276664
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276664&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276664&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276664&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276664&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276664&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276664&domain=pdf&date_stamp=2022-10-27
https://doi.org/10.1371/journal.pone.0276664
https://doi.org/10.1371/journal.pone.0276664
http://creativecommons.org/licenses/by/4.0/

the case that the dimension is extremely larger than the sample size. The other concern is mea-

surement error in the response and predictors. As discussed in [6–8], gene expression values

may be measured imprecisely due to unadjusted machines. Moreover, as commented by [9], it

is also possible to falsely record ALL (or AML) to AML (or ALL), known as misclassification,

because the microscopy images of AML bone marrow cells contain many immature granulo-

cytes and monocytes, and ALL bone marrow cell microscopy images contain many immature

lymphocytes. It is known that ignoring measurement error effects may cause tremendous

biases and induce incorrect decisions, such as the false exclusion of truly informative predictors

or false inclusion of irrelevant predictors when making variable selection (e.g., [6, 10, 11]).

Therefore, it is crucial to correct measurement error effects. In particular, unlike existing litera-

ture that handles either variable selection or measurement error, the main challenge of this

dataset is to correct measurement error and select informative predictors under ultrahigh-

dimensional data simultaneously, and measurement error may explicitly affect the performance

of variable selection. In other words, truly noninformative predictors may be falsely included if

measurement error effects are ignored (e.g., [6, 11, 12]). As a result, it is necessary to suitably

adjust measurement error effects and then use the corrected version to make variable selection.

1.2 Contributions

To address those concerns, we develop a package BOOME that is now available on https://pypi.

org/project/BOOME/0.0.2/. The purpose of this package is to correct two measurement error

processes in responses and predictors, and employ the boosting procedure to retain important

predictors and estimate nonzero coefficients simultaneously.

In standard analysis of regression models, to estimate unknown parameters, one may require

to derive likelihood functions, or more generally, unbiased estimating functions. Then the

resulting estimator can be obtained by optimizing the constructed estimating functions. In the

presence of measurement error, however, naively adopting error-prone predictors to the esti-

mating functions would yield the biased estimators (e.g., [10, 13]). Therefore, to address this

challenge, as discussed in measurement error framework, one should derive the corrected esti-

mating functions with measurement error effects eliminated before implementing computa-

tional algorithms or estimation methods to derive the estimator, which is the standard step in

measurement error analysis (e.g., [6, 10–18]). Following this idea, our strategy is to derive a new

estimating function with measurement error effects in responses and predictors corrected, then

adopt it to select informative predictors and obtain the corresponding estimators. Specifically, to

correct measurement error effects to the binary response, we define the misclassification matrix

(e.g., [13], p.131), which is formulated by specificity and sensitivity (e.g., [13], p.70), and will be

described in details in Section 2.2, to adjust for measurement error effects in the responses and

derive a new corrected response. Regarding the error-prone predictors, we adopt the sufficient

statistics of the predictors and the regression calibration to correct measurement error effects to

the predictors. Based on such strategies of measurement error corrections, we develop the cor-

rected estimating functions under logistic regression or probit models, respectively. After that,

we implement the corrected estimating functions to the boosting algorithm to make variable

selection and estimation (e.g., [19]; [20], p.608). Detailed descriptions of measurement error cor-

rections and the boosting algorithm are deferred to Sections 3.1 and 3.2, respectively.

1.3 Comparisons

Variable selection and estimation with correction of measurement error have been discussed,

and many methods based on different settings have been developed. For example, [21] con-

sider generalized linear models (GLM) and proposed the generalized matrix uncertainty

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 2 / 23

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://pypi.org/project/BOOME/0.0.2/
https://pypi.org/project/BOOME/0.0.2/
https://doi.org/10.1371/journal.pone.0276664

selector (GMUS), whose idea is based on a Taylor series expansion of the GLM mean function

around the true, but unknown, predictors. [22] considered parametric and semi-parametric

regression models with error-prone predictors, and developed a corrected estimating

equation to make variable selection. For survival data with incomplete responses, [6, 11, 12]

considered several types of survival models and developed penalized estimating function to

deal with variable selection. [23] proposed the MEBoost method, which adopts the boosting

method to select informative variables under error-prone linear regression models. While

many methods have been developed, they primarily focus on measurement error in predictors

and rare work has been available to address measurement error effects in responses. In addi-

tion, although the boosting method has been applied to error-prone data, the existing method

simply focuses on linear regression models, and other types of regression models have not

been explored.

In the past developments, several existing packages based on different software have been

developed to deal with either measurement error or variable selection. To name a few, for the

R software, two packages glmnet [24] and SIS [25] are popular methods to handle variable

selection. For the Python software, xverse [26] can be adopted to do feature selection. How-

ever, they fail to deal with measurement error effects. On the other hand, the two packages

GLSME [27] and mecor [28] in the R software focus on linear models and aim to adjust for

measurement error effects in the response and/or predictors, but they cannot deal with vari-

able selection.

Compared with existing packages, there are some differences from the package BOOME.

Specifically, our package is able to handle ultrahigh-dimensionality and mismeasured data

simultaneously. Unlike most existing frameworks that focus on measurement error in predic-

tors or continuous responses, our approach extends measurement error in binary responses

(a.k.a misclassification), and the model structure for misclassification is more complex than

that under continuous responses. Our approach can deal with error-prone response and pre-

dictors simultaneously. Moreover, boosting iteration may reduce the possibility of falsely

excluding important predictors and enhance the accuracy of the estimator. Most importantly,

our development is based on the Python language, and, to the best of knowledge, there is no

relevant development in Python packages.

1.4 Organization of this paper

The remainder is organized as follows. In Section 2, we introduce two regression models to

characterize binary responses. In addition, we introduce two measurement error models to

describe error-prone responses and predictors, respectively. In Section 3, we present the

BOOME method. Specifically, we first discuss some valid strategies to handle measurement

error effects, and then discuss the boosting method for variable selection and estimation. In

Section 4, we introduce the Python package BOOME, including some important functions as

well as their implementation. In Section 5, we demonstrate the application of the package

BOOME and analyze the gene expression data. Moreover, we also demonstrate simulation stud-

ies. Finally, a general discussion is presented in Section 6.

2 Regression models

2.1 Regression models with binary responses

Following the motivating example in Section 1.1, let n = 72 denote the sample size. For i = 1,

. . ., n, let Yi be a binary response where Yi = 1 represents AML and Yi = 0 indicates ALL. More-

over, let Xi be a p-dimensional vector of gene expressions with p = 7128.

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 3 / 23

https://doi.org/10.1371/journal.pone.0276664

With the absence of measurement error effects, our goal is to use the gene expression values

Xi to characterize the disease Yi through a p-dimensional vector of parameters β. In the frame-

work of GLM, logistic regression or probit models are commonly used. Specifically, the logistic

regression model (LR) is formulated by

P Yi ¼ 1jXið Þ ¼
expðX>i bÞ

1þ expðX>i bÞ
; ð1Þ

and the probit model (PM) is given by

PðYi ¼ 1jXiÞ ¼ FðX>i bÞ; ð2Þ

where F(�) is the cumulative distribution function of the standard normal distribution.

To estimate β, a common strategy is to optimize the likelihood function, or equivalently,

solve the estimating equation. Specifically, for i = 1, . . ., n, the estimating function based on (1)

is defined as

gLRðbÞ ¼ �
1

n

Xn

i¼1

XiYi �
XiexpðX>i bÞ

1þ expðX>i bÞ

� �

; ð3Þ

and the estimating function based on (2) is given by

gPMðbÞ ¼ �
1

n

Xn

i¼1

Xiffiffiffiffiffiffi
2p
p exp �

1

2
ðX>i bÞ

2

� �
Yi

FðX>i bÞ
þ

Yi � 1

1 � FðX>i bÞ

� �� �

: ð4Þ

Solving gLR(β) = 0 or gPM(β) = 0 yields the estimator of β.

2.2 Measurement error models

In applications, as discussed in Section 1.1, Yi and Xi might be subject to measurement error

due to wrong records by investigators or imprecise measurements by unadjusted machines.

Under this scenario, we particularly denote Yi and Xi as unobserved variables, and let Y�i and

X�i denote the surrogate measurements of Yi and Xi, respectively, and they are recorded in the

data.

We now provide an intuition of modeling error-prone data. Let f(�|�) represent the condi-

tional distribution for variables indicated by the corresponding arguments, and let f(�) denote

marginal or joint distribution of random variables. Following the similar discussion in [13]

(Chapter 8), we consider the joint distribution f ðYi;Y�i ;Xi;X�i Þ and factorize it as

f ðYi;Y�i ;Xi;X�i Þ ¼ f ðY�i jYi;X�i ;XiÞ � f ðYijX�i ;XiÞ � f ðX�i jXiÞ � f ðXiÞ

¼ f ðY�i jYi;XiÞ � f ðYijXiÞ � f ðX�i jXiÞ � f ðXiÞ;
ð5Þ

where the second step is obtained by the nondifferential X�i . With the marginal distribution f
(Xi) left specified, the factorization (5) says that the inference about f(Yi|Xi) is conducted based

on examining f ðYijX�i ;XiÞ with the predictor measurement error process being characterized

by f ðX�i jXiÞ, and f ðY�i jYi;XiÞ facilitates the response measurement error process.

To analyze measurement error effects when constructing regression models, we first need

to characterize the relationship between Yi and Y�i as well as Xi and X�i . Specifically, to connect

Yi and Y�i , we consider the conditional probability

pikl ¼ PðY�i ¼ kjYi ¼ l;XiÞ ð6Þ

for k, l 2 {0, 1}, satisfying πi10+ πi00 = 1 and πi01+ πi11 = 1, where πi11 and πi00 are called

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 4 / 23

https://doi.org/10.1371/journal.pone.0276664

sensitivity and specificity, respectively, or known as classification probabilities; πi10 and πi01 are

known as misclassification probabilities (e.g., [13], p.70). Moreover, to characterize πi01 and

πi10, logistic regression (1) or probit models (2) with additional parameter γ are suitable

choices. By the law of total probability, PðY�i ¼ 1jXiÞ and PðY�i ¼ 0jXiÞ can be expressed as

PðY�i ¼ 1jXiÞ

PðY�i ¼ 0jXiÞ

 !

¼ Pi

PðYi ¼ 1jXiÞ

PðYi ¼ 0jXiÞ

 !

; ð7Þ

wherePi ¼
pi11 pi10

pi01 pi00

 !

is called a 2 × 2 misclassification matrix (e.g., [13], p.131) that is

assumed to be invertible.

Next, to describe the relationship between X�i and Xi, we employ the classical measurement

error model

X�i ¼ Xi þ �i; ð8Þ

where �i is independently and identically distributed normal distribution N(0, S�) with S�

being a p × p covariance matrix representing the magnitude of measurement error effects in

the predictors. We assume that �i is independent of Xi.

3 Method

3.1 Correction of measurement error

In this section, we primarily correct measurement error effects to responses and predictors.

Motivated by (7), by multiplying the inverse matrix of Pi to both sides of (7), we can obtain

that

PðYi ¼ 1jXiÞ ¼
PðY�i ¼ 1jXiÞ � pi10

1 � pi10 � pi01

; ð9Þ

which indicates that the unobserved response Yi = 1 can be implicitly characterized by Y�i ¼ 1

with the adjustment in terms of πi01 and πi10. It motivates us to consider the “corrected”

response, denoted Y��i , which satisfies

PðY��i ¼ 1jXiÞ ¼
PðY�i ¼ 1jXiÞ � pi10

1 � pi10 � pi01

; ð10Þ

suggesting that

Y��i ¼
Y�i � pi10

1 � pi10 � pi01

: ð11Þ

In addition, (11) indicates that EðY��i jYi;XiÞ ¼ Yi, verifying that (11) is a suitable correction

to recover Yi. Moreover, we note that (11) holds regardless of the choice of regression models

because it is obtained by the equalities (9) and (10) where the conditional probability can be

(1) or (2).

To correct measurement error effects to the predictors, we provide two different strategies

for different models. For the logistic regression model in terms of Y��i and unobserved Xi, we

follow the similar discussion in [18] and aim to replace Xi by its sufficient statistic:

X��SS;i ¼ X�i þ Y��i S�b; ð12Þ

which can be regarded as correction of X�i . Replacing Yi and Xi in (1) by (11) and (12) gives the

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 5 / 23

https://doi.org/10.1371/journal.pone.0276664

corrected estimating function:

g��LRðbÞ ¼ �
1

n

Xn

i¼1

�

ðX�i þ Y��i S�bÞY
��

i

� ðX�i þ Y��i S�bÞ
expfðX�i þ Y��i S�bÞ

>
bg

1þ expfðX�i þ Y��i S�bÞ
>
bg

�

:

ð13Þ

On the other hand, to handle measurement error effects to the probit model, we adopt the

regression calibration (e.g., [10], Chapter 4), whose key idea is to replace Xi by the conditional

expectation EðXijX�i Þ. By the best linear unbiased prediction, it can be expressed as (e.g., [11, 15])

EðXijX�i Þ ¼ mX þ ðSX� � S�Þ
>
S� 1

X� ðX
�
i � mX� Þ;

where μX and μX� represent the mean vectors of X and X�, respectively, and SX� represents the

covariance matrix of X�. Since μX = μX�, by the method of moments, we obtain that

X��i ≜m̂X� þ ðŜX� � S�Þ
>
Ŝ � 1

X� ðX
�
i � m̂X� Þ; ð14Þ

where m̂X� and ŜX� are empirical estimates of μX� and SX�, respectively. Consequently, replacing

Yi and Xi in (2) by (11) and (14) gives the corrected estimating function:

g��PMðbÞ ¼ �
1

n

Xn

i¼1

X��iffiffiffiffiffiffi
2p
p exp

�

�
1

2
ðX��>i bÞ

2

��
Y��i

FðX��>i bÞ
þ

Y��i � 1

1 � FðX��>i bÞ

�� �

: ð15Þ

3.2 Boosting algorithm

Let g��(β) denote the unified notation to represent the corrected estimating function (13) or

(15). To make variable selection and estimation for β, we adopt the boosting algorithm with

the correction of measurement error effects. The proposed method is called BOOME, and the

procedure is summarized in Algorithm 1.

Specifically, the algorithm starts by an initial value β(0) taken by the p-dimensional zero vec-

tor 0p. Suppose that we run T times iterations, and for each iteration step t = 1, . . ., T, we com-

pute the estimating function g��(β) evaluated at the (t − 1)th iterated value β(t−1), and denote it

as Δ(t−1). After that, we define the active set J t� 1 that collects the indexes satisfying

jD
ðt� 1Þ

j j � t maxj0 jD
ðt� 1Þ

j0 j, where τ 2 [0, 1] is a constant and D
ðt� 1Þ

j is the jth component in a vec-

tor Δ(t−1). It implies that the active set J t� 1 aims to retain informative predictors by treating

D
ðt� 1Þ

j as a signal. Finally, for those j 2 J t� 1, we update the iterated value of the jth component

in β(t−1), say b
ðt� 1Þ

j , by adding an increment Z � D
ðt� 1Þ

j for some positive constant η. Repeating

those steps T times yields the final estimator of β.

In Algorithm 1, τ, η, and T can be user-specific and may affect the iteration result. Similar to

the comment in [29], the algorithm satisfying Tη! 0 as T!1 and η! 0 is approximately

equivalent to the LASSO method. Therefore, it suggests taking η as a small value, such as η = 0.01,

in applications. On the other hand, while T is suggested being large, it may cause over-fitting. To

provide a suitable T and stop the iteration earlier, we suggest a criterion: the iteration stops at T if

k g��ðbðTÞÞ � g��ðbðTþ1Þ
Þ k< x

is satisfied for some positive constant ξ. Finally, for the choice of τ, one may adopt some criteria

such as cross-validation (e.g., [19]).

Algorithm 1: Boosting Procedure in BOOME

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 6 / 23

https://doi.org/10.1371/journal.pone.0276664

Let β(0) = 0p denote an initial value;
for step t with t = 1, 2, . . ., T do
(a) calculate Δ(t−1) = g��(β)|β = β(t−1);
(b) determine J t� 1 ¼ fj : jD

ðt� 1Þ

j j � t max
j jD

ðt� 1Þ

j jg;

(c) update b
ðtÞ
j b

ðt� 1Þ

j þ Z � D
ðt� 1Þ

j for all j 2 J t� 1, and define

b
ðtÞ
¼ ðb

ðtÞ
1
; . . . ;b

ðtÞ
p Þ;

The final estimator is given by b̂≜bðTÞ.

4 Description and implementation of BOOME
We develop a Python package, called BOOME, to implement the variable selection and estima-

tion with measurement error correction described in Section 3. The package BOOME contains

three functions: ME_Generate, LR_Boost, and PM_Boost. The function ME_Gene-
rate aims to generate artificial data under specific models listed in Section 2.1 and error-

prone predictors. The functions LR_Boost and PM_Boost implement the boosting proce-

dure in Algorithm 1, except for the difference that LR_Boost is based on the logistic regres-

sion model, and PM_Boost focuses on the probit model. We now describe the details of these

three functions.

4.1 ME_Generate
We use the following command to obtain the artificial data:

ME Generate ðn; beta; matrix; X; gammaÞ

where the meaning of each argument is described as follows:

• n: The number of observations.

• beta: A p-dimensional vector of parameter β specified by users.

• matrix: A user-specific covariance matrix implemented to (8).

• X: A user-specific n × p matrix of predictors.

• gamma: A p-dimensional vector of parameter γ in πi10 and πi01 specified by users.

The function ME_Generate returns a list of components:

• data: A dataset with error-prone predictors and responses. It is a n×(p+ 1) data frame,

where the column with label y represents the error-prone response, and the column with

label j, j = 1, . . ., p, represents the jth error-prone predictor X�j .

• pr: Two misclassification probabilities πi10 and πi01 in (7).

4.2 LR_Boost
To demonstrate Algorithm 1 with the corrected estimating function (13) for the logistic regres-

sion model, we adopt the following command:

LR Boost ðX; Y; ite; thres; correct X; correct Y; pr; lr; matrixÞ

where the meaning of each argument is described as follows:

• X: A n × p matrix of continuous predictors that are precisely measured or subject to mea-

surement error.

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 7 / 23

https://doi.org/10.1371/journal.pone.0276664

• Y: A n-dimensional vector of binary responses that are precisely measured or subject to mea-

surement error.

• ite: A number of iteration T in Algorithm 1.

• thres: A threshold value τ in Algorithm 1.

• correct_X: Determine the correction of measurement error in predictors. Select “1” if

correction is needed, and “0” otherwise.

• correct_Y: Determine the correction of measurement error in the response. Select “1” if

correction is needed, and “0” otherwise.

• pr: Two misclassification probabilities πi10 and πi01 in (7).

• lr: A learning rate η in Algorithm 1.

• matrix: A p × p covariance matrix S� in (8).

The function LR_Boost returns a list of components:

• estimated coefficients: the p-dimensional vector of estimators of β.

• predictors: Indexes of nonzero values in estimated coefficients.

• number of predictors: The number of nonzero values in estimated
coefficients.

4.3 PM_Boost
To make variable selection and estimation for probit model by using Algorithm 1 with the cor-

rected estimating function (15), we implement the following function:

PM Boost ðX; Y; ite; thres; correct X; correct Y; pr; lr; matrixÞ

The arguments in PM_Boost as well as the output produced by PM_Boost are the same

as those in LR_Boost.

5 Numerical studies

In this section, we implement the functions in the package BOOME to analyze a real dataset as

well as demonstrate simulation studies. Detailed code demonstrations are also available on the

pypi website https://pypi.org/project/BOOME/0.0.2/.

5.1 Analysis of gene expression microarray data

In this section, we implement the package BOOME to analyze a gene expression microarray

data introduced in Section 1.1. The steps for analysis are summarized in Fig 1. As shown in

Step 1 of Fig 1, we recognize that, for i = 1, . . ., n, Y�i is the binary random variable with out-

comes AML and ALL that may possibly subject to misclassification, and X�i represents the

gene expression values that are contaminated with measurement error. Before analyzing this

dataset, we first standardize all predictors, such that the mean and the variance of each predic-

tor become 0 and 1, respectively. Let data_GE in Python code represent the gene expression

microarray data that we introduced in Section 1.1, where the first column is the binary out-

come and the remaining columns are gene expression values. Based on this dataset, the

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 8 / 23

https://pypi.org/project/BOOME/0.0.2/
https://doi.org/10.1371/journal.pone.0276664

following code shows the input of gene expression data and the standardized procedure:

x ¼ data GE:dropð½
0
y
0�;axis ¼ 1Þ; y ¼ data GE½½

0
y
0��

zscore ¼ preprocessing:StandardScalerðÞ

x z ¼ pd:DataFrameðzscore:fit transformðxÞÞ

x z:columns ¼ rangeð1; 7129Þ

data z1 ¼ pd:concatð½x z;y�;axis ¼ 1Þ

To examine the impact of measurement error effects, we primarily consider four settings in

Step 2 of Fig 1:

• Setting 1: Y�i and X�i are not corrected.

• Setting 2: Y�i is corrected while X�i is not.

• Setting 3: X�i is corrected while Y�i is not.

• Setting 4: Y�i and X�i are corrected.

Here Setting 1 aims to implement Algorithm 1 to the estimating functions (3) or (4) with Yi

and Xi replaced by error-prone variables Y�i and X�i , respectively. Setting 2 considers the esti-

mating function in Setting 1 with Y�i replaced by corrected responses (11); and Setting 3 adopts

the estimating function in Setting 1 with X�i replaced by corrected predictors (12) or (14). Set-

ting 4 uses Algorithm 1 to estimating functions (13) or (15), where measurement error in both

responses and predictors are corrected. As discussed in Section 1.1, both responses and predic-

tors are contaminated with measurement error, then Setting 4 is the proposed method by cor-

recting measurement error effects in responses and predictors. On the other hand, Settings 1-

3, known as naive methods, reflect that measurement error in leukemia, gene expressions, or

Fig 1. Diagram of data analysis and implementation of the package BOOME.

https://doi.org/10.1371/journal.pone.0276664.g001

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 9 / 23

https://doi.org/10.1371/journal.pone.0276664.g001
https://doi.org/10.1371/journal.pone.0276664

both are not corrected. Basically, Settings 1-3 are considered to show the impact of ignorance

of measurement error effects and are compared with the proposed method in Setting 4.

In Step 3, we implement the functions in BOOME for four different settings. We first note

that the dataset has no additional information, such as repeated measurements or validation

data, to estimate parameters S� in measurement error models as well as two misclassification

probabilities πi10 and πi01, here we conduct sensitivity analyses, which specify reasonable values

for S� and enable us to examine the impact of different magnitudes of measurement error. In

our study, we specify S� as a diagonal matrix with diagonal entries s2
�

being 0.2, 0.5, and 0.7.

For the implementation, we take s2
�
¼ 0:2 as an example and use the following command to

demonstrate S�, denoted as matrix:

matrix ¼ 0:2 � np:identityð7128Þ

With s2
�

being specified, we further determine misclassification probabilities πi10 and πi01. Spe-

cifically, since πi10 and πi01 defined in (6) rely on Xi, we reproduce Xi by (8), where X�i is

observed gene expression values and �i is generated from a normal distribution with s2
�

given

by 0.2, 0.5 or 0.7. After that, we adopt logistic regression or probit models to characterize (6)

with the corresponding parameter specified as γ≜ 1p, where 1p is a p-dimensional vector with

all entries being one. Therefore, values of πi10 and πi01 are obtained. To show the demonstra-

tion, we summarize the following function pi that is used to implement this idea and compute

πi10 and πi01. The resulting values of πi10 and πi01 are denoted as pr:

def piðdf;covÞ :

x ¼ np:arrayðdf:dropð½
0
y
0�;axis ¼ 1ÞÞ

p ¼ df:shape½1� � 1

n ¼ lenðdfÞ

def meanðpÞ :

zero ¼ ½0�

return zero � p

p ¼ df:shape½1� � 1

m ¼ ½�

p ¼ df:shape½1� � 1

for i in rangeðnÞ :

p ¼ df:shape½1� � 1

e ¼ np:arrayðnp:random:multivariate normalðmeanðpÞ;covÞÞ

p ¼ df:shape½1� � 1

x ¼ np:arrayðdf:T½i�½: p�Þ � e

m list ¼ ½�

scalar ¼ math:expð1þ np:dotðx;np:arrayð½1� � pÞÞÞ

matrix ¼ np:arrayð½½1=ð1þ scalarÞ;scalar=ð1þ scalarÞ�;

½scalar=ð1þ scalarÞ; 1=ð1þ scalarÞ��Þ

m list:appendðmatrix½0�½1�Þ

m list:appendðmatrix½1�½0�Þ

m:appendðm listÞ

m ¼ np:arrayðmÞ

return m

pr ¼ piðdata z1;matrixÞ

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 10 / 23

https://doi.org/10.1371/journal.pone.0276664

We now implement two functions LR_Boost and PM_Boost to analyze the data, where,

for logistic regression model, T is given by 1000, η is set as 0.01, and τ is equal to 0.9; for probit

models, T is given by 2000, η is set as 0.01, and τ is equal to 0.9.

Detailed implementations of the proposed method are described below, keeping in mind

that we demonstrate correct_X = 1 and correct_Y = 1 to show the proposed method

(Setting 4); different values for arguments correct_X and correct_Y reflect different set-

tings mentioned above.

LR BoostðX;Y; ite ¼ 1000; thres ¼ 0:9; correct X ¼ 1; correct Y ¼ 1; pr;

lr ¼ 0:01; matrixÞ

PM BoostðX; Y; ite ¼ 2000; thres ¼ 0:9; correct X ¼ 1; correct Y ¼ 1; pr;

lr ¼ 0:01; matrixÞ

In Step 4 of Fig 1, we report the estimation results. To save limited space and provide pre-

cise information, we summarize the predictors and their estimates that are commonly selected

under s2
�
¼ 0:2; 0:5 or 0.7, and numerical results for all settings obtained by (1) and (2) are

placed in Tables 1 and 2, respectively. Moreover, to see the impacts of different regression

models, we summarize commonly chosen predictors in Table 3.

We first examine Setting 1 where measurement error corrections are not incorporated.

Based on BOOME, the logistic regression model retains 45 gene expression values, and the

probit model suggests that 53 gene expression values should be included. Next, we explore the

case that either the response or the predictors are corrected. Under Setting 2, the logistic

regression model retains 59 gene expression values, and the probit model suggests that 74 gene

expression values should be included. Under Setting 3, the logistic regression model retains 42

gene expression values, and the probit model suggests that 36 gene expression values should be

included. Finally, under Setting 4 where measurement error effects response and the predic-

tors are corrected, we have that the logistic regression model retains 51 gene expression values,

and the probit model retains 75 gene expression values.

For the overall comparisons, we first observe that the variable selection result may depend

on the correction of measurement error effects in the response and/or the predictors. The

number of selected gene expressions under Setting 1 is almost smaller than that under other

settings. For two regression models, the probit model retains more predictors than what the

logistic regression model does, except for Setting 3. Finally, there are 35, 45, 29, and 8 gene

expressions that are commonly selected by two models under Settings 1-4, respectively.

5.2 Demonstration of simulation studies

To show the validity of the BOOME method as well as the implementation of the package, we

conduct simulation studies and demonstrate the programming code in this section.

Let n = 100 denote the sample size, and let p = 1000 or 5000 denote the dimension of pre-

dictors. For i = 1, . . ., n, we generate the p-dimensional vector of predictors Xi from the stan-

dard multivariate normal distribution. Let b0 ¼ ð1; 1; 1; 0
>

p� 3
Þ
>

denote the true value of

parameters, where 0q represents the q-dimensional zero vector. Given Xi and β0, we generate

the binary response Yi.

Noting that {(Yi, Xi): i = 1, . . ., n} is regarded as unobserved data, we now generate error-

prone data fðY�i ;X
�
i Þ : i ¼ 1; . . . ; ng. For the generation of error-prone responses Y�i , we

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 11 / 23

https://doi.org/10.1371/journal.pone.0276664

Table 1. Estimation results based on the logistic regression model.

Setting 1 Setting 2 Setting 3 Setting 4

ID EST ID EST ID EST ID EST

1 134 -0.208 7 0.41 134 -0.04 7 0.438

2 412 -0.606 268 -0.684 412 -0.484 268 -0.338

3 760 0.271 731 -1.161 635 -0.186 731 -1.456

4 804 -1.271 746 -0.11 738 0.196 746 -0.045

5 1144 -0.09 1024 -0.032 760 0.271 1089 -0.12

6 1207 -0.108 1089 -0.133 804 -1.301 1148 0.584

7 1239 -0.566 1148 0.475 1144 -0.123 1307 0.446

8 1260 0.786 1307 0.742 1207 -0.115 1588 -0.132

9 1669 0.155 1687 -0.153 1239 -0.234 1687 -0.085

10 1685 -0.169 1708 -0.229 1260 0.912 1858 1.043

11 1834 1.471 1724 0.049 1669 0.013 1987 0.327

12 1882 1.337 1858 1.126 1685 -0.122 2039 1.184

13 1928 -1.229 1987 0.46 1834 1.496 2059 -0.581

14 1997 0.132 2039 0.903 1882 1.271 2065 -0.294

15 2121 0.033 2047 -0.07 1928 -1.221 2377 1.677

16 2288 0.414 2057 -0.175 1997 0.155 2460 0.281

17 2354 -0.087 2059 -0.169 2288 0.858 2469 -0.039

18 2441 -0.032 2208 0.166 2354 -0.085 2534 -0.799

19 2737 0.051 2377 1.389 2737 0.054 2895 0.035

20 2797 0.052 2460 0.55 2797 0.075 2941 0.058

21 3183 0.376 2534 -0.969 3183 0.228 3276 0.104

22 3252 0.464 2682 0.169 3252 0.801 3432 -0.631

23 3714 0.078 2895 0.102 3714 0.022 3660 0.07

24 3847 1.529 2941 0.733 3847 1.553 3771 -1.121

25 4211 -0.578 3276 0.112 4030 -0.01 3810 -0.298

26 4291 -0.66 3432 -0.378 4211 -0.367 3997 -0.069

27 4328 -0.082 3478 -0.029 4291 -0.88 4054 -0.106

28 4399 -0.092 3771 -0.791 4399 -0.045 4099 -0.438

29 4697 0.126 3810 -0.131 4438 -0.057 4219 1.097

30 4847 0.601 3997 -0.2 4697 0.099 4355 -0.085

31 4951 0.019 4054 -0.119 4847 0.298 4890 0.071

32 5039 0.083 4099 -0.087 4951 0.019 4927 -0.16

33 5230 -0.024 4219 1.208 5039 0.08 4957 0.041

34 5361 -0.169 4263 -0.103 5361 -0.365 5077 -0.074

35 5376 0.034 4355 -0.186 5466 -0.643 5145 -1.21

36 5466 -0.73 4504 -0.028 5833 0.054 5323 -0.015

37 5657 -0.034 4553 -0.178 6049 -0.278 5372 -0.031

38 6041 0.082 4927 -0.16 6162 0.054 5680 0.159

39 6049 -0.282 4957 0.07 6308 0.019 5726 0.662

40 6162 0.055 5077 -0.235 6477 -0.092 5781 0.202

41 6169 0.04 5145 -1.223 6854 -0.878 6067 -0.158

42 6308 0.034 5323 -0.406 6886 0.391 6258 -0.158

43 6477 -0.12 5372 -0.097 6383 0.029

44 6854 -0.822 5680 0.159 6422 -0.48

45 6886 0.495 5726 1.119 6541 -0.202

46 5781 0.443 6680 -0.904

(Continued)

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 12 / 23

https://doi.org/10.1371/journal.pone.0276664

adopt the model (8), where misclassification probabilities πi10 and πi01 are formulated by logis-

tic regression models. On the other hand, to generate error-prone predictors X�i , we adopt the

model (7) with S� being specified as a diagonal matrix and diagonal entries are commonly

specified as s2
�
¼ 0:15; 0:5 or 0.75.

To see the data generation in details, we demonstrate the following code. We first specify

the generation of predictors:

X ¼ ½�

for i in rangeð1000Þ :

X:appendðnp:random:normalð0; 1; 100ÞÞ

X ¼ np:arrayðXÞ

Next, we specify the sample size and β0, and take p = 1000 and s2
�
¼ 0:15 as an example.

Based on those information, we employ the function ME_Generate to generate error-pone

data, where data represents the artificial data from the output of the function ME_Gene-
rate and pr represents two misclassification probabilities.

n ¼ 100

beta ¼ ½1� � 3þ ½0� � 997

cov ¼ np:identityð1000Þ � 0:15

gamma ¼ ½½1�; ½0� � 1000; ½1�; ½0� � 1000�

ME ¼ ME Generateðn;beta;cov;X;gammaÞ

data ¼ ME½1�

pr ¼ ME½0�

Given the generated data, we define the response y and predictors x. To implement the

BOOME method, we specify iteration number, values of τ and η to be ite = 1000,

thres = 0.9, and lr = 0.00001, respectively. We now implement the function

LR_Boost to examine the logistic regression model with measurement error in responses

Table 1. (Continued)

Setting 1 Setting 2 Setting 3 Setting 4

ID EST ID EST ID EST ID EST

47 5981 0.14 6712 -0.051

48 6067 -0.158 6839 0.696

49 6153 -0.021 6912 0.022

50 6258 -0.707 6929 -0.335

51 6422 -0.516 7105 -0.208

52 6680 -1.341

53 6712 -0.124

54 6839 0.996

55 6886 0.107

56 6912 0.029

57 6929 -0.443

58 7001 0.141

59 7105 -0.345

https://doi.org/10.1371/journal.pone.0276664.t001

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 13 / 23

https://doi.org/10.1371/journal.pone.0276664.t001
https://doi.org/10.1371/journal.pone.0276664

Table 2. Estimation results based on the probit model.

Setting 1 Setting 2 Setting 3 Setting 4

ID EST ID EST ID EST ID EST

1 134 -0.103 7 0.081 412 -0.442 4 -1.633

2 263 0.020 53 0.015 490 -0.121 7 1.019

3 412 -0.101 183 -0.054 635 -0.389 83 0.137

4 738 0.035 268 -0.408 738 0.377 183 -0.120

5 758 -0.013 617 -0.040 760 0.271 225 0.054

6 760 0.433 727 -0.079 804 -1.178 731 -0.047

7 804 -0.432 731 -0.499 1144 -0.130 864 0.037

8 1144 -0.013 917 0.062 1207 -0.123 1108 1.407

9 1204 -0.053 1058 0.024 1239 -0.145 1148 1.343

10 1207 -0.065 1089 -0.048 1260 0.957 1307 0.233

11 1239 -0.072 1148 0.256 1685 -0.080 1357 -0.062

12 1260 0.168 1307 0.309 1834 1.297 1402 -0.028

13 1268 -0.022 1326 -0.053 1882 1.076 1687 -0.787

14 1381 -0.029 1565 0.047 1928 -0.980 1716 -0.038

15 1497 0.014 1588 -0.067 1997 0.069 1734 -0.056

16 1669 0.059 1687 -0.093 2288 1.473 1854 0.320

17 1685 -0.066 1708 -0.134 2354 -0.081 1858 0.031

18 1834 0.464 1858 0.424 2737 0.045 1906 -0.155

19 1882 0.433 1944 0.078 2797 0.042 1915 0.132

20 1928 -0.254 1987 0.327 2903 0.075 1987 0.103

21 1941 0.057 2039 0.375 3183 0.055 2039 0.918

22 2061 -0.069 2057 -0.098 3252 1.032 2161 -0.259

23 2288 0.460 2059 -0.026 3847 1.527 2240 -0.276

24 2426 0.052 2301 0.028 4211 -0.280 2373 0.194

25 2737 0.051 2377 0.696 4291 -0.987 2377 0.077

26 2797 0.090 2460 0.235 4438 -0.149 2443 -0.018

27 3144 -0.066 2534 -0.491 4697 0.125 2469 -0.070

28 3183 0.012 2682 0.070 4847 0.081 2661 -0.075

29 3252 0.465 2863 -0.077 5130 -0.115 2764 -0.030

30 3611 -0.016 2941 0.242 5140 -0.079 2809 0.078

31 3714 0.026 2984 -0.024 5361 -0.585 2941 0.050

32 3847 0.544 3016 0.031 5466 -0.598 3016 0.274

33 3932 -0.010 3205 -0.129 5833 0.215 3424 -0.093

34 4050 -0.068 3276 0.140 6049 -0.089 3446 0.051

35 4211 -0.138 3432 -0.026 6854 -1.044 3478 -0.145

36 4291 -0.152 3771 -0.229 6886 0.100 3493 -0.408

37 4399 -0.033 3810 -0.026 3494 0.084

38 4697 0.089 3814 0.067 3572 -0.163

39 4754 0.054 3997 -0.121 3697 -0.038

40 4847 0.130 4054 -0.177 3752 -0.030

41 4951 0.031 4219 0.477 3771 -0.114

42 4955 -0.011 4355 -0.074 3838 -0.032

43 5230 -0.016 4536 0.136 3997 -0.239

44 5290 -0.016 4600 -0.078 4099 -0.202

45 5361 -0.066 4927 -0.255 4103 -0.125

46 5376 0.087 4957 0.031 4219 0.631

(Continued)

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 14 / 23

https://doi.org/10.1371/journal.pone.0276664

and predictors corrected. Detailed implementation and partial output are given below:

x ¼ data:dropð½
0
y
0�;axis ¼ 1Þ

y ¼ data½½
0
y
0��

ite ¼ 1000

thres ¼ 0:9

lr ¼ 0:00001

LR Boostðx;y;ite;thres; 1; 1;pr;lr;covÞ

estimated coefficient : ½1:02; 1:04; 0:99; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0;

0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0�

predictors : ½1; 2; 3�

number of predictors : 3

Table 2. (Continued)

Setting 1 Setting 2 Setting 3 Setting 4

ID EST ID EST ID EST ID EST

47 5466 -0.224 5137 0.076 4458 -0.199

48 6162 0.033 5145 -0.578 4473 0.039

49 6169 0.065 5176 -0.042 4940 0.197

50 6308 0.068 5323 -0.119 5077 -0.339

51 6316 0.022 5372 -0.063 5249 -0.738

52 6854 -0.452 5379 -0.075 5303 0.123

53 6886 0.118 5551 0.013 5372 -0.785

54 5651 -0.033 5420 -0.030

55 5680 0.254 5484 -0.042

56 5726 0.454 5981 0.117

57 5781 0.317 6032 -0.066

58 5804 -0.013 6067 -0.157

59 5805 0.054 6153 -0.270

60 5881 -0.041 6180 0.241

61 5981 0.040 6326 1.097

62 6059 0.017 6341 0.031

63 6067 -0.251 6354 0.075

64 6258 -0.324 6383 0.382

65 6422 -0.273 6418 0.079

66 6451 -0.022 6521 0.156

67 6680 -0.673 6680 -0.148

68 6712 -0.082 6839 0.695

69 6839 0.498 6844 0.115

70 6886 0.136 6850 0.212

71 6929 -0.048 6885 -0.051

72 7001 0.116 6892 0.037

73 7090 0.078 6910 0.075

74 7105 -0.251 7090 0.080

75 7105 -1.395

https://doi.org/10.1371/journal.pone.0276664.t002

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0276664.t002
https://doi.org/10.1371/journal.pone.0276664

Table 3. Summary of common genes based on the logistic regression model and the probit model.

Setting 1 Setting 2 Setting 3 Setting 4

ID LR(1) PM(2) ID LR(1) PM(2) ID LR(1) PM(2) ID LR(1) PM(2)

1 134 -0.208 -0.103 7 0.410 0.081 412 -0.484 -0.442 731 -1.456 -0.047

2 412 -0.606 -0.101 268 -0.684 -0.408 635 -0.186 -0.389 1307 0.446 0.233

3 760 0.271 0.433 731 -1.161 -0.499 738 0.196 0.377 1687 -0.085 -0.787

4 804 -1.271 -0.432 1089 -0.133 -0.048 760 0.271 0.271 2469 -0.039 -0.070

5 1144 -0.090 -0.013 1148 0.475 0.256 804 -1.301 -1.178 4099 -0.438 -0.202

6 1207 -0.108 -0.065 1307 0.742 0.309 1144 -0.123 -0.130 5077 -0.074 -0.339

7 1239 -0.566 -0.072 1687 -0.153 -0.093 1207 -0.115 -0.123 6067 -0.158 -0.157

8 1260 0.786 0.168 1708 -0.229 -0.134 1239 -0.234 -0.145 6839 0.696 0.695

9 1669 0.155 0.059 1858 1.126 0.424 1260 0.912 0.957

10 1685 -0.169 -0.066 1987 0.460 0.327 1834 1.496 1.297

11 1834 1.471 0.464 2039 0.903 0.375 1882 1.271 1.076

12 1882 1.337 0.433 2057 -0.175 -0.098 1928 -1.221 -0.980

13 1928 -1.229 -0.254 2059 -0.169 -0.026 1997 0.155 0.069

14 2288 0.414 0.460 2377 1.389 0.696 2288 0.858 1.473

15 2737 0.051 0.051 2460 0.550 0.235 2354 -0.085 -0.081

16 2797 0.052 0.090 2534 -0.969 -0.491 2737 0.054 0.045

17 3183 0.376 0.012 2682 0.169 0.070 2797 0.075 0.042

18 3252 0.464 0.465 2941 0.733 0.242 3252 0.801 1.032

19 3714 0.078 0.026 3276 0.112 0.140 3847 1.553 1.527

20 3847 1.529 0.544 3432 -0.378 -0.026 4211 -0.367 -0.280

21 4211 -0.578 -0.138 3771 -0.791 -0.229 4291 -0.880 -0.987

22 4291 -0.660 -0.152 3810 -0.131 -0.026 4438 -0.057 -0.149

23 4399 -0.092 -0.033 3997 -0.200 -0.121 4697 0.099 0.125

24 4697 0.126 0.089 4054 -0.119 -0.177 4847 0.298 0.081

25 4847 0.601 0.130 4219 1.208 0.477 5361 -0.365 -0.585

26 4951 0.019 0.031 4355 -0.186 -0.074 5466 -0.643 -0.598

27 5230 -0.024 -0.016 4927 -0.160 -0.255 5833 0.054 0.215

28 5361 -0.169 -0.066 4957 0.070 0.031 6049 -0.278 -0.089

29 5376 0.034 0.087 5145 -1.223 -0.578 6854 -0.878 -1.044

30 5466 -0.730 -0.224 5323 -0.406 -0.119

31 6162 0.055 0.033 5372 -0.097 -0.063

32 6169 0.040 0.065 5680 0.159 0.254

33 6308 0.034 0.068 5726 1.119 0.454

34 6854 -0.822 -0.452 5781 0.443 0.317

35 6886 0.495 0.118 5981 0.140 0.040

36 6067 -0.158 -0.251

37 6258 -0.707 -0.324

38 6422 -0.516 -0.273

39 6680 -1.341 -0.673

40 6712 -0.124 -0.082

41 6839 0.996 0.498

42 6886 0.107 0.136

43 6929 -0.443 -0.048

44 7001 0.141 0.116

45 7105 -0.345 -0.251

46

47

48

https://doi.org/10.1371/journal.pone.0276664.t003

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 16 / 23

https://doi.org/10.1371/journal.pone.0276664.t003
https://doi.org/10.1371/journal.pone.0276664

For the comparison with the proposed method with correction of measurement error in

responses and predictors, we examine naive analysis based on Settings 1-3 in Section 5.1.

Detailed implementation and partial outputs are given below. In general, we find from outputs

that the first three estimator based on the proposed method is close to the true value 1, and

selected predictors are the same as the underlying true setting. On the other hand, without cor-

recting measurement error effects, we observe from the below results that the first three esti-

mators have larger biases and are far from the true value 1. Moreover, additional irrelevant

predictors are falsely included.

LR Boostðx;y;ite;thres; 0; 0;pr;lr;covÞ

estimated coefficient : ½� 0:94; � 1:13; � 0:92; 0:0; 0:0; � 0:20; 0:0; � 0:16;

0:0; 0:0; � 0:11; 0:0; 0:0; 0:14; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0;

0:0; 0:0�

predictors : ½1; 2; 3; 6; 8; 11; 14; 129; 148; 229; 300; 346; 374; 421; 436;

453; 471; 480; 498; 520; 523; 543; 562; 589; 590; 628; 631; 634; 639; 640;

650; 668; 684; 704; 768; 774; 798; 851; 936; 965; 983; 985�

number of predictors : 42

LR Boostðx;y;ite;thres; 1; 0;pr;lr;covÞ

estimated coefficient : ½� 0:90; � 1:20; � 1:01; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0;

0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0�

predictors : ½1; 2; 3; 26; 33; 148; 229; 300; 346; 374; 421; 436; 453; 471;

480; 498; 518; 520; 562; 589; 590; 628; 631; 634; 639; 640; 650; 668; 753;

768; 774; 798; 851; 936; 965; 983; 985�

number of predictors : 37

LR Boostðx;y;ite;thres; 0; 1;pr;lr;covÞ

estimated coefficient : ½0:94; 1:17; 0:92; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0;

0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0�

predictors : ½1; 2; 3; 26; 33; 129; 148; 229; 300; 346; 374; 421; 436; 453;

471; 480; 498; 520; 523; 543; 562; 589; 590; 628; 631; 634; 639; 640; 650;

668; 684; 704; 768; 774; 798; 851; 936; 965; 983; 985�

number of predictors : 40

In addition to the logistic regression models, we further examine the probit model based on

four settings as described in Section 5.1. Specifically, we implement the function PM_Boost
to construct the probit model and specify arguments (correct_X, correct_Y) to be (0,0),

(0,1), (1,0), and (1,1) that reflect Settings 1-4 in Section 5.1, respectively. Detailed implementa-

tion and partial outputs are available below. Similar to the findings based on logistic regression

models, we observe that the estimator with measurement error in responses and predictors

corrected outperforms other scenarios because of smaller biases and precise variable selection.

As expected, without suitable variable selection, the estimators induce tremendous biases and

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 17 / 23

https://doi.org/10.1371/journal.pone.0276664

some irrelevant predictors are included.

PM Boostðx;y;ite;thres; 1; 1;pr;lr;covÞ

estimated coefficient : ½1:02; 0:98; 0:97; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0;

0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0�

predictors : ½1; 2; 3�

number of predictors : 3

PM Boostðx;y;ite;thres; 0; 0;pr;lr;covÞ

estimated coefficient : ½1:08; 1:06; 1:28; � 0:02; � 0:03; � 0:01; 0:0; � 0:01;

� 0:03; � 0:02; 0:0; 0:10; 0:0; � 0:02; 0:02; � 0:045; 0:04; 0:0; 0:06; � 0:02;

0:05; 0:01; 0:0; � 0:01�

predictors : ½1; 2; 3; 4; 5; 6; 8; 9; 10; 12; 14; 15; 16; 17; 19; 20; 21; 22;

24; 25; 26; 27; 29; 30; 31; 32; 33; 34; 35; 37; 38; 39; 40; 41; 43; 44; 45;

47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 59; 60; 62; 63; 65; 66; 67; 68;

69; 72; 73; 75; 76; 78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91;

92; 93; 95; 96; 97; 99; 100�

number of predictors : 82

PM Boostðx;y;ite;thres; 1; 0;pr;lr;covÞ

estimated coefficient : ½1:09; 1:07; 1:04; � 0:03; � 0:03; 0:0; 0:0; 0:0;

� 0:04; � 0:02; 0:0; 0:12; 0:0; � 0:02; 0:02; � 0:06; 0:05; 0:0; 0:07; 0:0;

0:06; 0:0; � 0:01; � 0:01�

predictors : ½1; 2; 3; 4; 5; 9; 10; 12; 14; 15; 16; 17; 19; 21; 23; 24; 25;

26; 27; 30; 31; 32; 33; 35; 37; 38; 39; 40; 41; 43; 44; 45; 47; 48; 49; 50;

51; 52; 53; 54; 55; 56; 57; 59; 60; 62; 63; 65; 66; 67; 68; 69; 72; 73; 74;

75; 76; 78; 79; 80; 81; 82; 83; 84; 85; 87; 88; 89; 90; 91; 92; 93; 95; 96;

97; 99; 100�

number of predictors : 77

PM Boostðx;y;ite;thres; 0; 1;pr;lr;covÞ

estimated coefficient : ½0:91; 0:94; 0:92; 0:0; 0:0; 0:0; � 0:02; 0:01; 0:0;

0:03; 0:0; 0:04; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0;

0:0; 0:0�

predictors : ½1; 2; 3; 7; 8; 10; 12; 30; 31; 34; 35; 38; 43; 54; 62; 80;

92; 97�

number of predictors : 18

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 18 / 23

https://doi.org/10.1371/journal.pone.0276664

Finally, to precisely access the accuracy of the estimator, we use the L1-norm and the L2-

norm, which are respectively defined as

k Dbk1 ¼
Xp

i¼1

jb̂i � b0;ij

and

k Dbk2 ¼
Xp

i¼1

ðb̂i � b0;iÞ
2
;

where Db≜b̂ � b0, b̂i and β0,i are the ith entry of b̂ and β0, respectively. To access the perfor-

mance of variable selection, we examine specificity (SPE) and sensitivity (SEN), which are

respectively defined as

SPE ¼
the number of predictors that are correctly included

the number of truly informative predictors

and

SEN ¼
the number of predictors that are correctly excluded
the number of the truly unimportant predictors

:

Numerical results under all settings described above are reported in Table 4. We can

observe that biases in the L1 and L2-norms are increasing when the magnitude of measurement

error s2
�

and dimension p become large. As expected, when measurement error in responses

and predictors are corrected (Setting 4), the biases are the smallest and SPE as well as SEN are

the largest among all settings, which verify that the proposed method is valid to handle mea-

surement error regardless of specification of regression models. On the other hand, without

correcting measurement error effects, we find that the naive methods (Settings 1-3) produce

significant biases and low values of SPE and SEN, indicating the worse performance of variable

selection. In particular, if measurement error in responses and predictors are not corrected, as

shown in Setting 1, we have the worst estimation results. Compared with Settings 2 and 3, it is

interesting to see that the biases under Setting 2 are greater than those based on Setting 3, and

values of SPE and SEN obtained by Setting 2 are smaller than those based on Setting 3. It

implies that ignoring measurement error in predictors would incur severe biases and would be

worse than ignoring measurement error effects occurred in responses.

6 Discussion

In this paper, we introduce the Python package BOOME that aims to address ultrahigh-dimen-

sional data subject to measurement error in responses and predictors. Unlike existing packages

that deal with either variable selection or measurement error but not both, our package can

handle variable selection and correct measurement error effects to both responses and predic-

tors simultaneously. In addition, the computational time is fairly fast and arguments are flexi-

ble for public use. In applications, sometimes variables in datasets can be shown to be free of

measurement error and can be precisely measured, such as age or gender. The package

BOOME is still flexible to handle those scenarios. For example, if researchers believe that predic-

tors in their datasets are free of measurement error, then they can adopt Setting 2 in Section

5.1 by employing corrected responses and precisely measured predictors; if only predictors are

shown to have measurement error, then one can adopt Setting 3 in Section 5.1 by implement-

ing corrected predictors and precisely measured responses.

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 19 / 23

https://doi.org/10.1371/journal.pone.0276664

Table 4. Simulation results for two regression models with n = 100.

Model p s2
ε Setting kΔβk1 kΔβk2 SPE SEN

LR (1) 1000 0.15 1 4.633 1.807 0.900 0.213

2 4.581 1.812 0.900 0.326

3 0.358 0.184 1.000 0.945

4 0.228 0.136 1.000 0.979

0.50 1 4.400 1.780 0.667 0.230

2 4.286 1.791 0.567 0.483

3 1.758 0.606 1.000 0.583

4 0.917 0.410 1.000 0.853

0.75 1 4.244 1.772 0.767 0.249

2 4.213 1.786 0.600 0.496

3 2.458 0.789 1.000 0.417

4 1.158 0.526 1.000 0.847

5000 0.15 1 6.181 1.821 0.533 0.245

2 5.794 1.818 0.467 0.400

3 0.412 0.197 1.000 0.957

4 0.256 0.147 1.000 0.981

0.50 1 6.145 1.803 0.633 0.201

2 5.485 1.802 0.233 0.458

3 2.490 0.641 1.000 0.602

4 1.082 0.427 1.000 0.889

0.75 1 5.622 1.797 0.300 0.218

2 5.122 1.806 0.533 0.529

3 3.358 0.813 1.000 0.452

4 1.445 0.581 1.000 0.862

PM (2) 1000 0.15 1 9.367 1.855 0.767 0.297

2 7.890 1.829 0.567 0.459

3 0.424 0.168 1.000 0.964

4 0.234 0.124 1.000 0.988

0.50 1 9.345 1.843 0.767 0.224

2 7.168 1.821 0.267 0.545

3 3.203 0.664 1.000 0.696

4 1.598 0.507 1.000 0.887

0.75 1 9.027 1.861 0.900 0.247

2 7.105 1.860 0.567 0.555

3 4.592 0.822 1.000 0.548

4 2.301 0.654 1.000 0.837

5000 0.15 1 16.555 1.994 0.400 0.452

2 12.462 1.908 0.367 0.593

3 0.419 0.145 1.000 0.979

4 0.262 0.132 1.000 0.993

0.50 1 17.391 2.031 0.667 0.233

2 13.177 1.943 0.233 0.587

3 1.244 0.204 1.000 0.819

4 0.333 0.066 1.000 0.930

0.75 1 17.903 2.043 0.633 0.419

2 13.289 1.948 0.500 0.574

3 1.445 0.194 1.000 0.738

4 0.707 0.098 1.000 0.789

https://doi.org/10.1371/journal.pone.0276664.t004

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 20 / 23

https://doi.org/10.1371/journal.pone.0276664.t004
https://doi.org/10.1371/journal.pone.0276664

There are several possible extensions based on the current developments. First, in addition

to continuous or binary random variables, categorical or counted data are frequently adopted

in the framework of bioinformatics, such as RNA sequence or GWAS data, and they might be

subject to mismeasurement error. Therefore, it is important to propose a valid approach to

adjust for measurement error effects to those data. In addition, our current approach focuses

on parametric logistic regression or probit models. To provide general formulations, it is inter-

esting to extend the BOOME method to nonparametric models or semi-pamatric models. In

the current development, our attention primarily focuses on variable selection for high-dimen-

sional data subject to measurement error. In supervising learning, examining the performance

of classification and prediction is a crucial concern. Provided that additional information,

such as validation samples, is available, it is interesting to adopt selected predictors and adjust-

ments of measurement error from the BOOME method to define a general model of measure-

ment heterogeneity and develop several measures (e.g., C-statistic or Brier score) to assess the

predictive performance (e.g., [30]). In addition, since responses are subject to measurement

error as well, it deserves careful exploration to handle measurement error in responses when

doing prediction.

Finally, as commented by a referee, dimension reduction techniques, such as principal

component analysis (PCA) or factor analysis, can be valid tools to reduce dimension from

ultrahigh-dimensional predictors. However, there are two main issues in the current develop-

ment. First, the purpose in this study is to detect informative predictors and exclude irrelevant

ones, while dimension reduction techniques aim to reduce dimension through linear combi-

nations of high-dimensional predictors. Second, when the predictors are subject to measure-

ment error, the BOOME package is able to address measurement error effects and correctly

retain important predictors, while correction of measurement error effects for dimension

reduction techniques is not explored, especially when the response is contaminated with mea-

surement error as well. Undoubtedly, it is an interesting perspective to handle ultrahigh-

dimensional data and deserves careful exploration in the future research.

Acknowledgments

The author would like to thank his master student, QinYing OuYang, for assistance in devel-

oping the package and summarizing the results of data analysis, and thank Lingyu Cai for

revising Python code, helpful language editing, grammar revision, and proofreading. The

author also thanks two referees for their useful comments to significantly improve the presen-

tation of the initial manuscript.

Author Contributions

Conceptualization: Li-Pang Chen.

Formal analysis: Li-Pang Chen.

Funding acquisition: Li-Pang Chen.

Methodology: Li-Pang Chen.

Software: Li-Pang Chen.

Writing – original draft: Li-Pang Chen.

References
1. Guyon I., Weston J., Barnhill S., Vapnik V. (2002). Gene selection for cancer classification using sup-

port vector machines. Machine Learning, 46, 389–422. https://doi.org/10.1023/A:1012487302797

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 21 / 23

https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1371/journal.pone.0276664

2. He, W., Yi, G. Y., and Chen, L.-P. (2019). Support vector machine with component graphical structure

incorporated. Proceedings, Machine Learning and Data Mining in Pattern Recognition, 15th Interna-

tional Conference on Machine Learning and Data Mining, MLDM 2019, vol.II, 557–570.

3. Tibshirani R. (1996). Regression shrinkage and selection via the LASSO. Journal of Royal Statistical

Society, Series B, 58, 267–288.

4. Zou H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Associ-

ation, 101, 1418–1429. https://doi.org/10.1198/016214506000000735

5. Zou H. and Hastie T. (2005), Regularization and variable selection via the elastic net. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 67, 301–320. https://doi.org/10.1111/j.

1467-9868.2005.00503.x

6. Chen L.-P. and Yi G. Y. (2021a). Analysis of noisy survival data with graphical proportional hazards

measurement error models. Biometrics, 77, 956–969. https://doi.org/10.1111/biom.13331

7. Chen L.-P. and Yi G. Y. (2022a). De-noising analysis of noisy data with graphical models. Electronic

Journal of Statistics, 16, 3861–3909. https://doi.org/10.1214/22-EJS2028

8. Chen L.-P. and Yi G. Y. (2022b). Sufficient dimension reduction for survival data analysis with error-

prone variables. Electronic Journal of Statistics, 16, 2082–2123. https://doi.org/10.1214/22-EJS1977

9. Huang F., Guang P., Li F., Liu X., Zhang W., and Huang W. (2020). AML, ALL, and CML classification

and diagnosis based on bone marrow cell morphology combined with convolutional neural network.

Medicine, 99:45, 1–8. https://doi.org/10.1097/MD.0000000000023154

10. Carroll R. J., Ruppert D., Stefanski L. A., and Crainiceanu C. M. (2006). Measurement Error in Nonlin-

ear Model. Chapman and Hall.

11. Chen L.-P. and Yi G. Y. (2020). Model selection and model averaging for analysis of truncated and cen-

sored data with measurement error. Electronic Journal of Statistics, 14, 4054–4109. https://doi.org/10.

1214/20-EJS1762

12. Chen L.-P. (2020). Variable selection and estimation for the additive hazards model subject to left-trun-

cation, right-censoring and measurement error in covariates. Journal of Statistical Computation and

Simulation, 90, 3261–3300. https://doi.org/10.1080/00949655.2020.1800705

13. Yi G. Y. (2017). Statistical Analysis with Measurement Error and Misclassication: Strategy, Method and

Application. Springer.

14. Carroll R. J., Spiegelman C. H., Gordon Lan K. K., Bailey K. T., and Abbott R. D. (1984). On errors-in-

variables for binary regression models. Biometrika, 71, 19–25. https://doi.org/10.1093/biomet/71.1.19

15. Chen L.-P. and Yi G. Y. (2021b). Semiparametric methods for left-truncated and right-censored survival

data with covariate measurement error. Annals of the Institute of Statistical Mathematics, 73, 481–517.

https://doi.org/10.1007/s10463-020-00755-2

16. Roy S., Banerjee T., and Maiti T. (2005). Measurement error model for misclassified binary responses.

Statistics in Medicine, 24, 269–283. https://doi.org/10.1002/sim.1886 PMID: 15546132

17. Schafer D. W. (1993). Analysis for probit regression with measurement errors. Biometrika, 80, 899–

904. https://doi.org/10.1093/biomet/80.4.899

18. Stefanski L. A., and Carroll R. J. (1987). Conditional scores and optimal scores for generalized linear

measurement error models. Biometrika, 74, 703–716. https://doi.org/10.2307/2336464

19. Brown B., Miller C. J., and Wolfson J. (2017). ThrEEBoost: Thresholded boosting for variable selection

and prediction via estimating equations. Journal of Computational and Graphical Statistics, 26, 579–

588. https://doi.org/10.1080/10618600.2016.1247005

20. Hastie T., Tibshirani R., and Friedman J. (2008). The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer, New York.

21. SørensenØ, Hellton K. H., Frigessi A., and Thoresen M. (2018). Covariate selection in high-dimen-

sional generalized linear models with measurement error. Journal of Computational and Graphical Sta-

tistics, 27, 739–749. https://doi.org/10.1080/10618600.2018.1425626

22. Ma Y. and Li R. (2010). Variable selection in measurement error models. Bernoulli, 16, 273–300.

https://doi.org/10.3150/09-bej205 PMID: 20209020

23. Brown B., Weaver T., and Wolfson J. (2019). MEBoost: Variable selection in the presence of measure-

ment error. Statistics in Medicine, 38, 2705–2718. https://doi.org/10.1002/sim.8130 PMID: 30856279

24. Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K., Simon, N., et al. (2022). glmnet: Lasso

and Elastic-net regularized generalized linear models. R package version 4.1-4. https://CRAN.R-

project.org/package=glmnet

25. Fan J. and Lv J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 70, 849–911. https://doi.org/10.

1111/j.1467-9868.2008.00674.x

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 22 / 23

https://doi.org/10.1198/016214506000000735
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/biom.13331
https://doi.org/10.1214/22-EJS2028
https://doi.org/10.1214/22-EJS1977
https://doi.org/10.1097/MD.0000000000023154
https://doi.org/10.1214/20-EJS1762
https://doi.org/10.1214/20-EJS1762
https://doi.org/10.1080/00949655.2020.1800705
https://doi.org/10.1093/biomet/71.1.19
https://doi.org/10.1007/s10463-020-00755-2
https://doi.org/10.1002/sim.1886
http://www.ncbi.nlm.nih.gov/pubmed/15546132
https://doi.org/10.1093/biomet/80.4.899
https://doi.org/10.2307/2336464
https://doi.org/10.1080/10618600.2016.1247005
https://doi.org/10.1080/10618600.2018.1425626
https://doi.org/10.3150/09-bej205
http://www.ncbi.nlm.nih.gov/pubmed/20209020
https://doi.org/10.1002/sim.8130
http://www.ncbi.nlm.nih.gov/pubmed/30856279
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=glmnet
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1371/journal.pone.0276664

26. Krishnan, S. (2019). xverse. Python package version 1.0.5. https://pypi.org/project/xverse/#description

27. Bartoszek, K. (2019). GLSME: Generalized least squares with measurement error. R package version

1.0.5. https://CRAN.R-project.org/package=GLSME

28. Nab L., van Smeden M., Keogh R. H. and Groenwol R.H.H. (2021). Mecor: An R package for measure-

ment error correction in linear regression models with a continuous outcome. Computer Methods and

Programs in Biomedicine, 208, 106238. https://doi.org/10.1016/j.cmpb.2021.106238 PMID: 34311414

29. Wolfson J. (2011). EEBOOST: a general method for prediction and variable selection based on estimat-

ing equation. Journal of the American Statistical Association, 106, 296–305. https://doi.org/10.1198/

jasa.2011.tm10098

30. Luijken K., Groenwold R.H.H., Van Calster B., Steyerberg E.W., and van Smeden M. (2019). Impact of

predictor measurement heterogeneity across settings on the performance of prediction models: A mea-

surement error perspective. Statistics in Medicine, 38, 3444–3459. https://doi.org/10.1002/sim.8183

PMID: 31148207

PLOS ONE Python package: BOOME

PLOS ONE | https://doi.org/10.1371/journal.pone.0276664 October 27, 2022 23 / 23

https://pypi.org/project/xverse/#description
https://CRAN.R-project.org/package=GLSME
https://doi.org/10.1016/j.cmpb.2021.106238
http://www.ncbi.nlm.nih.gov/pubmed/34311414
https://doi.org/10.1198/jasa.2011.tm10098
https://doi.org/10.1198/jasa.2011.tm10098
https://doi.org/10.1002/sim.8183
http://www.ncbi.nlm.nih.gov/pubmed/31148207
https://doi.org/10.1371/journal.pone.0276664

