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B .Y. was prenatally diagnosed with a large vertex en-
cephalocele. When he was born at full term, the 
complexity of the encephalocele was considered too 

high to operate. Although he was sent home with hospice 
care, he continued to thrive. His parents reported that 
other than his unwieldy head shape, which kept him im-
mobile on his back, he behaved just like their older son.

B.Y.’s pediatrician recommended another opinion at 
Boston Children’s Hospital, where he presented for evalu-
ation at 5 months of age, weighing 6.85 kg. He had limited 
vision, but otherwise no seizures or other medical issues. 
On examination, he had a large encephalocele with good 
quality overlying skin and no leakage of cerebrospinal flu-
id. His head circumference was under the second percen-
tile, with 20–30% of the brain contents and a large amount 
of fluid herniated into the encephalocele. Magnetic reso-

nance imaging showed a complex lesion, containing what 
appeared to be functional brain tissue.

The microcephaly and large amount of extracranial 
brain posed a unique challenge to reconstruction. Skull 
expansion would be required to accommodate the possibly 
functional brain tissue. Neurosurgery and plastic surgery ex-
pertise were combined with an on-site hospital-based simula-
tor program—including simulation methodology, imaging, 
segmentation, mechanical engineering, 3D printing and 
design—to enable detailed surgical preplanning necessary to 
design, test, and practice multiple options without posing any 
harm to the patient. Although 3D models have been valuable 
tools in craniofacial procedures for decades,1–15 the unique 
collaboration between surgeons and a simulator program 
that could produce individualized 3D renderings provided 
a novel iterative process of physical and digital modeling to 
help make an otherwise impossible case possible.

SIMULATION METHODOLOGY

Models Created
An initial set of 3D digital models were created from seg-

mentation of the head computed tomography study using 
Materialise Mimics (Materialise, Leuven Belgium) software. 
These models included B.Y.’s skull, brain parenchyma, and 
dura, and were printed using polymer-jet 3D printers to facili-
tate simulation of the surgical procedure (Fig. 1). Using volu-
metric analysis of the 3D model, the intracranial volume was 
estimated at 531 cc, and the extracranial brain volume was 
105 cc; thus, an additional 100 cc of volume would need to 
be created to reposition the brain back into the skull (Fig. 1).

Initial Presurgical Revision (Physical Model)
Vertical osteotomies arranged over the parietal-occip-

ital region were marked and cut to expand the volume 
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Summary: B.Y. was born full term after a large vertex encephalocele was diagnosed 
prenatally. The unique challenge to repairing B.Y.’s encephalocele was a microce-
phalic skull and large proportion of likely functional extracranial brain tissue, which 
would need to be preserved. At Boston Children’s Hospital, a simulation-based col-
laborative presurgical planning and rehearsal process, using both digital and 3D 
printed models, enabled successful technical completion and outcome of an oth-
erwise inoperable case. (Plast Reconstr Surg Glob Open 2018;6:e1751; doi: 10.1097/
GOX.0000000000001751; Published online 20 April 2018.)
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(Fig. 2). The cranial defect at the apex was expected to fill 
in with time, as has been demonstrated in previous pediat-
ric cranial reconstruction.16–20 After making these cuts on 
the model, the segments were “out-fractured,” carefully 
bending them outward in a radial pattern.

Digital Revision and Volumetric Calculation
After the revised models were rescanned using CT, 

the resulting volumetric imaging was resegmented 
and digital volumetric models produced (Fig. 3). The 
out-fractured parietal-occipital segments were isolated 
from the anterior skull and positioned to estimate the 
resulting intracranial volume. To increase volume fur-

ther, 2 more osteotomies were created virtually along 
the parietal bones. Several other reconstructions were 
created in software, to roughly correlate rotational po-
sition of the barrel staves with resulting increases in 
intracranial volume.

INTRAOPERATIVE DETAILS
The preoperative planning process facilitated an 

efficient approach in the operating room. Following 
anesthetic preparation, he was repositioned safely into 
the prone position. The encephalocele was drained of 
approximately 300 ml of fluid. Through a coronal in-
cision, the encephalocele was dissected free and the 
preplanned posterior osteotomies were created. A 
segment of brain tissue emanating from the right oc-
cipital area was independent of other attachments and 
therefore this completely disorganized nonfunctional 
brain tissue was excised. The remainder of the brain 
tissue was reducible into the expanded cranium. Due 
to the lack of normal brain architecture, there were 
no definable ventricles into which to place an external 
ventricular drain or shunt.

The out-fractured posterior segments demonstrated 
a tendency to collapse back together, thus 2 of the small 
parietal segments were removed and secured over the en-
cephalocele defect to prevent reherniation.

As a rare and complex case, there is no average pro-
cedure time for comparison, but the 5-hour operative 
time was a perceived reduction in time, attributed to the 
presurgical planning and rehearsal. Blood loss was also 
minimized by the efficient approach; B.Y. was hemody-
namically stable throughout, had a calculated blood loss 
of 125 ml and received 75 ml of packed red blood cells 

Fig. 1. Preoperative 3D models showing fluid and solid components of the encephalocele (a) and just 
the extracranial brain (B).

Fig. 2. 3D model for surgical preplanning with proposed osteoto-
mies.
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during the procedure. He required no further transfusion 
postoperatively. He was extubated and recovered in the 
intensive care unit.

POSTOPERATIVE COURSE
B.Y. recovered well initially, but after 48 hours, he 

became lethargic. Repeat imaging showed hydrocepha-
lus, and he was taken back to the operating room for 
insertion of an external ventricular drain, which was later 
converted to a permanent shunt. His neurologic status 
improved back to baseline. He continues to take leveti-
racetam for seizure prophylaxis. B.Y. has been followed 
for 1 year without further postoperative complications. 
The potential risks of seizure, stroke, devastating neuro-
logic injury, or death that had been discussed preopera-
tively were avoided (Fig. 4).

LIMITATIONS AND FURTHER FRONTIERS
Though informative, computer/screen-based digital 

planning remains limited by lack of physicality, highlight-
ing the importance of a complimentary 3D physical mod-
el. In our hands, the 3D print replica adds “feel,” haptic 
and mechanical information. For instance, the initially de-
signed osteotomies were technically reasonable and acces-
sible within digital design but also required inspection of 
the resulting 3D print, to confirm they were actually safe 
and technically feasible in the actual patient. Additionally, 
unanticipated forces, such as supine positioning, yielded 
motion of the posterior osteotomized segments, which 
was otherwise unpredictable by a virtual model alone. As 
an additional “view,” future procedures may incorporate 
finite element analysis to predict movement and pressure 
effects from patient positioning.

CONCLUSIONS
New suites of simulation-based approaches offer 

novel paradigms of surgical preplanning allowing for 
risk-free discovery, rehearsal, and preparation of inno-
vative procedures without peril to patients. Collabo-

Fig. 3. Digital manipulation of model with additional osteotomies laterally (a) and volumetric analysis 
of digital model (B).

Fig. 4. the patient at 2 months postoperative.
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ration of surgeons with simulator experts can convert 
cases once deemed too risky to endeavor into novel, 
life-saving procedures offered to new populations of 
patients.
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