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Appetite is the basis for obtaining food and maintaining normal metabolism. Toll-like
receptor 4 (TLR4) is an important receptor expressed in the brain that induces
inflammatory signaling after activation. Inflammation is considered to affect the
homeostatic and non-homeostatic systems of appetite, which are dominated by
hypothalamic and mesolimbic dopamine signaling. Although the pathological features of
many types of inflammation are known, their physiological functions in appetite are largely
unknown. This review mainly addresses several key issues, including the structures of the
homeostatic and non-homeostatic systems. In addition, the mechanism by which TLR4-
induced inflammatory signaling contributes to these two systems to regulate appetite is
also discussed. This review will provide potential opportunities to develop new therapeutic
interventions that control appetite under inflammatory conditions.
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INTRODUCTION

Appetite plays an essential role in the regulation of energy
balance. Metabolic requirements must be met by obtaining and
consuming food. In this process, the brain plays a vital role in
regulating energy metabolism. At the most basic level, the
regulation of appetite by the central nervous system (CNS) is
divided into two types: homeostasis and non-homeostasis. The
homeostatic system controls feeding to resolve general energy
deficiencies or meet other types of metabolic needs. However, the
non-homeostatic system, also called the reward system, is
typically driven by palatable foods with high fat or sugar
contents. Food intake results from various physiological and
behavioral processes that control hunger, satiety, and reward
systems. Recently, the regulation of feeding by inflammatory
signals such as TLR4 has been reported frequently. TLR4 is a
transmembrane pattern recognition receptor that recognizes
molecular patterns related to injury and pathogens (1, 2).
TLR4 is expressed on cells of the innate immune system in the
CNS, such as endothelial cells, microglia, and some astrocytes, as
well as adult neurons (3, 4). Pattern recognition receptors have
been extensively developed to recognize a wide variety of
pathogen-related molecular patterns (PAMPs) associated with
microbial pathogens or cell signals of danger or stress. Ligands
bind to TLR4 and its accessory molecules, such as myeloid
differentiation protein 2 (MD2) and cluster of differentiation
14 (CD14), to activate downstream intracellular signaling
pathways, thus producing and releasing proinflammatory and
neuroexcitatory mediators via MyD88-dependent or MyD88-
independent intracellular pathways (5). Therefore, TLR4-
induced inflammatory signaling provides a mechanistic link
between the hypothalamus, mesolimbic dopamine (DA) system
and appetite (6).

Here, we will focus on current insights into the regulation of
appetite by TLR4-induced inflammatory signaling in the
hypothalamus and mesolimbic DA system. In addition, we also
explored recent publications to investigate the activation of
TLR4-induced inflammatory signaling and its effect on appetite.
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TLR4-INDUCED INFLAMMATORY
SIGNALING IN THE HYPOTHALAMUS
AFFECTS THE APPETITE PROCESS

Energy Homeostasis and Inflammatory
Signaling
Appropriate energy homeostasis results from a delicate balance
between energy intake and expenditure. Substantial evidence
indicates that arcuate nucleus (Arc) has emerged as a key
regulator of energy homeostasis (7). The key to this process is two
sets of interconnected Arc neurons (Figure 1). As described below,
orexigenic neuropeptide Y (NPY)/agouti gene-related protein
(AgRP) neurons and anorexigenic proopiomelanocortin (POMC)
neurons play opposite but coordinated roles in controlling
food intake. In addition, neurons that are distributed in the
paraventricular hypothalamic nucleus (PVH), lateral hypothalamus
(LH) and ventromedial hypothalamus (VMH) are also involved in
regulating energy homeostasis (8–10). In most cases, our bodies are
constantly adapting to changes in the external environment that are
essential for survival. Normally, the existence of the immune system
alwaysmaintains the normal function of organs. However, when the
immune system is activated by pathogens or other stimuli, typical
symptoms such as fever, anorexia and pain occur. Two types of
proinflammatory responses to immune system activation have been
identified: (1) acute inflammation, such as a bacterial infection that
lasts for a fewminutes to severalhours, and(2) chronic inflammation,
such as obesity induced by a high-fat diet (HFD), cancer, and chronic
obstructive pulmonary disease (COPD), which ranges from days to
years. Although peripheral inflammation plays a key role in
regulating energy metabolism and appetite (11), central production
of inflammatory mediators is more important than peripheral
production in regulating appetite and body weight. Recent
discoveries have indicated that the brain contains lymphatic vessels
and thus forms a lymphatic drainage system (12). The discovery that
lymphocytesareuseful toexaminediseases related to theCNSand the
immune response in the break further overcomes themisconception
of the brain as an immune-isolated organ (13).
GRAPHICAL ABSTRACT | The activation of TLR4 in the regulation of appetite. Brain image was provided by smart.servier.com.
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Although we understand how to achieve the balance between
pathology and physiology, the effect of inflammatory processes on
homeostasis remains inadequate. Energy homeostasis and the
immune system have many coordinated responses. Disease
syndrome is a coordinated response by the brain to help the
immune system combat infection, which is accompanied by
typical symptoms such as fever, anorexia and pain. For example,
fever is an increase in the core body temperature that enhances
immune cell function to eliminate pathogens. In addition, sleepiness
and achiness decrease energy expenditure by decreasing locomotor
activity. Last, the reduction in food intake decreases glucose supply
available to the infectious agent (14). Over the past few decades,
research has highlighted the key role of proinflammatory cytokines
such as interleukin-1b (IL-1b), interleukin-6 (IL-6), and tumor
necrosis factor-a (TNF-a) in controlling energy homeostasis in
anorexic-cachexia syndrome. Most studies support the hypothesis
that the hypothalamus plays a key role in reducing food intake and
the development of illness with inflammation.
Frontiers in Endocrinology | www.frontiersin.org 3
How Does the Inflammatory Signaling
Decrease Appetite to Maintain the Energy
Balance?
Chronic diseases, such as cancer, disrupt these very primitive and
coordinated responses. In cancer-induced anorexia, central sensors
of energy homeostasis are rapidly associated with increased energy
expenditure and decreased food intake. The aim of this process is to
reduce the glucose supply to cancer cells. However, rapidly
proliferating cancer cells have lost their oxidative glycolysis
capabilities, and thus they can develop a chronic malnutrition state
(15). Notably, most of these causes are usually associated with “high-
grade” inflammation. Even if the pathological states are benign and
short term, they are also highly inflammatory and associated with
decreased appetite or “anorexia”. Anorexia is a result of the classic
defense of an organism against infections, also known as “sickness
behavior”. (16, 17). The production of proinflammatory cytokines is
induced by infectious factors, and higher TNF-a, IL-1b and IL-6
levels affect the surrounding organs to induce disease behavior and
FIGURE 1 | Central neuronal circuits involved in homeostatic and non-homeostatic systems. (A) Hypothalamic regulation of energy homeostasis. The Arc of the
hypothalamus contains two groups of neurons: NPY/AgRP and POMC neurons. These neurons secrete orexigenic AgRP/NPY or anorexigenic POMC to the
second-order neurons in the PVH and LH. In the PVN, neurons produce OT, TRH and CRH to decrease food intake. Neurons in the LH produce ORX and MCH to
increase food intake. AgRP is an antagonist of anorectic MC4R expressed on neurons within the PVN. In the Arc, a local circuit exists in which POMC neurons
receive GABAergic (inhibitory) input from NPY/AgRP neurons. The SF-1 nerve located in the VMH innervates POMC/CART neurons to enhance the anorexia function
of POMC/CART neurons and is critically involved in the regulation of energy homeostasis. (B) The dopamine system, which contains connections between the
midbrain and forebrain. The reward pathway includes dopaminergic neurons in the ventral tegmental area that project to the NAc and PFC. Dopamine, which is
released from dopaminergic neurons in the VTA, binds to D1R or D2R in the NAc and D1R in the PFC, which contribute to food reward. In turn, D1R also inhibits DA
and GABAergic neurons in the VTA through different GABA receptors to form negative feedback regulation. The VTA also contains GABAergic cells and Pnoc
neurons that project to DA neurons to inhibit DA activity. In addition, DA neurons located in the SN also project to the DS, which potentially increases food reward
behavior. Hyp, hypothalamus; Arc, arcuate nucleus; LHA, lateral hypothalamus area; PVN, paraventricular nucleus of the hypothalamus; VMH, ventromedial
hypothalamus; 3V, 3rd ventricle; VTA, ventral tegmental area; NAc, nucleus accumbens; PFC, prefrontal cortex; DS, dorsal striatum; SN, substantia nigra; AgRP,
agouti-related peptide; NPY, neuropeptide Y; POMC, proopiomelanocortin; Glu, glutamate; GABA, gamma-aminobutyric acid; MCH, melanin-concentrating
hormone; a-MSH, a-melanocyte-stimulating hormone; CRH, corticotropin-releasing hormone; TRH, thyrotropin-releasing hormone; OT, oxytocin; DA, dopamine;
D1R, dopamine 1 receptor; NOPR, nociceptin opioid peptide receptor.
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inflammation-related anorexia, which participate in the induction of
disease behavior (18). Hypothalamus cannot regulate energy balance
under increasing energy expenditure and chronic inflammation (19).
Neuroinflammation and hypothalamic signal transduction were
affected by chronic inflammation induced by cancer (19), HIV
(20), COPD (21), and heart failure (22). This inflammatory
response in the hypothalamus is elicited by elevated plasma
cytokine levels entering the brain, as several cytokines are able to
cross the blood–brain barrier (BBB), including TNF-a (23), IL-6
(24), IL-1a (25) and IL-1b (26). In addition,many receptors for these
proinflammatory cytokines are expressed in the hypothalamus (27).
Hypothalamic neurons in the Arc sense peripheral circulating
factors, including cytokines, from the adjacent median eminence
(ME), without protection of the blood–brain barrier.

Indeed, a common phenomenon appears to be that
hypothalamic microglia, astrocytes and macrophage-like cells are
activated in the hypothalamus in response to chronic inflammatory
diseases (28, 29). Chronic administration of cytokines reproduces
the characteristics of anorexia syndrome (30–32), while its
development is inhibited by blocking the signaling of one of these
cytokines, such as TNF-a, using neutralizing antibodies (33, 34). In
animal models of inflammatory anorexia, interfering with
inflammatory mediators reduces hypothalamic inflammation and
prevents weight loss. For example, inhibiting the action of adenosine
monophosphate protein kinase (AMPK) in the hypothalamus
reduces hypothalamic inflammation in patients with cancer-
related anorexia, which leads to increased food intake to improve
overall survival (35). Brain-derived neurotrophic factor (BDNF)
reduces hypothalamic inflammation and increases sympathetic
activation, thereby inhibiting cancer growth (36, 37). In addition,
administration of an IL-1b receptor antagonist blocks the effects of a
peripheral injection of cytokines (38, 39) and prevents anorexia in
animal models of cancer (40).

Many studies have shown that intraventricular (ICV) IL-1b
injections cause profound behavioral changes in rodents (19). The
injection of central or peripheral cytokines indicates that
proinflammatory mediators exert their effect primarily at the
central level rather than the peripheral level (41, 42). Therefore,
the brain is a more complex and advanced organ, and the action of
cytokine signaling overrides the effect of peripheral signaling to
maintain normal function. Some studies have shown that
endogenous IL-1b expressed in the brain mediates
lipopolysaccharide (LPS)-induced anorexia by modulating the
expression of cytokines in the hypothalamus (43). Multiple
circulating cytokines and inflammatory mediators trigger CNS
immune signaling after LPS injection in a short period instead of
sustained hypothalamic inflammation or sickness behavior. More
importantly, these animals only experienced a very short period of
mild anorexia after LPS administration, and food intake and body
weight recovered to normal levels after 6 hours (44, 45). LPS-
induced anorexia depends on its central inflammatory mechanisms,
and the central role of peripheral LPS may be mediated by certain
cytokines and/or receptors expressed in the brain (45, 46).
Therefore, these studies support the hypothesis that the
hypothalamus senses metabolic and inflammatory signals to fully
regulate energy homeostasis and systemic inflammation.
Frontiers in Endocrinology | www.frontiersin.org 4
Inflammatory Signaling Affects Appetite-
Related Peptides in the Homeostasis
System
In LPS- or TNF-a-induced anorexia experimental models of acute
inflammation, NPY expression in the hypothalamus is reduced,
consistent with the observed decrease in food intake (47–49).
Furthermore, the administration of NPY or blocking the induced
inflammatory response prevents the development of anorexia (47,
50). Thus, NPY release is necessary to change food intake in a
manner dependent on energy expenditure. However, NPY mRNA
expression in the hypothalamus increases in animal models of
chronic inflammatory diseases characterized by cachexia, such as
cancer cachexia and arthritis (51–55). However, this increase in
NPY mRNA levels did not correlate with a decrease in food intake
(52, 54, 56, 57). It was associated with weight loss. In addition, NPY
levels and NPY release are either unchanged (52) or decreased in
these animal models (58–60). In these cases, NPY signaling is likely
regulated at the posttranscriptional level. Therefore, we propose that
NPY mRNA expression might represent a sensor for weight loss
and the appropriate translation and release of NPY are subsequently
required to determine changes in food intake and energy
expenditure. The AgRP expression pattern is similar to NPY, as
its mRNA expression increases (61) but secretion decreases in both
acute and chronic inflammatory anorexia models. In addition, the
changes in AgRP levels are associated with weight loss. In addition,
genetic models of anorexia suggest that the disruption of NPY/
AgRP signaling is partially due to axonal transport dysfunction (62).
Altogether, these data indicate that inflammatory mediators affect
NPY/AgRP mRNA expression in a posttranscriptional manner,
including altered NPY translation, synthesis, packaging, or release,
ultimately changing food intake.

Acute inflammation activates POMC neurons, which increase
melanocortin-4 receptor (MC4R) expression (63) and POMC
expression (64, 65), as shown in the LPS- and IL-1b-induced
anorexia model. In addition, IL-1b binds to IL-1b receptor-
expressing POMC neurons in the Arc of the hypothalamus to
promote the effect of inflammation downstream (62). In fact,
researchers have shown that the NF-kB pathway plays an
important role in disease-induced anorexia and weight loss using
different methods. Both the administration of AgRP and inhibition
of the NF-kB pathway, especially in POMC neurons, significantly
attenuates the effects of LPS on food intake and body weight.
Therefore, POMC is a potential mediator of illness-induced
anorexia and a downstream target of NF-kB. Interestingly, some
researchers suggest that leptin-induced anorexia may also partially
depend on the NF-kB pathway (64).

However, there are no obvious evidence that indicated the
contribution of TLR4 in neurons or non-neuronal in the
hypothalamus. On one hand, the activation of TLR4 signal in
AgRP/NPY and POMC neurons decreased the expression of
AgRP/NPY and increased the expression of POMC, which
induced the reduction of appetite and suggested to be involved
in obesity. On the other hand, the activation of TLR4 in non-
neuronal cells, like microglia or astrocyte will increased the
mRNA levels of specific inflammatory genes, which repression
of TNF-a expression in the hypothalamic neurons (66).
November 2021 | Volume 12 | Article 777997
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This evidence shown TLR4 in non-neuronal cells may affect the
function of neurons in hypothalamus and potentially make a
contribution of appetite and obesity.

APPETITE IN A NON-HOMEOSTATIC
STATE IS REGULATED BY
INFLAMMATORY SIGNALING

Increasing Inflammation Decreases
Appetite
Consuming palatable foods is known to activate the reward system
in the brain, which plays a critical role in appetite (67). The
midbrain DA system has been suggested to play an important
role in the regulation of reward-related behaviors (68, 69). DA
neurons are located in the ventral tegmental area (VTA) andmainly
project onto the nucleus accumbens (NAc) in the ventral striatum
(70–73) and the prefrontal cortex (PFC) (73–76), which are
associated with appetite. Although many factors influence
appetite, inflammation is one of factors that should be considered
(77, 78). Inflammation-induced sickness and behavioral changes
are examples of inflammation alteringmotivational states (79). The
host responds to the infection detected by innate immune cells and
exhibits drastic behavioral changes, which facilitate the
development of fever and fight against pathogens to maintain
energy balance. Meanwhile, the results of many laboratory studies
consistently showthat innate immune systemactivationand release
of inflammatory cytokines preferentially affect the reward circuit
and basal ganglia DA level, leading to decreased appetite (80–82).
Given the importance of DA in the reward system, a few studies
have examined the relationshipbetween inflammatorymarkers and
symptoms/signs, which have shown an association between
increased inflammation and decreased appetite (83–85).

These findings indicated that motivational symptoms like
anergia and fatigue. Clinical data support the hypothesis that the
effect of inflammation on appetite is driven by the action of
cytokines on the DA system, as described below. In humans,
much of the evidence is derived from the acute administration of
inflammatory stimuli (such as endotoxin or typhoid vaccination) to
healthy volunteers and the chronic administration of inflammatory
cytokines [such as interferon alpha (IFN-a)] to patients as a
treatment for certain cancers and infectious diseases (86, 87).
These drugs induce the release of the inflammatory cytokines IL-
6, IL-1b andTNF-a (88–90). IFN-a-treatedpatients havea reduced
motivation to obtain food (86, 87). Neuroimaging studies have
shown that the administration of inflammatory cytokines or
cytokine attractants alters the activation of brain regions
associated with appetite, including a decreased response to
pleasurable food (82, 87, 91).

Initial neurochemical and behavioral studies reported that
inflammation affects brain DA levels following acute or chronic
injection of IFN-a in rodents. Based on these results, chronic
administration of IFN-a decreases DA release in the striatum,
which correlates with reduced appetite. In addition, long-term use
of IFN-a reduces the reward associated with food but does not
change sucrose consumption in monkeys. In vivomicrodialysis was
conducted to assess the effects of cytokines on the synaptic
Frontiers in Endocrinology | www.frontiersin.org 5
availability and release of striatal DA and to reveal the concrete
effect of inflammation on appetite (92). Similar to the effect of IFN-a,
peripheral administration of IL-1b to rodents also reduced appetite
(85). Interestingly, endotoxin administration to rats reduces appetite
but increases the motivation to obtain rest in a running wheel. Thus,
the body will reduce energy consumption in order to survive in a
pathological state.

A single intraperitoneal injection of LPS was administered to
induce peripheral inflammation. Twenty-four hours after LPS
administration, mice showed reduced appetite. Meanwhile, acute
low-dose LPS (100 g/kg) systemic administration reduced the DA
content in the NAc and increased extracellular DAmetabolite levels
(93, 94). As a result, LPS reduces incentive motivation for food
rewards (95). The acute and chronic effects of LPS on brain DA
levels are blocked by inhibiting or deleting genes encoding
inflammatory cytokines such as TNF-a (96, 97). Inflammation-
related medical disease models, such as experimental tumors, are
associated with reduced brain DA levels (98, 99). Together, these
results from animal studies suggest that various inflammatory
stimuli consistently affect DA levels in the brain, leading to
related changes in appetite. The DA precursor levodopa (L-
DOPA) completely reverses IFN-a-induced reductions in striatal
DA release observed using in vivo microanalysis, potentially
indicating that cytokines may reduce DA synthesis (100). The
effects of inflammation on DA and neural activation and
metabolism in the reward circuit were examined, and IFN-a-
treated subjects were administered [18F] fluorodopa (FDO-PA)
(87). L-DOPA is absorbed by DA neurons and converted to DA by
DA decarboxylase, which is then stored in vesicles and released.
Interestingly, patients exhibited increased absorption and reduced
turnover of L-DOPA in the ventral striatum after IFN-a treatment.

Our previous study has reported that TLR4 in dopamine
neurons affect the food reward (food motivation) and food
preference (HFD consumption) at the same time. In this process,
deletion of TLR4 in dopamine neurons decreased the dopamine
level in the brain, which contributes to the reduction of HFD
preference. However, global TLR4 KOmice decreased expression of
the key taste molecules cluster of differentiation 36 (CD36),
phospholipase Cb2 (PLCb2) and transient receptor potential
cation channel, superfamily M, member 5 (TRPM5) in tongue
epithelium, which induced the change of food preferences.
Therefore, TLR4 signaling in epithelium still can affect the food
preference by decreasing the nutrient sensing (101).

The Mechanism by Which Inflammation
Regulates Appetite
In summary, evidence from humans and animals suggests that
inflammation is associated with the reduced DA availability and
release, which exert functional effects on reward circuits. These
changes are associated with fundamental changes in motivation
and motor function. The mechanisms underlying the effects of
cytokines on DA synthesis, release, reuptake, or receptor
signaling should be considered to determine the changes in the
DA system in the inflammatory process that correlate with
reward and motivation. Inflammation and cytokines affect DA-
related functions through multiple pathways. DA synthesis,
packaging and release, reuptake and DA receptors may interact
November 2021 | Volume 12 | Article 777997
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to reduce the DA signal in the basal ganglia. Therefore, the next
sections mainly discuss the potential mechanisms by which
inflammation affects DA neurotransmission (Figure 2).

DA Synthesis and Availability
DA synthesis relies on tyrosine hydroxylase (TH), which is the rate-
limiting enzyme required for DA synthesis to convert tyrosine to L-
DOPA. Phenylalanine hydroxylase (PAH) is an enzyme that
converts phenylalanine to tyrosine. 5,6,7,8-Tetrahydrobiopterin
(BH4) is a cofactor of aromatic amino acid monooxygenases. Both
TH and PAH require the enzyme cofactor BH4 (102). Inflammation
may decrease BH4 availability (103). Indeed, intramuscular
administration of IFN-a in rats has been shown to reduce the
concentration of BH4 in the CNS by stimulating nitric oxide (NO),
Frontiers in Endocrinology | www.frontiersin.org 6
while inhibition of NO reverses the inhibitory effect of IFN-a on
brain concentrations of BH4 and DA (84). In addition, the
administration of IFN-a also increases cerebrospinal fluid (CSF)
IL-6 levels, which were also correlated with decreased BH4 levels in
CSF (92). Evidence from IFN-a-treated patients has also revealed a
reduction in BH4 levels (104). In addition, the peripheral blood
phenylalanine/tyrosine ratio increases after IFN-a administration,
which correlates with decreased DA synthesis and CSF levels of DA
and its major metabolite HVA (92). However, no change was
observed in the DOPAC/DA ratio after L-DOPA administration,
which increases when DA is not packaged and secreted in synaptic
vesicles and subsequentlymetabolized bymonoamine oxidase (105).
These findings are consistent with decreased levels of DAmetabolites
in the CSF of IFN-a-treated patients and monkeys (88, 106).
FIGURE 2 | Potential mechanisms by which inflammation affects DA signaling through synthesis, release, and receptor function. Inflammation and cytokines
released from the periphery or produced locally by activated microglia or infiltrating macrophages contribute to oxidative stress and the production of reactive oxygen
species (ROS). Increased ROS and inflammation-induced nitric oxide levels contribute to the oxidation of BH4, an essential cofactor required for the conversion of
phenylalanine to tyrosine and tyrosine to L-PODA, which are necessary for the synthesis of DA. In addition, the increased glutamate release and reduced reuptake by
inflammation-induced glial cells, coupled with the activation of NMDARs, may cause excitotoxicity of glutamate. In turn, these changes lead to oxidative stress and
decreased DA availability. Furthermore, some evidence has shown that inflammatory cytokines reduce the expression or function of VMAT2 and/or increase the
expression or function of DAT and reduce DA signaling by reducing the levels of DA D2 receptors. Dysregulation of DAT and VMAT2 increases cytosolic DA levels,
leading to auto-oxidation and ROS generation. D1R, dopamine 1 receptor; D2R, dopamine 2 receptor; DDC, dopamine decarboxylase; NMDAR, N-methyl-D-
aspartic acid receptor; NOS, nitric oxide synthase; ROS, reactive oxygen species; PAH, phenylalanine hydroxylase; TH, tyrosine hydroxylase; BH4, 5,6,7,8-
tetrahydrobiopterin; VMAT2, vesicular monoamine transporter 2; LPODC, L-3,4-dihydroxyphenylalanine.
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Meanwhile, L-DOPA reverses IFN-a-induced reduction in DA
release (100). Notably, IL-6 treatment has also been shown to
reduce the BH4 content in sympathetic neurons (107).

Another mechanism may be that cytokines affect glutamate
neurotransmission to change the function of the basal ganglia
and DA. In addition, inflammatory cytokines increase
extracellular glutamate levels by reducing the level of the
excitatory amino acid transporter GLT-1 (increasing glutamate
reuptake) and increasing glutamate release from astrocytes and
activated microglia (108, 109). Then, glutamate binds to the N-
methyl-D-aspartic acid receptor (NMDA) and potentially leads
to excitotoxicity in the brain (110). As a result, oxidative stress
increases and potentially contributes to the effects on BH4 and
DA synthesis (106, 111).

DA Packaging, Release and Reuptake
In synapses, vesicular monoamine transporter 2 (VMAT2) packages
cytoplasmic DA into vesicles for further release. The inflammatory
cytokines IL-1b and TNF-a have been shown to decrease
the expression of VMAT2 in rat enterochromaffin-like cells,
whereas the administration of transforming growth factor-b
(TGF-b), which is an immunomodulatory and anti-inflammatory
growth factor, rescues VMAT2 expression (112). Therefore,
inflammatory cytokines and inflammation may negatively
affect VMAT2 expression and function. In addition, the
administration of pituitary adenylate cyclase-activating polypeptide
38 (PACAP-38), an anti-inflammatory compound, in vivo
reduces neuroinflammation and increases VMAT2 expression,
which protects against DA neurotoxicity following chronic
methamphetamine exposure (113). IFN-a and other cytokines
activate p38 mitogen-activated protein kinase (MAPK) signaling,
which plays an important role in the expression and function of the
serotonin transporter in serotonin reuptake (114, 115). Recently,
researchers have found that MAPK pathways also influence DAT
(DA transporter). DAT is expressed in DA neurons, and the role
of DAT is to induce DA reuptake by DA neurons after its release
into synapses. DAT-expressing neurons transfected with
activated MAPK kinase (MEK) exhibit increased DA reuptake.
Administration of MEK inhibitors to rat striatal synaptosomes
decreases DA reuptake in a dose- and time-dependent manner
(116). Therefore, exposure to inflammatory cytokines reduces
synaptic DA levels through a mechanism that may be associated
with increasing DAT expression or function.

DA Receptor Expression and Function
Type D2 dopamine receptor (D2R) is a G-protein-coupled
receptor located in postsynaptic dopaminergic neurons that is
mainly involved in reward mediation and reward deficiency
pathways (117). A recent study elegantly showed that D2R
within the ventrolateral striatum plays an important role in
motivated behavior (118). Conditional knockout of D2R
reduces the progressive rate task breakpoint, while optogenetic
inhibition of these neurons that express D2R causes a transient
reduction in the breakpoint. Inflammation and cytokines may
affect DA signaling by reducing the expression or function of DA
receptors. Chronic administration of IFN-a in the striatum of
monkeys decreases the binding of DA to D2 receptors (83).
Frontiers in Endocrinology | www.frontiersin.org 7
INDIRECT MECHANISM OF TLR4
EXPRESSION IN THE PERPHERY

Although TLR4 expression in CNS plays an important role in
eating disorder, the TLR4 in periphery still affects the process of
appetite. In activity-based anorexia (ABA) model mice, the
expression of TLR4 in colonic mucosa is higher. Meanwhile,
the mucosal cytokines expression also increased during ABA
mice. Interestingly, TLR4, MyD88, TLR adaptor molecule 1
(TRIF) and TRIF-related adaptor molecule (TRAM) remained
unchanged in the hypothalamus, but increased the expression of
IL-1b, IL-1b receptor 1 (IL-1R1) and Interleukin-1 receptor-
associated kinase (IRAK-4) in hypothalamic (119). The indirect
mechanisms may be the peripheral cytokines cross the blood-
brain barrier and activate neuro-inflammation in the brain. In
addition, another paper reported that global TLR4 KO mice
decreased the expression of TLR4 in tongue gustatory
epithelium, which may affect expression of taste molecules
CD36, PLC2b and TRPM5 and change food intake (101).
THE ROLE OF TLR4 ACTIVATION IN THE
REGULATION OF APPETITE

As an innate immune receptor, TLR4 is well known for its
response to LPS. However, it is also activated by nutritional
signals, such as saturated fatty acids (SFAs), particularly lauric
acid, palmitic acid, and stearic acid (120). TLR4-dependent
priming senses the lcSFA and regulates gene expression and
cellular metabolism (121). Chronic overconsumption of a HFD
can increase the plasma levels of free fatty acids (122). Increased
fatty acid concentrations in plasma are closely associated with
metabolic syndrome, and SFAs activate innate immune
responses and result in inflammation (123–125).

SFAs have been shown to cause hypothalamic inflammation
(126), and chronic hypothalamic inflammation disrupts the function
of brain circuits that control appetite, leading to an increase in food
intake andweight gain (127). Thedietary lipid compositionwill affect
the degree of inflammation in the hypothalamus. For example, a diet
high in saturated fat is associated with a higher risk of hypothalamic
inflammation after 8 weeks than a diet high in unsaturated fat (128).
In addition, fat from butter produces greater neuroinflammation
than saturated fat from coconut oil, indicating that fat from different
sources produces different hypothalamic inflammatory responses.
SFAs exert major effects on neuro-immunity, enteroendocrine
signaling, feeding homeostasis and appetite regulation. In addition,
some studies attribute hypothalamic inflammation to SFAs. In this
process, inflammatory signaling is activated by the SFA-TLR4
pathway. These free fatty acids bind to receptors on immune cells,
activate inflammatory signaling pathways, and impair normal
cellular signaling in the liver, pancreas, skeletal muscle, and white
adipose tissue (129), resulting in the release of proinflammatory
cytokines and chemokines.

Based on these findings, SFAs can activate TLR4 signal pathway,
which plays an important role in physiological regulation of brain
function (130, 131). SFA activates immune cells, includingmicroglia,
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through TLR4 signal pathway (11). In the brain, palmitic acid
activates microglia to release cytokines via the TLR4-activated
signal transduction pathway, which leads to a decrease in
hypothalamic cell activity, thus leading to the interruption of the
neural circuit controlling appetite (132). Lauric acid, palmitate and
stearic acid increase the release of TNF-a and IL-6 from astrocytes.
Apparently, the increase in TNF-a and IL-6 levels in the
hypothalamus mediates insulin and leptin resistance by
increasing the level of the suppressor of cytokine signaling 3
(SOCS3) protein and phosphorylation of insulin resistance
substrate and suppressing the Janus kinase/signal transducer and
activator of transcription (JAK-STAT) pathway, which induces
leptin receptor activation. In addition, the effect of palmitic acid on
cytokine release requires TLR4 rather than CD36 or toll like
receptor 2 (TLR2) (which are also palmitic acid receptors) and is
independent of palmitate metabolism to palmitoyl-CoA (133).
Accordingly, short-term ICV administration of stearic acid
promotes TLR4 activation and the expression of endoplasmic
reticulum (ER) stress-related proteins, while unsaturated fatty
acids attenuate the inflammatory response. Stearic acid elicits
AgRP expression and secretion via TLR4-dependent signaling
pathways in hypothalamic N38 cells (134). However, the result
has not been verified in animals. Thus, LCSFAs play a main role in
hypothalamic inflammation and appetite (135). Additionally,
chronic hypothalamic inflammation can also lead to leptin and
Frontiers in Endocrinology | www.frontiersin.org 8
insulin resistance, which will further weaken the homeostatic
signaling of the hypothalamic circuit. However, evidence for the
mechanism by which SFAs affect motivation in humans and
animals is lacking. Previous studies reported that a single intra-
VTA injection of palmitic acid does not affect food intake (136),
but lauric acid increases appetite in mice (137). The
proinflammatory state of glial cells is activated by SFAs via
TLR4/NF-kB signaling in a microglial cell line. Therefore,
SFAs activate TLR4 signaling, which is an important process for
understanding how SFA-induced inflammation regulates appetite.
CONCLUSION

In this review, we showed that inflammatory signals in the
hypothalamus and mesolimbic DA system play different roles in
regulating appetite. In summary, cytokine release induced by
inflammatory signals decreases NPY and AgRP expression and
increases POMC expression to decrease food intake. In addition,
inflammatory cytokines may affect multiple aspects of DA
neurotransmission, resulting in reduced synthesis and impaired
DA receptor signaling and/or packaging or release, all of which
interact to reduce DA function, which contributes to appetite
(Figure 3). As ligands, SFAs also trigger inflammation in the brain
though TLR4 to affect appetite.
FIGURE 3 | Summary diagram illustrating the links between inflammation in the hypothalamus and midbrain dopamine system with the deregulation of appetite.
Upper panel: Lipopolysaccharide or cytokines injections, illnesses such as cancer, or infections induce high-grade inflammation. An acute increase in the local
production of cytokines and chemokines is observed in the hypothalamic and midbrain dopamine systems. Cytokines, including IL-1, IL-6 and TNF-a, change the
levels of neuropeptides (POMC, NPY and dopamine) involved in the hypothalamic and dopamine systems, which are associated with appetite and weight loss (the
sickness behavior associated with a high-intensity infection). Lower panel: Short (3 days) or chronic (>8 weeks) HFD consumption is associated with low-grade
inflammation. The increase in cytokine levels induced by a HFD also changes the levels of neuropeptides involved in the hypothalamic and dopamine systems, which
appears to be associated with overeating and body weight gain and the development of obesity, leptin resistance and insulin resistance, potentially increasing
appetite, and weight. However, in the first 3 days, the weight was not changed, which may protect organs from HFD-induced damage.
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PERSPECTIVES AND FUTURE
DIRECTIONS

Appetite is controlled by several complex regulatory mechanisms
involving both homeostatic and non-homeostatic processes.
Additionally, inflammation is seen as a way for tissues to try to
return to normal in response to infection or disruption. Such
studies have provided evidence in understanding the full impact
of TLR4-induced inflammatory signaling on appetite and how it
may increase the risk of developing obesity and related health
problems. Importantly, the interfering of appetite can be
achieved by regulating inflammatory signaling in hypothalamus
and dopamine system, which could guide development of novel
therapies to treat diseases about appetite. More importantly, the
link between SFAs and CNS immune system also provides an
Frontiers in Endocrinology | www.frontiersin.org 9
exciting new direction for the study of eating behaviors and the
pathophysiology of obesity.
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