
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15496  | https://doi.org/10.1038/s41598-020-72535-0

www.nature.com/scientificreports

intensity harmonization techniques 
influence radiomics features 
and radiomics‑based predictions 
in sarcoma patients
Amandine Crombé1,2,3,6*, Michèle Kind1, David Fadli1, François Le Loarer3,4, 
Antoine Italiano3,5, Xavier Buy1 & Olivier Saut2,3

Intensity harmonization techniques (IHT) are mandatory to homogenize multicentric MRIs before 
any quantitative analysis because signal intensities (SI) do not have standardized units. Radiomics 
combine quantification of tumors’ radiological phenotype with machine‑learning to improve 
predictive models, such as metastastic‑relapse‑free survival (MFS) for sarcoma patients. We post‑
processed the initial T2‑weighted‑imaging of 70 sarcoma patients by using 5 IHTs and extracting 45 
radiomics features (RFs), namely: classical standardization  (IHTstd), standardization per adipose tissue 
Sis  (iHtfat), histogram‑matching with a patient histogram  (IHTHM.1), with the average histogram of the 
population  (IHTHM.All) and plus ComBat method  (IHTHM.All.C), which provided 5 radiomics datasets in 
addition to the original radiomics dataset without IHT (No‑IHT). We found that using IHTs significantly 
influenced all RFs values (p‑values: < 0.0001–0.02). Unsupervised clustering performed on each 
radiomics dataset showed that only clusters from the No‑IHT,  IHTstd,  IHTHM.All, and IHTHM.All.C 
datasets significantly correlated with MFS in multivariate Cox models (p = 0.02, 0.007, 0.004 and 0.02, 
respectively). We built radiomics‑based supervised models to predict metastatic relapse at 2‑years 
with a training set of 50 patients. The models performances varied markedly depending on the IHT 
in the validation set (range of AUROC from 0.688 with  IHTstd to 0.823 with  IHTHM.1). Hence, the use of 
intensity harmonization and the related technique should be carefully detailed in radiomics post‑
processing pipelines as it can profoundly affect the reproducibility of analyses.

Radiomics has now become an intensive field of research, based on the extraction and mining of several quan-
titative variables, which are referred to as radiomics features (RFs). RFs enable to screen extensively the shape 
and texture of objects of interests within medical images of any modality. In oncology, RFs have been used in 
predictive models based on machine-learning classifiers to discriminate benign and malignant lesions, identify 
molecular alterations in tumors, predict patients’ outcome, and even build radio-genomics  signatures1–3. Regard-
ing sarcomas, radiomics have improved predictions of grading, prognosis and response to chemotherapy/radio-
therapy, based on CT-scans, structural MRI alone or combined with positron emission tomography, dynamic-
contrast enhanced or diffusion  MRI4–9.

Though one aim of radiomics is to provide an objective assessment of tumor phenotype, several studies have 
shown the influence of pre- and post-processing factors on the value of  RFs10–15. These findings question the 
validity and reproducibility of inter-site radiomics studies. This issue is even more prominent with MRI because 
of the absence of standard intensity scale. Therefore, signal intensities (SIs) lack of comparability, even for a given 
sequence acquired on the same MR-scanner. Unlike gray-levels discretization or voxel-size standardization, 

open

1Department of Radiology, Institut Bergonie, 33000 Bordeaux, France. 2Modelisation in Oncology (MOnc) Team, 
INRIA Bordeaux-Sud-Ouest, CNRS UMR 5251, Université de Bordeaux, 33405 Talence, France. 3University 
of Bordeaux, 33000 Bordeaux, France. 4Department of Pathology, Institut Bergonie, 33000 Bordeaux, 
France. 5Department of Medical Oncology, Institut Bergonie, 33000 Bordeaux, France. 6Department of Diagnostic 
and Interventional Radiology, Institut Bergonié, Comprehensive Cancer Center of Nouvelle-Aquitaine, 229 cours 
de l’Argonne, 33000 Bordeaux, France. *email: a.crombe@bordeaux.unicancer.fr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-72535-0&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:15496  | https://doi.org/10.1038/s41598-020-72535-0

www.nature.com/scientificreports/

technical details regarding homogeneization of SIs are frequently missing in materials and methods and, even 
when performed, assessment of the optimal setting for the MRI dataset of interest is often lacking.

Some intensity harmonization techniques (IHTs) have been proposed in the neuroimaging literature to enable 
robust analysis of structural and diffusion MRIs across different radiological centers and longitudinally, but most 
cannot be transposed to sarcomas because of the heterogeneity of tissues surrounding sarcomas, which are ubiq-
uitous tumors. Available IHTs regarding non-brain MRI are scarce. The most frequently encountered are global 
scaling (e.g. where SIs values are centered by removing the mean and scaled to unit variance, or transformed to 
range between 0 and 1), ratio with SIs of a healthy tissue that is not affected by the disease (for instance adipose 
tissue or muscle in musculoskeletal imaging), or histogram-matching (HM, where the intensity histograms are 
transformed to match a reference intensity histogram)16–18. In addition, Orlhac et al. have recently shown that 
ComBat harmonization method, which was initially described in genomics to remove batch effect, could correct 
non biological differences related to the type of  scanners19. Though the authors focused on CT-scanner, ComBat 
may help reduce unwanted variations in MRI-based radiomics datasets as well.

Thus, our aim was to investigate how the IHT could influence MRI-based radiomics analyses in a uniformly-
treated cohort of soft-tissue sarcomas (STS) patients with which the presence of intra-tumor heterogeneity on ini-
tial T2-weighted-imaging (-WI) has been previously correlated with metastatic-relapse free survival (MFS)4,6,20. 
To do so, to comprehensively assess the impact of IHT on radiomics analyses, we investigated its influence on: 
(i) the RFs values; (ii) the prognostic value of radiomics-based unsupervised classifications; and (iii) the perfor-
mances of supervised classifiers to predict early metastatic relapses.

Methods
Study population. This study was approved by the local Research Ethics Committee of Bergonié Insitute 
(Bordeaux, France) according to good clinical practices and applicable laws and regulations. All methods were 
performed in accordance with the relevant guidelines and regulations. The need for written informed consent 
was waived because of its retrospective nature.

Patients were consecutively recruited as they fulfilled the following inclusion criteria: newly-diagnosed, non-
metastatic (according to chest CT-scan), histologically-proven high-grade STS of trunk wall or extremities 
(n = 163), treated with 4–6 cycles of anthracycline-based neoadjuvant chemotherapy and curative surgery at our 
sarcoma reference center from June 2006 to November 2016 (n = 133), available baseline MRI (n = 95) with axial 
spin-echo T2-WI without artefacts (n = 72), and available clinical and radiological follow-ups for at least 2 years 
after the surgery (n = 70). Follow-ups consisted in a clinical examination and chest radiograph every 3 months 
for 2 years, every 6 months for 5 years and annually until 10 years after surgery, which were complemented by 
chest CT-scans and MRIs in case of doubtful findings. All relapses were histopathologically confirmed. MFS was 
defined as the time since curative surgery to metastatic relapse.

MRI acquisition. The baseline MRI examinations were acquired on 3 different 1.5-T MR-systems (Philips 
Signa [17/70, 24.3%], Siemens MAGNETOM Aera [41/70, 58.5%], General Electrics Healthcare Optima Jem 
MR450w [12/70, 17.1%]) with adjustment of coils, field-of-view and matrix depending on tumor size, location 
and depth. Regarding T2-WI, the range of repetition and echo times were 2,400–4,500  ms and 70–130  ms, 
respectively. Slice thickness ranged from 3 to 5 mm. The protocol also systematically included 2D or 3D T1-WI 
after intra-venous gadolinium-chelates injection (with or without fat-suppression).

MRI post‑processing (Fig. 1). After anonymizing MRIs, the postprocessing was performed with R (ver-
sion 3.5.3, Vienna, Austria) by using the “oro.nifti”, “ANTsR” and “extranstr”  packages21.

First, T2-WIs were converted to nifti format. Voxel size resampling (with b-spline interpolator) and N4 bias 
field correction were applied to obtain a common spatial resolution of 1 × 1 × 4 mm3 and to correct non-uniform 
 intensities22.

Second, a senior radiologist (A.C., with 4 years of experience in sarcoma imaging) manually segmented the 
whole tumor volume, slice-by-slice, by using LIFEx freeware (version 5.10, Inserm, Orsay, France, www.lifex 
soft.org)23. The radiologist had access to all the other MRI sequences to adjust the boundary of the segmenta-
tion if needed. The volumes of interests were all validated by a second senior radiologist (M.K., with 28 years of 
experience in sarcoma imaging).

Third, 4 IHTs were applied in parallel to the whole imaging dataset in order to harmonize the SIs of the T2-WI, 
providing 4 harmonized datasets, i.e.:

(1) IHTfat, which consisted in dividing all the SIs of a given T2-WI by the mean SI of adipose tissue on that 
T2-WI, as follows:

 where x, y and z are the coordinates of a voxel. To do so, the first senior radiologist segmented a volume 
of at least 10  cm3 of pure normally-appearing adipose tissue on each T2-WI in order to extract the mean 
SI per patient.

(2) IHTstd, which consisted in normalizing the SIs of a T2-WI according to the minimum and maximum of all 
voxels included in this T2-WI, as follows:

SI
(
x, y, z

)
IHT−fat

=
SI(x, y, z)

mean(SI(adiposetissue))

http://www.lifexsoft.org
http://www.lifexsoft.org
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(3) IHTHM.1, which consisted in performing a matching of the intensity histogram of each T2-WI with the 
intensity histogram of a same normalized T2-WI from the same randomly chosen patient in the MRI 
dataset. This technique is achieved in 2 stages: first, a pre-specified number of percentiles and a reference 
image are given to the algorithm and, second, the new image is transformed according to several linear 
mapping of the SIs (depending on the number of landmarks) in order to match to the reference image 
(details about the conversion of SIs are given in Supplementary Data 1) (https ://githu b.com/abdhi githu b/
hatch ).

(4) IHTHM.All, which consisted in performing a matching of the intensity histogram of each T2-WI with the 
average intensity histogram of the whole normalized MRI dataset.

IHTHM.All and IHTHM.1 were trained on 100 histogram landmarks as a compromise between postprocessing 
time and image quality but other numbers of landmarks were tried (Supplementary Data 1). The superimposed 
SIs distributions of the 70 patients depending on the IHT are given in Supplementary Data 2.

Radiomics features extraction. The tumor volumes were then propagated on the 4 post-processed imag-
ing datasets  (IHTfat,  IHTstd,  IHTHM.1 and  IHTHM.All) and on the imaging dataset without IHT (named No-IHT) 

SI(x, y, z)IHT−std =
SI
(
x, y, z

)
−min(SIs)

max(SIs)−min(SIs)

Figure 1.  Study pipeline. HM histogram matching, IHT intensity harmonization technique, No-IHT no use of 
IHT before extracting radiomics features, RF radiomics features, WI weighted imaging.

https://github.com/abdhigithub/hatch
https://github.com/abdhigithub/hatch
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enabling the extraction of 5 datasets of 45 3-D RFs by using LIFEx software. SIs were previously discretized into 
128 fixed bins. Thirteen histogram-based and 32 s-order texture features from grey-level co-occurrence matrix 
(GLCM, n = 7—with a 1-voxel distance to neighbors), grey-level run length matrix (GLRLM, n = 11), neigh-
borhood grey-level different matrix (NGLDM, n = 3) and grey-level zone length matrix (GLZLM, n = 11) were 
calculated (details are giving in Supplementary Data 3).

ComBat compensation. We applied the ComBat-Harmonization function in R (https ://githu b.com/forti 
n1/ComBa tHarm oniza tion) to the 45 RFs that were extracted from the  IHTHM.All dataset with a non-parametric 
setting in order to remove unwanted noise due to technical variations between the 3 MR-systems of the study 
while preserving biological variability, and notably when there are only a few patients per  site19,24,25. ComBat-
Harmonization is classically applied at the end of the postprocessing pipeline, herein, after the extraction of RFs 
obtained with the IHT that was hypothesized to be the more relevant and realistic among the 5 IHTs (namely 
 IHTHM.All). This data-driven method identifies the protocol effect assuming that the value of each feature, RF, 
measured in a volume-of-interest, (x,y,z), with an imaging protocol, i, can be written as:  RFi,(x,y,z) = α + γi + δi × εi,(x,y,z) 
(in which α is the average value for features  yij; γi is an additive protocol effect and δi is a multiplicative protocol 
effect affected by an error term εij). The compensations consists in estimating the model parameters α, γi and δi, 
and by using a maximum likelihood approach on the basis of the set of available observa-
tions:RFComBat

i,v(x,y,z) = α̂ +
RFi,v(x,y,z)−α̂−γ̂i

δ̂i
 , in which α̂ , γ̂i and δ̂i are estimators of α, γi and δi. Parametric and non-

parametric forms of ComBat-Harmonization have been developed. The non-parametric form does not assume 
law followed by the parameters and has been used in the present study.

The resulting RFs were labelled  IHTHM.All.C. In total, six paired datasets of 45 RFs were obtained, namely: 
No-IHT,  IHTfat,  IHTstd,  IHTHM.1,  IHTHM.All and  IHTHM.All.C.

Statistical analysis. Statistical analysis was performed with R. All tests were two-tailed. A p-value of less 
than 0.05 was deemed significant. A 3-steps approach was performed to evaluate the impact of IHTs on each 
aspect of radiomics studies (Fig. 1):

(1) Per-RF analysis: RFs were all normalized in order to range between 0 and 1 and to facilitate direct com-
parisons. For each RF, the influence of the IHT was evaluated with one-way repeated-measures ANOVA. 
Post-Hoc comparisons were assessed with Tukey test and Bonferroni corrections. Intraclass correlation 
coefficients (ICC) were estimated for each RF, with a 2-way random model, agreement between raters and 
6 raters (“irr” package).

(2) Unsupervised analysis: A hierarchical clustering analysis with the Ward method was applied on each of the 
6 subsets of RFs. RFs were centered and scaled by mean beforehand and the Euclidean distance between 
each pair of patients was computed. Visual inspection of the silhouette plot enabled to select 2 clusters 
of patients for each harmonization technique. We calculated the Baker’s gamma coefficient between each 
pair of dendrograms (dendextend” package), and the Kappa index between each pair of clustering results, 
which enabled the quantification of their divergence depending on the  IHT26.

  The correlations between MFS and the clusters yielded by the models were assessed with Kaplan–Meier 
analysis and multivariable Cox models—after adjustment to the classical confounding covariables for 
sarcomas, i.e.: the longest baseline diameter (< vs. ≥ 10 cm), performance status (0 vs. 1–2), histological 
type (undifferentiated sarcomas vs. other), number of chemotherapy cycles (4 vs. 5–6), chemotherapy 
type (anthracycline-ifosfamide vs doxorubicine), adjuvant radiotherapy, surgical margins (R0 vs. R1-R2) 
and histological response (goods vs. poor responder to chemotherapy with a cut-off of 10% viable cells on 
post-chemotherapy surgical specimen). Prognostic performances of the 6 multivariate models were evalu-
ated and compared through concordance-indices, which estimate the models’s ability to provide a reliable 
ranking of the survival times based on the individual risk scores.

(3) Supervised analysis: The same supervised machine-learning approach was applied to the 6 datasets of RFs 
in order to predict the occurrence of a metastatic relapse within 2 years after curative surgery by using the 
“caret” and “glmnet”  packages27,28. The total population of 70 patients with available clinical and radiologi-
cal follow-up was randomly subdivided into one training cohort of 50 patients and one testing cohort of 
20 patients with the same proportion of metastatic relapses by using the createDataPartition function. The 
training cohort was used to train a binomial logistic regression with combination of least absolute shrink-
age and selection operator (LASSO) and ridge penalizations (elasticnet-LR). This algorithm consists of 
reducing the number and the importance of explanatory variables in order to optimize the performances 
of the classification model. The coefficients of the less contributive variables are shrunken towards 0 (: ridge 
regression) or even set to 0 (: LASSO). The amount of ridge and LASSO penalization was investigated by 
using a manual grid search with two hyperparamètres: α (mixing percentage) and λ (regularization param-
eter) and tenfold cross validation, repeated 5 times. The same partitioning of patients was used for the 6 
datasets. The same clinical and pathological covariables as in the unsupervised analysis were included, in 
addition to the same 3 shape RFs (volume, compacity and sphericity—which are independent from the 
IHT).

The performances of supervised models were evaluated through cross-validated accuracy and area under the 
ROC curves (AUROC) with 95% confidence interval (95%CI). To do so, we extracted the 5 × 10 = 50 estimations 
of the accuracy and AUROC from the 50 distinct test sub-cohorts of 5 patients from the training cohort, and we 

https://github.com/fortin1/ComBatHarmonization
https://github.com/fortin1/ComBatHarmonization
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applied the CI function from the Rmisc package to these vectors. Finally, for each RFs dataset, the final model 
with the highest AUROC in cross-validation was used on the testing cohort to estimate the AUROC and accuracy.

Results
Thirty-two of the 70 patients (45.7%) were women with a median age of 58 (range: 19–84) (Table 1). The most 
frequent histological types were high-grade undifferentiated sarcomas (31/70, 44.3%), with a median size of 
116 mm (range 40–273) and mostly deep-seated in the lower limb (35/70, 50%).

Table 1.  Clinical and pathological features of the study population. Results are number of patients with 
percentage in parentheses, except for age, longest diameter and volume that are expressed as median with 
range in parentheses. WHO PS World health organization performance status.

Characteristics No. of patients

Age (years old)

Median (range) 58 (19–84)

Gender

Men 38/70 (54.3)

Women 32/70 (45.7)

WHO performance status

PS 0 55/70 (78.6)

PS 1 15/70 (21.4)

Histotype

Undifferentiated sarcoma 31/70 (44.3)

Synovial sarcoma 8/70 (11.4)

Rhabdomyosarcoma 8/70 (11.4)

Leiomyosarcoma 6/70 (8.6)

Myxoid/round cells liposarcoma 6/70 (8.6)

Pleomorphic sarcoma 3/70 (4.3)

Other sarcomas 8/70 (11.4)

Longest diameter (mm)

median (range) 106 (40–273)

Volume (cm3)

median (range) 220 (10.2–3,084)

Location

Trunk 12/70 (17.1)

Shoulder girdle 9/70 (12.9)

Upper limb 9/70 (12.9)

Pelvic girdle 5/70 (7.1)

Lower limb 35/70 (50)

Depth

Deep-seated 65/70 (92.9)

Superficial and aponeurotic 5/70 (7.1)

No. of cycle

4 cycles 18/70 (25.7)

5–6 cycles 52/70 (74.3)

Chemotherapy

Anthracycline-ifosfamide 64/70 (91.4)

Doxorubicine 6/70 (8.6)

Adjuvant radiotherapy

No 5/70 (7.1)

Yes 65/70 (92.9)

Margins

R0 41/70 (58.5)

R1 29/70 (41.4)

Histological response

Good 16/70 (22.9)

Poor 54/70 (77.1)
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Per‑RF analysis. The influence of IHT was significant for all RFs (p-values range: < 0.0001–0.02, Supple-
mentary Data 4). All significant differences in the RFs comparisons between each pair of post-processing tech-
niques are listed in Table 2. The highest and lowest amounts of differences were obtained for post-hoc compari-
sons between  IHTHM-All and  IHTfat (31 statistically different RFs out of 45, 68.9%) and  IHTHM.All and  IHTHM.1 
(6/45, 13.3%), respectively.

Figure 2 shows the 45 ICCs in descending order. The highest ICCs were reached with GLRLM_RLMNU, 
GLRLM_GLNU and GLCM_Correlation (≥ 0.95). The lowest ICCs were reached with GLZLM_ZLNU, GLZLM_
LZE, HISTO_maximum, GLZLM_LZLGE and HISTO_minimum (< 0.20).

Unsupervised analysis. All 6 unsupervised classifications achieved were different. Table 3 shows the cor-
relation matrices for Kappa indices and Baker coefficients. The pair of clustering with the highest positive cor-
relation was obtained with  IHTHM.All versus  IHTHM.All.C (Kappa = 0.75, Baker coefficient = 0.55). The lowest cor-
related pair was obtained with No-IHT versus  IHTHM.1 (Kappa = 0.18, Baker coefficient = 0.05). Both correlated 
dendrograms are displayed in Fig. 3.

Regarding the prognostic value of the clusters, our univariate analysis showed that significantly different 
survivals were found with the clusters obtained with the  IHTHM.All radiomics dataset (Log-rang p-value = 0.03) 
but not with the other IHTs. Kaplan Meier curves for the 6 clustering analyses are given in Fig. 4.

To assess the prognostic values in presence of confounding variables, we elaborated multivariate models dem-
onstrating that the clusters obtained with RFs from the No-IHT,  IHTstd,  IHTHM.All and  IHTHM.All.C were indepen-
dently associated with MFS in the multivariate modeling (p = 0.02, 0.007, 0.004 and 0.02, respectively—Table 4) 
but not the clusters obtained with RFs from the  IHTfat and  IHTHM.1. Concordance-indices of the 6 prognostic 
models ranged from 0.71 (95% CI 0.67–0.75) for  IHTHM.1 to 0.75 (95% CI 0.70–0.79) for No-IHT,  IHTHMstd 
and  IHTHM.All. The concordance-index of a reference prognostic model taking into account the clinical and 
pathological confounding co-variables alone was of 0.71 (95% CI 0.67–0.75).

Supervised analysis. In total, there were 29/70 (41.4%) metastatic relapses within the first two years of 
follow-up, which were distributed into 21/50 (42%) events in the training cohort and 8/20 (40%) events in the 
validation cohort.

The final hyperparameters and performances of the classification models are given in Table 5. The best per-
formances in repeated cross-validation were found with the models based on the RFs from the IHTHM.All and 
IHTHM.1 datasets (AUROC = 0.71, 95% CI 0.66–0.76, and 0.69, 95% CI 0.64–0.74, respectively). The lowest 
AUROC was obtained with the No-IHT dataset (0.57, 95% CI 0.52–0.63).

In descending orders, the AUROCs on the testing cohort were 0.82 (95% CI 0.59–1) with  IHTHM.1, 0.80 
(95% CI 0.56–1) with  IHTfat, 0.77 (95% CI 0.52–1) with  IHTHM.All, 0.76 (95% CI 0.50–01) with No-IHT, 0.71 
(95% CI 0.444–0.973) with  IHTHM.All.C, and 0.69 (95% CI 0.41–0.56) with  IHTstd. AUROCs of the most and less 
performant models and the No-IHT model in the testing cohort are shown in Fig. 5. The number of radiom-
ics features included in the final models ranged from 3 (with No-IHT and IHTHM.AllC) to 21 (with IHTfat). 
Regarding the best final model, namely IHTHM.1, the number of selected radiomics features was of 7 out of 48 

Table 2.  Summary of the per-radiomics features (RFs) analysis. a Post-Hoc comparisons correspond to 
the post-hoc Bonferroni-corrected Tukey tests for repeated-measures ANOVAs where the influence of the 
intensity harmonization techniques (IHT) on the 45 RFs was investigated. b The number (no.) of significant 
differences corresponds to the number of RFs that were significantly different in a given post-hoc comparisons 
between 2 IHTs or the raw radiomics dataset, without IHT—named No-IHT (with percentage over the total 
number of RFs in parentheses). HM histogram matching, No. number.

Post-hoc  comparisonsa No. of significant  differencesb

IHTHM.All vs  IHTfat 31/45 (68.9%)

IHTHM.All.C vs  IHTfat 30/45 (66.7%)

IHTHM.1 vs  IHTfat 30/45 (66.7%)

IHTstd vs  IHTHM.All 28/45 (62.2%)

No-IHT vs  IHTfat 28/45 (62.2%)

No-IHT vs  IHTHM.1 28/45 (62.2%)

No-IHT vs  IHTHM.All 27/45 (60%)

No-IHT vs  IHTHM.All.C 27/45 (60%)

IHTstd vs  IHTHM.All.C 27/45 (60%)

IHTstd vs No-IHT 23/45 (51.1%)

IHTstd vs  IHTfat 20/45 (44.4%)

IHTstd vs  IHTHM.1 19/45 (42.2%)

IHTHM.1 vs  IHTHM.All.C 14/45 (31.1%)

IHTHM.All.C vs  IHTHM.All 13/45 (28.9%)

IHTHM.1 vs  IHTHM.All 6/45 (13.3%)
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Figure 2.  Intra-class correlation coefficients (ICC) of the radiomics features (RFs) depending on the intensity 
harmonization technique (IHT). Results are given with 95% confidence interval.

Table 3.  Comparisons of the different dendrograms obtained by hierarchical clustering of the radiomics 
features with the 6 datasets depending on the intensity harmonization technique (IHT). (a) Corresponds to 
the Cohen’s Kappa index ranging from 0 (completely different clustering assignements) to 1 (exactly the same 
clustering assignements). (b) Corresponds to the the Baker’s gamma coefficient ranging from 0 (completely 
different dendrograms) to 1 (exactly the same two dendrograms).

(a) IHTfat IHTstd IHTHM.1 IHTHM.All IHTHM.All.C (b) IHTfat IHTstd IHTHM.1 IHTHM.All IHTHM.All.C

No-IHT 0.40 0.33 0.18 0.39 0.35 No-IHT 0.19 0.11 0.05 0.05 0.07

IHTfat 0.33 0.23 0.36 0.43 IHTfat 0.14 0.15 0.17 0.18

IHTstd 0.25 0.51 0.67 IHTstd 0.11 0.30 0.42

IHTHM.1 0.40 0.44 IHTHM.1 0.26 0.29

IHTHM.All 0.75 IHTHM.All 0.55
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Figure 3.  Comparisons of the hierarchical clustering results based on radiomics features from different datasets 
depending on the intensity harmonization technique (IHT) with: (a) the highest divergence, and (b) the lowest 
divergence. The dendrograms were obtained according to the following IHTs: histogram matching (HM) with 
a randomly-chosen normalized histogram of a patient  (IHTHM1) versus no use of harmonization technique 
(No-IHT); and HM with the average normalized histogram of the study population  (IHTHM.All) versus  IHTHM.All 
combined with ComBat harmonization method  (IHTHM.All.C). By convention, cluster-1 (in blue) corresponds to 
the group of patients with the best prognosis regarding metastatic-relapse free survival.

Figure 4.  Kaplan–Meier curves for metastatic-relapse free survival depending on unsupervised clustering 
results based on radiomics features obtained with the different intensity harmonization techniques (IHT) or no 
use of harmonization technique (No-IHT).
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possible (by including the 3 shape features). Among these features, HISTO_Quartile1 and GLZLM_SZLGE were 
the most frequently selected (in 5 out of 6 models, and 4 out of 6 models, respectively) (Supplementary Data 5).

Discussion
The post-processing of medical images to perform radiomics studies is mandatory to ensure the comparability 
of multicentric datasets but it can result in additional bias that may alter the performances of predictive models 
and preclude the reproducibility of MRI-based radiomics signatures. Because structural MRIs are acquired in 
arbitrary units, the intensity harmonization is crucial to enable the comparability of examinations acquired 
with different MR-systems, coils, and acquisition parameters. We found that all 45 textural features widely used 
in the literature were significantly influenced by IHT. Furthermore, depending on the IHC used, the results of 
unsupervised and supervised analyses based on RFs and their clinical correlations were dramatically changed. 
In addition, using an inappropriate IHT could decrease the performances of radiomics-based predictive models 
as it was highlighted by the comparative analysis with the models built with the No-IHT imaging dataset.

Our results concur with previous studies that found a significant influence of other post-processing steps on 
the absolute values of RFs (such as voxel size standardization, gray-levels discretization or manual segmentation) 
in addition to pre-processing steps (such as magnetic field strength, manufacturers, coils, acquisition parameters 
or filters). Recently, Scalco et al. found that the IHT for T2-WI had a significant impact on the reproducibility 
of RFs and on the inter-observer reproducibility of RFs that were extracted from pelvic organs from two MRIs 
separated by  months29. These findings have been also applied to other IHTs such as variants of HM and a home-
made method taking into account the SIs of organs of interest, the prostate, but the authors focused on the 

Table 4.  Unsupervised analysis based on radiomics features (RFs)—Prognostic value of the clustering 
results depending on the intensity harmonization technique (IHT). Results for 2-years survival probability, 
hazard ratio and concordance-index are given with 95% confidence interval. a Multivariate Cox modeling 
were adjusted for the following clinical and pathological covariables: performance status, histotype, initial 
longest diameter of the tumor, type of neoadjuvant chemotherapy, number of cycles of chemotherapy, surgical 
margins, histological response and adjuvant Radiotherapy. HM histogram matching, HR hazard ratio, No: 
number. *: p < 0.05, **: p < 0.005, ***: p < 0.001.

Intensity 
harmonization 
technique Clustering result No. of patients No. of events

2-years survival 
probability

Univariate analysis Multivariate cox  modelinga

Log-rank 
p-value

Concordance-
index HR p-value

Concordance-
index

No-IHT
Cluster-1 51 22 64.7 (52.8–79.3)

0.3 0.55 (0.50–0.59)
– –

0.75 (0.71–0.79)
Cluster-2 19 10 52.6 (34.4–80.6) 2.64 (1.15–6.04) 0.02*

IHTfat
Cluster-1 53 23 62.3 (50.5–76.8)

0.6 0.51 (0.47–0.55)
– –

0.72 (0.67–0.76)
Cluster-2 17 9 58.8 (39.5–87.6) 1.65 (0.70–3.89) 0.3

IHTstd
Cluster-1 30 11 70 (55.4–88.5)

0.1 0.55 (0.50–0.60)
– –

0.75 (0.72–0.79)
Cluster-2 40 21 55 (41.6–72.8) 3.26 (1.48–7.71) 0.007*

IHTHM.1
Cluster-1 50 22 64 (52–78.8)

0.6 0.52 (0.48–0.56)
– –

0.71 (0.67–0.75)
Cluster-2 20 10 55 (37–81.8) 1.52 (0.66–3.49) 0.3

IHTHM.All
Cluster-1 20 5 80 (64.3–99.6)

0.03* 0.58 (0.54–0.62)
– –

0.75 (0.70–0.79)
Cluster-2 50 27 54 (41.8–69.7) 4.72 (1.64–13.56) 0.004**

IHTHM.All.C
Cluster-1 28 10 67.9 (52.6–87.6)

0.3 0.53 (0.51–0.55)
– –

0.73 (0.68–0.77)
Cluster-2 42 22 57.1 (44–74.3) 2.89 (1.19–7.05) 0.02*

Table 5.  Accuracy and area under the ROC curves (AUROC) of the supervised models in repeated cross 
validation (training cohort) and in the testing/validation independent cohort, depending on the 5 intensity 
harmonization techniques (IHTs) or the lack of IHT (named No-IHT). Results are giving with 95% confidence 
interval.

Intensity harmonization 
technique Best hyperparameter tuning

Training cohort (results in repeated 
cross-validation) Testing cohort

Accuracy AUROC Accuracy AUROC

No-IHT Alpha = 0.883 Lambda = 0.114 0.56 (0.52–0.64) 0.57 (0.52–0.60) 0.75 (0.51–0.89) 0.76 (0.50–1.0)

IHTfat Alpha = 0.226, Lambda = 0.048 0.60 (0.64–0.55) 0.68 (0.63–0.73) 0.75 (0.51–0.91) 0.80 (0.56–1.0)

IHTstd Alpha = 0.384, Lambda = 0.086 0.63 (0.59–0.55) 0.64 (0.59–0.69) 0.70 (0.46–0.88) 0.69 (0.41–0.89)

IHTHM.1 Alpha = 0.394, Lambda = 0.200 0.62 (0.66–0.59) 0.69 (0.64–0.74) 0.75 (0.51–0.91) 0.82 (0.59–1)

IHTHM.All Alpha = 0.338, Lambda = 0.384 0.61 (0.63–0.58) 0.71 (0.66–0.76) 0.60 (0.36–0.81) 0.77 (0.52–1)

IHTHM.All.C Alpha = 0.166 Lambda = 0.840 0.58 (0.57–0.59) 0.68 (0.63–0.73) 0.60 (0.36–0.81) 0.71 (0.44–0.97)
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image, histogram and RFs values and not on RF-base  predictions30. To our knowledge, this study is the first to 
demonstrate the dramatic impact of IHTs on RF-based predictions.

Moreover, in a recent review of MRI-based sarcoma radiomics studies, we found that 17 out 31 (54.8%) 
did not mention the method used for making comparable the SIs of MRI dataset (under review). It should be 
emphasized that the current Image Biomarker Standarisation Initiative and Radiomics Quality Score lack of 
precise guidelines regarding IHT for  MRI31.

Previous studies have already emphasized the influence of IHT on segmentation and tissue classification 
tasks but they mostly involved brain MRI for inflammatory or degenerative diseases, and not specifically study 
their influence on radiomics  analyses24,25,32,33. Moreover, the methods proposed in these studies were not readily 
transposable to non-brain imaging and/or not available in open source language (for instance, DeepHarmony)34.

In this study, we focused the analyses on techniques previously used in the body-imaging radiomics literature 
(i.e. scaling, histogram-matching or ComBat-Harmonization) but further studies should consider translating 
other popular intensity harmonization algorithms to body MRI. The RAVEL algorithm, which aims at estimating 
a voxel-specific unwanted variation by using a control region (i.e. brain cerebro-spinal fluid), may be particu-
larly promising if applied to body-MR, with the possible use of healthy adipose tissues as control in the setting 
of soft tissue sarcomas for  example24,25. Alternatively, instead of a post-processing intensity harmonization, the 
harmonization of SIs could be achieved since the acquisition step, through the use of standardized T1-mapping 
or T2-mapping sequence. However, thousands of MRIs have already been stored and, logically, the radiological 
community expects to pool and include these images in retrospective radiomics studies.

None of the IHTs used in this study demonstrated an unequivocal superiority compared to the others. This 
observation lets us hypothesize that the “best” technique is not universal but may actually vary depending on 
the dataset and the study objectives. Our present data does not allow us to validate this hypothesis, as it would 
require additional datasets to test if the same IHT constantly provides the best models whatever the disease 
and the outcome. While the unsupervised analysis highlighted the prognostic value of clusters elaborated with 
RFs from the  IHTstd,  IHTHM.All and  IHTHM.All.C datasets, the supervised analysis emphasized on the other hand 
the prognostic value of other models elaborated with RFs from the  IHTfat and  IHTHM.1 in the testing cohort. It 
is worth noting that our supervised models showed moderately higher performances in the validation cohort 
than in the training cohort (range of differences: 0.03–0.13). Although this finding suggests that the models 
were not overfitted, it also indicates that the training could have been premature (despite the use of repeated 
cross-validation and exhaustive grid search) and that a sampling bias could have occurred during the data par-
titioning in our rather small study population (despite the fact that the splits were obtained randomly and were 
well-balanced regarding the outcome).

Importantly, our unsupervised analysis revealed that using an inappropriate IHT could even lead to a total loss 
of relevant information from the radiomics data. Indeed, the concordance indices of the reference model (which 
was elaborated with clinical and radiological variables alone) and the model relying on  IHTHM.1 were equivalent, 

Figure 5.  ROC curves for the best and worse supervised models to predict metastatic relapse within 2 years 
after the end of initial treatment in the testing cohort (built on the radiomics features from the  IHTHM.1 and 
 IHTstd datasets, respectively). The ROC curve of the final model without using harmonization technique 
(No-IHT) is also shown for comparison.
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which stresses the lack of prognostic value of the corresponding clusters. Similarly, although the lowest AUROC 
was reached with the No-IHT dataset in cross-validation, the performances of this supervised model were not 
markedly different from those obtained with some of the IHTs in the two cohorts (especially the  IHTstd). These 
findings also suggest that radiomics studies should investigate all the available IHTs in an exploratory subset of 
the cohort, as well as no use of IHT, and subsequently select the one that optimizes the predictions. For instance, 
the extraction of RFs according to various voxel sizes and/or numbers of gray levels is commonly performed in 
radiomics studies. By analogy, one could consider extracting the RFs according to different IHTs and select the 
most robust and predictive RFs at univariable level. Hence, the intensity harmonization techniques could be 
considered as a “hyperparameter” of the post-processing pipeline. Interestingly,  IHTHM.All.C yielded moderately 
good performances in both unsupervised and supervised analyses (with similar results in training and testing 
cohorts), which suggests that this method may provide the more realistic radiomics data in the setting of our 
study. It should be emphasized that the co-variable arguments given to the ComBat function may/might be 
incomplete in the setting of sarcomas. In any case, the clinical outcome of the study should not be included 
among the ComBat covariables because it should not depend on the MR-system or acquisition parameters of 
the sequences. A distinctive feature of sarcomas over other cancers is their anatomical ubiquity, hence, requir-
ing adjusting several other acquisition parameters depending on the tumor location (for instance thoracic wall, 
thigh or wrist). Further studies should investigate the best co-variables for ComBat for non-brain MRI. In addi-
tion, ComBat could have been used with the No-IHT,  IHTfat,  IHTstd,  IHTHM.1 radiomics features. We purposely 
decided to limit the application of ComBat to only one dataset  (IHTHM.All) to avoid multiplying the post-hoc 
analyses, performances measurements, or superposing ROC curves, while our current results already enables us 
to stress the strong impact of IHT on radiomics-features and radiomics-based classifications and predicitions.

Our results also deepened that intra-tumoral heterogeneous SIs on T2-WI is predictive of MFS in a quanti-
tative manner and other studies have also correlated this parameter with overall and/or metastatic-relapse free 
survivals in STS patients with relatively close and similar performances to  ours6,7,20. Indeed, Peeken et al. used 
an equivalent of IHTstd and applied ComBat to correct for multicenter effect. They also provided the sarcoma 
histological type as a biological covariable (which slightly improved the performances)6. Their best model relied 
on radiomics features from Fat Sat T2 weighted imaging and showed a concordance-index of 0.74 in the valida-
tion cohort. On the other hand, Spraker et al. did not explicitly use an intensity harmonization technique, neither 
 ComBat7. Interestingly, their best clinical and radiological prognostic models for the overall survival showed a 
concordance-index of 0.78 in the validation cohort.

Our study has limits. First, the study population was relatively small although this is the largest study investi-
gating IHT and radiomics. It should be noted sarcoma radiological studies rarely exceed our population number. 
Second, we focused this proof-of-concept methodological study on T2-WI sequences but further investigations 
should be performed on other MRI sequences, such as T1-WI, contrast-enhanced T1-WI, DCE-MRI and dif-
fusion imaging. We purposely chose this sequence because it is commonly reported as the most informative 
morphological sequence for  sarcomas8,20. Third, our study design could be criticized. Indeed, judging which 
of the IHTs is the best by using the performances of predictive models (AUROC or concordance-index) as 
judgment criteria can only be valid if the intrinsic prognostic value of MRI-based radiomics features is certain. 
In this case, lowering these performances with a particular IHT would mean that this IHT caused noise and 
inappropriate deviation in the data. However, as already stated, prior studies converged towards same results 
regarding the relationship between MRI-based radiomics features, heterogeneity on T2-WI and outcomes of 
sarcoma  patients6,7,20,35. Alternative study designs could have been proposed in the absence of such relationship, 
(i) either by using a phantom made of compartments with various degrees of heterogeneity, (ii) or by using 
MRIs of healthy volunteers covering organs with different textures and investigating which IHT enables the best 
radiomics-based classification of these organs (by analogy with the study by Orlhac et al.)19. Fourth, other shape 
and textural RFs than the 48 features used in this study can be encountered in the literature. Yet, we purposely 
decided to limit our investigations to this set of RFs, which are proposed by the LIFEx freeware, as they follow 
the definitions of the Imaging Biomarker Standardization  Initiative23,31. Furthermore, adding more potential 
radiomics predictors in our multivariate analyses would have increased the multidimensionality of our dataset 
and the risk of overfitted results regarding the limited number of patients.

To conclude, through the example of sarcomas, our study highlights that the IHT can directly influence the 
values of MRI-based RFs, subsequently leading to dramatical changes in the predictions of both unsupervised 
and supervised models. Therefore, IHTs need to be deepened regarding non-brain MRI and should be carefully 
explored and detailed when building radiomics models to ensure the robustness and reproducibility of radiom-
ics signatures.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available due to the 
clinical and confidential nature of the material but can be made available from the corresponding author on 
reasonable request.
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