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The type VI secretion system (T6SS), a macromolecular machine, plays an important
role in the pathogenicity of many Gram-negative bacteria. However, the role of T6SS
in the pathogenicity of Pseudomonas syringae pv. actinidiae (Psa), the pathogen of
kiwifruit bacterial canker, is yet to be studied. Here, we found a T6SS gene cluster
consisting of 13 core genes (A-J) in the genome of Psa M228 based on a genome-
wide analysis. To determine whether the T6SS gene cluster affects the pathogenicity
of Psa M228, T6SS and its 13 core gene deletion mutants were constructed and
their pathogenicity was determined. The deletion mutants showed different degrees of
reduction in pathogenicity compared with the wild-type strain M228; in tssM and tssJ
mutants, pathogenicity was significantly reduced by 78.7 and 71.3%, respectively. The
pathogenicity results were also confirmed by electron microscopy. To further confirm
that the reduction in pathogenicity is related to the function of T6SS, we selected
the T6SS gene cluster, comprising tssM and tssJ, for further analyses. Western blot
results revealed that tssM and tssJ were necessary for hemolytic co-regulatory protein
secretion, indicating that they encode a functional T6SS. Further, we explored the
mechanism by which T6SS affects the pathogenicity of Psa M228. The ability of bacterial
competition, biofilm formation, hydrogen peroxide tolerance, and proteolytic activity
were all weakened in the deletion mutants M2281T6SS, M2281tssM, and M2281tssJ.
All these properties of the two gene complementation mutants were restored to the
same levels as those of the wild-type strain, M228. Quantitative real-time results showed
that during the interaction between the deletion mutant M2281T6SS and the host,
expression levels of T3SS transcriptional regulatory gene hrpR, structural genes hrpZ,
hrcC, hopP1, and effector genes hopH1 and hopM1 were down-regulated at different
levels. Taken together, our data provide evidence for the first time that the T6SS plays an
important role in the pathogenicity of Psa, probably via effects on bacterial competition,
biofilm formation, and environmental adaptability. Moreover, a complicated relationship
exists between T6SS and T3SS.

Keywords: pathogenicity, type VI secretion system, Kiwifruit bacterial canker, type III secretion system,
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INTRODUCTION

The bacterial canker of kiwifruit is caused by the virulent form
of Pseudomonas syringae pv. actinidiae (Psa) and is the most
prevalent disease in the kiwifruit industry (Pinheiro et al., 2020).
Psa can enter the plant through stomata, water holes, lenticels,
wounds (caused by birds, insects, and/or human contact) and can
colonize the plant (including branches, leaves, buds, leaf marks,
and pruned diseased branches) for a long time without inducing
external symptoms, until a suitable environmental condition
is developed (Donati et al., 2020). Systemic infection occurs
through various pathways (Stefani and Giovanardi, 2011; Tontou
et al., 2014). Psa can infect young twigs systemically within a few
minutes (Michelotti et al., 2018). Therefore, pathogenic bacteria
can infect kiwifruits repeatedly, breed in cortex, expand up and
down, and even move to the xylem and central column of the
plant, causing severe pathogenicity under appropriate conditions
(Gao et al., 2016). Due to the latent and short-term outbreak
characteristics of Psa, bacterial canker has been identified as a
destructive disease of kiwifruit, which results in production losses
worldwide. Recently, this disease has received more attention in
the main kiwifruit planting areas owing to the huge economic
losses (Vanneste, 2017; Hang et al., 2018; Kim et al., 2019;
Williams et al., 2020). Therefore, identifying the pathogenic
mechanism will play a vital role in effective prevention and
control of the disease.

Bacterial phytopathogens usually infect their host plants by
various extracellular proteins or secretion of effectors through
secretory systems (Khan et al., 2018; Deb et al., 2019). These
secretion systems are a class of complex nanomolecular machines
that can transport the virulence proteins to the external
environment or host cells directly or indirectly (Costa et al., 2015;
Wen et al., 2018). To date, at least six different types of secretion
systems (I–VI) have been identified in Gram-negative pathogenic
bacteria (Mcquade and Stock, 2018). Among them, a newly
discovered secretion system, the type VI secretion system (T6SS),
has been shown to play an important role in pathogenicity
(Agnetti et al., 2019; Zhu et al., 2020) and has also been implicated
in bacterial interactions or environmental adaptations such as
colonization, biofilm formation, resistance, and survival (Mathias
et al., 2017; Wu et al., 2018; Ben-aakov and Salomon, 2019;
Asolkar and Ramesh, 2020). T6SS comprises 13 core genes (tssA
to tssM) usually encoded within the same gene cluster (Leiman
et al., 2009; Catarina et al., 2011; Kapitein et al., 2013; Kudryashev
et al., 2015; Cianfanelli et al., 2016). Among them, hemolytic co-
regulatory protein (Hcp) of bacteriophage T4 (Pell et al., 2009;
Nguyen et al., 2018) is one of the major substrates secreted
by T6SS. Since the secretion of Hcp is T6SS-dependent, it is
often a reliable indicator of whether T6SS functions appropriately
(Pukatzki et al., 2009).

Multiple studies have found that T6SS was closely related to
the pathogenicity in many pathogenic bacteria strains. Mattinen
et al. (2010) found that there was four H in the extract from
pathogenic bacterium Pectobacterium atrosepticum, when it was
cultured in minimal medium supplemented with host extract.
Overexpression mutants of the hcp genes were constructed. The
pathogenicity of the mutant strains was enhanced compared with

that of the wild-type strain. Hcp may act as a new virulence factor
in P. atrosepticum (Mattinen et al., 2010). Since the secretion
of Hcp is dependent on the T6SS secretion system, the results
indicates that T6SS plays an important role in P. atrosepticum.
The crown gall disease caused by Agrobacterium tumefaciens is
a worldwide tumor forming disease of the plants and is a major
problem for plant nursery industries. It can cause great economic
loss in fruit plants (Habbadi et al., 2017). Wu et al. (2018) found
that the pathogenicity of A. tumefaciens is closely related to T6SS.
Pantoea ananatis LMG 2665 is the most prevalent pathogenic
bacterium found in pineapple fruit and onions. Shyntum et al.
(2015) found that two sets of T6SS in its genome, namely T6SS-1
and T6SS-3. T6SS-1 is closely related to the pathogenicity and
competitiveness of the strain P. ananatis LMG 2665, while T6SS-3
has no effect on its pathogenicity. This indicates that T6SS-1 is
an important virulence factor in P. ananatis. In addition, the
core genes tssM (Zhang et al., 2012) and tssB (Zhang et al.,
2014) of T6SS are essential for the pathogenicity of Ralstonia
solanacearum. This indicates that T6SS plays an important role
in an increasing number of plant bacterial diseases, where the
core genes of T6SS have different functions. The bacterial canker
of kiwifruit, caused by Psa, is the most prevalent disease in
the kiwifruit industry; however, the function of T6SS in the
pathogenicity of Psa is still unclear. In this study, we found
a T6SS gene cluster consisting of 13 core genes (A-J) in the
genome of Psa M228 based on a genome-wide analysis. We
studied the role of T6SS in the pathogenicity of Psa by mutant
construction through homologous recombination technology
and conducted a preliminary exploration of its mechanism. The
results showed that T6SS is an important pathogenic determinant
in Psa M228 and plays a role in bacterial competition, biofilm
formation, hydrogen peroxide tolerance, proteolytic ability, and
T3SS function. Our results provide insights into the functions of
T6SS in the pathogenic mechanism of Psa.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and
Reagents
Pseudomonas syringae pv. actinidiae strain M228 (Psa M228) was
isolated from kiwi leaves in the Meixian, Shaanxi Province of
China in 2010 (Gao et al., 2016). Deletion and complementation
mutants were constructed in this study. The strain Psa M228
and mutants were grown on Luria-Bertani (LB) agar plates or
cultured in LB liquid medium at 25 ± 1◦C. Escherichia coli
DH5α was grown in LB medium at 37◦C. For gene cloning,
E. coli S17-1λpir was cultured under the same conditions
for bacterial gene transfer. When necessary, ampicillin (Amp,
10 µg/mL), kanamycin (Km, 10 µg/mL), tetracycline (Tcr,
10 µg/mL), erythromycin (Em, 10 µg/mL), and nalidixic acid
(NAL, 10 µg/mL) were used. All strains used in this study
were provided by the Plant Pathology Laboratory at Northwest
A&F University, Yangling, and PRC. All reagents and solvents
were of analytical grade. Antibiotics were purchased from
Sigma (United States). Plasmid pK18mobsacB was used for
gene deletion, and purchased from Biovector Science Lab, Inc.
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(Beijing, China); pDSK-GFPuV was used for fluorescently labeled
strains construction, and was provide by Ph.D. Mysore (The
Samuel Roberts Noble Foundation, United States); pMarA was
used for Bacillus transformation, and provided by Professor Qi
Wang (China Agricultural University, Beijing, China); pDSK
was used for gene complementation, pBR322 was used for
E. coli DH5α transformation, and these two plasmids were
provided by Professor Xi-Hui Shen (Northwest A&F University,
Yangling, China).

T6SS Bioinformatics Analysis of Psa
M228
The whole genome of Psa M228 has been sequenced by our
laboratory, and the genome data have been registered on NCBI
(ANJI00000000.2). The gene tssC sequence of Psa M228 was
obtained through bioinformatics analysis, and an evolutionary
tree was constructed from the tssC sequence of 68 species in 38
genera that contain T6SS. There are three representative types
of T6SS and from the evolutionary tree; the species containing
them were selected. Subsequently, a phylogenetic tree was
constructed to determine the type of T6SS Psa M228 belonged
to. The evolutionary history was inferred using the Maximum
Likelihood method based on the Le_Gascuel_2008 model (Le
and Gascuel, 1993). The bootstrap consensus tree inferred from
1000 replicates was used to represent the evolutionary history
of the taxa analyzed (Felsenstein, 1985). Branches corresponding
to partitions reproduced in less than 60% bootstrap replicates
were collapsed. The percentage of replicate trees in which
the associated taxa clustered together in the bootstrap test
(1000 replicates) is shown next to the branches (Felsenstein,
1985). The initial tree(s) for the heuristic search were obtained
automatically by applying Neighbor-Join and BioNJ algorithms
to a matrix of pairwise distances estimated using a JTT model,
and the topology with a superior log likelihood value was
selected. A discrete Gamma distribution was used to model
evolutionary rate differences among sites [five categories (+G,
parameter = 2.4316)]. The analysis involved 34 amino acid
sequences. All positions containing gaps and missing data were
eliminated. A total of 443 positions in the final dataset was
obtained. Evolutionary analyses were conducted in MEGA6
(Tamura et al., 2013).

According to the phylogenetic tree, the T6SS structural genes
of Psa M228 were annotated. The database of Clusters of
Orthologous Groups of proteins (COGs) was obtained from the
National Center of Biotechnology Information1. A schematic
diagram of the T6SS structure was constructed using the
Pseudomonas aeruginosa PAO1 gene structure map as a reference
(Sana et al., 2016).

Generation of Psa M228 Mutant Strains
Mutant strains with deletions of T6SS and its 13 core genes
were constructed by the homologous recombination method
(Kvitko and Collmer, 2011). In brief, PCR primer synthesis
and DNA sequencing were performed by TsingKe Biotech
Co., Ltd. (Beijing, China). Psa genomic and plasmid DNAs

1ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/static/lists/listAciave.html

were isolated using an E.Z.N.A. TM Bacterial DNA Kit
(OMEGA, United States) and Plasmid Mini Kit I (OMEGA,
United States), respectively. Restriction enzymes were
purchased from TaKaRa (Dalian, China). Deletion mutants
were constructed using the suicide vector pK18mobSacB
(Schafer et al., 1994). The gene fragments including their
left and right arms were amplified using the corresponding
primers (Supplementary Table S1). The DNA fragments were
digested with EcoRI/HindIII and ligated to pK18mobsacB.
The vector pK18mobsacB carrying each target gene fragment
was inserted by the Km resistance gene and deletion vectors
were constructed. Then, the vectors were introduced into
the M228 strain by conjugal mating experiments. The first
recombinant mutants were screened on LB (Km10-NAL10-
Amp 10 µg/mL) and PCR detected using primers SacB-F/R
(Supplementary Table S2). The mutant candidates were then
screened to remove the suicide plasmid, using LB agar plates
containing 20% sucrose without sodium chloride. The results
of target gene deletion were confirmed by PCR amplification
and DNA sequencing.

Complementation of Psa M2281tssM
and M2281tssJ in Deletion Mutants
The complement mutants were constructed as follows: primers
TssM-C-F/R and TssJ-C-F/R (Supplementary Table 1) were used
to amplify the full-length tssM (3849 bp) and tssJ (474 bp) genes
from the Psa M228 genome, as well as the upstream putative
promoters. The PCR products were cloned into the BamHI and
NdeI sites of plasmid PDSK, and the plasmids were transformed
into E. coli DH5α. The complementation plasmids PDSK-tssM
and PDSK-tssJ were extracted from E. coli DH5α according
to the manufacturer’s instructions in the Plasmid Mini Kit I
(OMEGA, United States), and then electroporated into mutants
M2281tssM and M2281tssJ, respectively. The complement
mutants were screened by kanamycin resistance on LB agar.

Spread Assays
The spreading ability of the strain Psa M228 and its mutant
M2281T6SS was determined as previously described (Gao
et al., 2016). In brief, the strains Psa M228 and its mutant
M2281T6SS were successfully transformed with pDSK-GFPuV
by electroporation (Huang et al., 2013). Kiwi branches (cv.
“Hongyang”) were surface-disinfected by rinsing with running
water, soaked in 0.6% sodium hypochlorite solution for 5 min,
and rinsed with sterile water again. The base of the petiole
was wrapped with absorbent cotton to avoid evaporation.
Punctures were made at the main leaf vein 1–2 cm away
from the petiole, and GFPuv labeled bacterial culture of 10 µL
(diluted to OD600 = 0.1, concentration = 1 × 108 CFU/mL)
were dripped onto the wound. The inoculated materials
were placed in an artificial climate incubator (photoperiod
L/D: 16/8 h; day and night temperature: 16/4◦C, relative
humidity 95%). The results were observed using a stereo
fluorescence microscope (Leica MZ10F, Leica Microsystems,
Germany) after 2 days.
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Pathogenicity Assays
Pathogenicity of the strain Psa M228 and its mutants was
determined in kiwi (cv. “Hongyang”), as described previously
(Zhao et al., 2019). Healthy branches of kiwi (cv. “Hongyang”)
were cut into short branches of about 15 cm each and rinsed
with sterile water; the ends were sealed with paraffin to avoid
evaporation. In each test, a wound deep to the phloem within
a width of 2 mm was cut with a blade in the middle of
the branch, and 10 µL of the substance (OD600 = 0.1, the
concentration = 1 × 108 CFU/mL) was inoculated, while using
sterile water as a negative control. Each strain was inoculated
with five branches, and each experiment was repeated three times.
The branches were maintained in an artificial climate incubator
at a temperature of 25◦C under natural day and night cycles.
The lesion lengths of the branches were measured after 30 days.
The lesion length is the average of three replicates. Statistical
significance was determined by Student’s t-test.

Electron Microscopic Observation
Healthy leaves from kiwifruit (cv. “Hongyang”) were inoculated
separately with bacterial suspensions of Psa M228 and its mutant
strains M2281tssM and M2281tssJ, using the same method as
described in section “Pathogenicity Assays.” Scanning electron
microscopy (SEM) samples were prepared by taking the leaf blade
(5–7 mm) from the edge of sick and healthy junctions after 48
and 96 h. Carefully processed as described by Kang (1995), the
colonization of bacterial pathogens in leaf tissue was observed
using a JSH 6360 SEM (JEOL Ltd., Tokyo, Japan) at 15 kV.
Transmission electron microscope (TEM) samples from 96 h
culture were prepared in the same way as described by Kang
(1995), and alterations in the ultrastructure of the leaf tissue
infested by pathogenic bacteria were observed using an HT7700
TEM (HITACHI Company, Tokyo, Japan).

Western Blot Assays
To explore whether the T6SS gene cluster encodes a functioning
T6SS, Hcp secretion was assayed by western blot. The wild-
type strains Psa M228 and mutants M2281T6SS, M2281tssM,
and M2281tssJ were cultured as described in section “Electron
Microscopic Observation.” The supernatant and cells were
obtained by centrifugation at 13,000 × g for 10 min at 4◦C. The
protein content was determined using a Micro BCATM Protein
Assay Kit (Thermo Fisher Scientific, United States). Extracellular
and intracellular proteins were subjected to 12% SDS PAGE
and then transferred to PVDF membranes. The immunoblot
analysis was performed using anti-VSV-G-tag monoclonal
antibody (VSVG) (CB100151, Cali-Bio, United States) and anti-
RNA polymerase (RNAP) antibody (W0023, NeoClone, Beijing,
China) at a dilution of 1:1000 as the primary and secondary
antibodies were goat anti-mouse horseradish peroxidase (HRP)
(DY60203) (DIYI BIO TECHNOLOGY, Shanghai, China) and
goat anti-rabbit HRP (DY60202) (DIYI BIO TECHNOLOGY,
Shanghai, China), respectively, at a dilution of 1:10,000. The
differences between the bands of intracellular and extracellular
proteins were compared between M228 and the mutants, using
RNAP as a control.

Bacterial Competition Assays
Escherichia coli DH5α was transformed with plasmid pBR322 to
confer tetracycline resistance and Bacillus was transformed with
plasmid pMarA to confer erythromycin resistance used for the
competition studies. The competition assays were carried out as
per the protocol described by MacIntyre et al. (2010). Competitor
strains were grown overnight in LB broth supplemented with
tetracycline (10 µg/mL) or erythromycin (10 µg/mL). The cells
were centrifuged and washed twice with fresh sterile LB broth
(10,000 × g, 1 min). The washed cells were resuspended in
LB broth (OD600 = 0.1, concentration = 1 × 108 CFU/mL)
and combined with the Psa M228 wild-type or mutant strain
M2281T6SS at a ratio of 1:1. The mixture was cultured at 25◦C
for 24 h, and then spotted on LB agar plates and incubated at 30◦C
for 12 h for the competition strain bacterial analysis.

Biofilm Assays
Biofilm assays were performed using the method described
by Stepanovic et al. (2000). The results were determined by
measuring the absorbance at 570 nm (OD570) using a Thermo
Multiskan EX Micro plate Photometer (Thermo Fisher Scientific
Inc., United States). The experiments were repeated three times
with six replicates per treatment. The absorbance at 570 nm
was the average of six replicates. Statistical significance was
determined by Student’s t-test.

Environmental Adaptability Assays
The hydrogen peroxide (H2O2) tolerance and proteolytic
ability were evaluated in accordance with previously described
procedures (Molina et al., 2005). The bacterial solutions (diluted
to OD600 = 0.1, concentration = 1 × 108 CFU/mL) were
inoculated into LB broth medium containing H2O2 solution
(10 mL, 0.06 mol/L) at a ratio of 1:100. Bacterial growth was
measured at 600 nm absorbance every 12 h.

A total of 2 µL of the bacterial solution (diluted to OD600 = 0.1,
concentration = 1 × 108 CFU/mL) was inoculated in the acid
hydrolyzed case in a medium plate (1%w/v). Colony diameter
was measured after culturing at 25◦C for 14 days. All assays
were repeated three times, and each treatment was performed
in triplicate. Statistical significance was determined by Student’s
t-test.

Quantitative Real-Time Assays
Healthy branches from kiwifruit (cv. “Hongyang”) were prepared
as described in section “Pathogenicity Assays.” Suspension of
Psa M228 and mutant M2281T6SS (diluted to OD600 = 0.5,
concentration = 5 × 108 CFU/mL, 10 µL) were inoculated
into the wound made in advance, and cultivated in an artificial
climate incubator (the illumination time was 16 h and the dark
time was 8 h). The bark of the inoculated wound (deep to
phloem) was taken at 2 and 16 h after inoculation. Operations
for bacterial RNA extraction, cDNA synthesis, and qPCR were
performed as previously described (Broms et al., 2009). The
reference genes were gyrB (DNA gyrase subunit B), dusA (tRNA
dihydrouridine synthase), and ftrA (transcriptional regulator)
(Hirose et al., 2020). Data were analyzed following the protocol
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of the comparative critical threshold (CT) method (Zhang et al.,
2014). The expression levels of the target genes (hrpR, hrpZ,
hrcC, hopP1, hopH1, and hopM1) at different inoculation times
were calculated relative to endogenous control genes using
the relative quantification method (Lopez and Pardo, 2005).
Quantitative data were presented as fold change mutant strain
M2281T6SS compared to wild-type (WT) M228 levels at 2 and
16 h. Error bars represent the standard deviation of the 11C
value. Statistical significance was determined by Student’s t-test.
The quantitative real-time PCR (qRT-PCR) was performed in
triplicate for technical replicates.

RESULTS

T6SS Gene Structure Diagram of Psa
M228
According to the results of the phylogenetic tree constructed from
the tssC sequence of 68 species in 38 genera (Supplementary
Figure 1), and its simplified phylogenetic tree (Figure 1A),
one complete T6SS was found in Psa M228 and belonged
to the same branch as the P. aeruginosa PAO1 H3-T6SS
(HIS-III) gene cluster. Then, the T6SS gene structure diagram in
M228 was obtained.

As shown in Figure 1B, there are 13 conserved structural
genes such as tssA-tssM necessary for T6SS in M228. The COGs
of the cluster are impA, impB, impC, hcp, impF, impG, impH,
clpV, vgrG, lip, impJ, impK, and impL, all of which are located
in the M228 genome sequence contig054. Among them, tssB and
tssC are the needle-sheath structural genes, tssD is the needle-
tube structural gene, and tssM, tssJ, and tssL are transmembrane
structural genes. However, there is a frameshift mutation in the
transmembrane structural protein gene tssM (1272 codons) and
the ATP hydrolase gene tssH (854 codons) (Figure 1B).

Construction of T6SS Gene Cluster and
13 Core Genes Deletion Mutants in Psa
M228
The previous sequence analysis showed that there is a T6SS gene
cluster in the Psa M228 genome, which consists of 13 core genes
(tssA-tssM). The function of the gene cluster and core genes in
Psa has not been studied yet. Thus, in this study, we began by
deleting the T6SS gene cluster and its individual 13 core genes
of Psa M228 using λ Red-recombineering technique (Kvitko and
Collmer, 2011), yielding strains M2281T6SS and 13 mutants
from M2281tssA to M2281tssM.

T6SS of Psa M228 Is Required for
Spreading
The spreading ability of mutant M2281T6SS in leaf veins was
significantly different from that of wild-type M228. The spreading
range of M228 in leaf veins increased with an increase in
incubation time, and fluorescence began to weaken after 12 days.
However, the spreading ability of M2281T6SS in leaf veins was
significantly weakened; it failed to expand rapidly in the leaf

veins and indicated only weak fluorescence near the inoculation
point (Figure 2B).

T6SS of Psa M228 Is Required for
Pathogenicity
To clarify the role of T6SS in the pathogenicity of M228,
the pathogenicity of mutants lacking the T6SS gene cluster or
13 core genes were assessed by conducting pathogenicity tests
on healthy branches of kiwi (cv. “Hongyang”), as described
previously (Zhao et al., 2019). The pathogenicity of the mutant
M2281T6SS was reduced by 69.65% compared with that
of the wild-type strain M228 (Figure 2A). All the deletion
mutants of 13 core genes of T6SS showed different degrees
of pathogenicity reduction compared with that of the wild-
type strain M228 (Figure 3A), especially gene tssM and
tssJ (Figure 3B). The pathogenicity of mutants M2281tssM
and M2281tssJ mutants were significantly reduced by 78.7
and 71.3%, respectively. However, the complemented strain
M2281tssM-R and M2281tssJ-R restored the pathogenicity to
wild-type levels (Figure 3B).

The difference in pathogenicity between M228 and the
mutants was also confirmed by SEM (Figure 4) and TEM
(Figure 5). After 4 days of inoculation of the host kiwifruit
leaves using wild-type strain M228, a large number of pathogens
could be observed in the host tissue (Figure 4B).Serious
plasmolysis occurred in the host cells of the pathogenic bacteria
colonized area, and electron density of the host cell wall
decreased and its chloroplast was degraded (Figures 5B,C).
After inoculation of the mutants M2281tssM (Figure 4C)
and M2281tssJ (Figure 4E), only a small amount of bacterial
colonization was found in the host tissue at 4 days. The
host cell was intact, and the organelles were not significantly
degraded due to pathogen colonization (Figures 5D,F). However,
there was no significant difference in the colonization and
infection ability between the wild-type strain M228 and the
complemented strain M2281tssM-R (Figures 4D, 5E) and
M2281tssJ-R (Figures 4F, 5G). The mutants can cause a similar
phenomenon to the host cell, indicating that its infection
ability is restored to the wild-type level. The results showed
that the T6SS gene cluster played an important role in the
pathogenicity of Psa in kiwifruit, especially the core genes tssM
and tssJ.

T6SS Gene Cluster Encodes a
Functioning T6SS in Psa M228
To investigate the function of T6SS, M228 and the deletion
mutant strain, M2281T6SS, M2281tssM, and M2281tssJ were
examined for the secretion of Hcp, which is an indication of
functional T6SS in many bacterial species (Ma and Mekalanos,
2010). As shown in Figure 6, Hcp was detected by western blot
from both cells and supernatants for the wild-type strain Psa
M228, but only detected in the cells and not in the supernatant
for mutant strains M2281T6SS, M2281tssM, and M2281tssJ.
This result demonstrated that T6SS is essential for the secretion
of Hcp in Psa M228. The results also showed that T6SS in
the pathogenic strain PsaM228 is functional, and its core genes
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FIGURE 1 | Structure of T6SS gene cluster analysis of the pathogenic strain Psa M228. (A) Molecular phylogenetic analysis by Maximum Likelihood method. The
evolutionary history was inferred using the Maximum Likelihood method based on the Le_Gascuel_2008 model (Le and Gascuel, 1993). The bootstrap consensus
tree inferred from 1000 replicates was used to represent the evolutionary history of the taxa analyzed (Felsenstein, 1985). Branches corresponding to partitions
reproduced in less than 60% bootstrap replicates were collapsed. The percentage of replicate trees in which the associated taxa clustered together in
the bootstrap test (1000 replicates) is shown next to the branches (Felsenstein, 1985). The initial tree(s) for the heuristic search were obtained automatically by applying

(Continued)
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FIGURE 1 | Continued
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and the topology with a superior log likelihood value was
selected. A discrete Gamma distribution was used to model evolutionary rate differences among sites [five categories (+G, parameter = 2.4316)]. The analysis
involved 34 amino acid sequences. All positions containing gaps and missing data were eliminated. A total of 443 positions in the final dataset was obtained.
Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). According to the results of the phylogenetic tree, one complete T6SS was found in Psa
M228 and belonged to the same branch as that of the P. aeruginosa PAO1 H3-T6SS (HIS-III) gene cluster. “•” indicates the functional T6SS that has been reported.
(B). Schematic diagram of theT6SS gene cluster of the pathogenic strain Psa M228. The name of the core genes of T6SS in Psa M228 are indicated by arrows. The
direction of the arrows represents the direction of transcription of the genes in the genome. “//” indicates the presence of other genes not belonging to T6SS. “*”
indicates the presence of frameshift mutation. The gene products are shown below the arrows. The database of Clusters of Orthologous Groups of proteins (COGs)
was obtained from the National Center of Biotechnology Information (see text footnote 1).

FIGURE 2 | Pathogenicity and spreading ability analysis of the pathogenic strain M228 and its mutants M2281T6SS. (A) Pathogenicity analysis. The pathogenicity
of the mutant M2281T6SS mutant was reduced by 69.65% compared with that of the wild-type strain. The lesion length is the average of five replicates. Statistical
significance was determined by Student’s t-test. “**” Means the difference is significant at the 0.01 level. (B) Spreading ability analysis+. The spreading ability of
mutant M2281T6SS in leaf veins was significantly different from that of wild-type M228. The spreading range of M228 in leaf veins increased with an increase in
incubation time, and fluorescence began to weaken after 12 days. However, the spreading ability of M2281T6SS in leaf veins was significantly weakened, and it
failed to expand rapidly in leaf veins, and only showed weak fluorescence near the inoculation point.

tssM and tssJ are critical for Hcp secretion and pathogenicity.
The internal control protein RNAP was stably expressed in the
cell, but was not detected in the supernatant, confirming the
reliability of the results.

The T6SS of Psa M228 Is Used to
Compete Against Bacteria
In order to determine whether the T6SS is functional in
competition between bacterial species, a competitive test was
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FIGURE 3 | Pathogenicity analysis of the deletion mutant strains of 13 core genes constitute T6SS. (A) The lesion lengths analysis of the deletion mutants infecting
on branches of kiwi. All the deletion mutants of 13 core genes of T6SS showed different degrees of pathogenicity reduction compared with that of the wild-type
strain M228, especially gene tssM and tssJ. The pathogenicity of mutants M2281tssM and M2281tssJ mutants were significantly reduced by 78.7 and 71.3%,
respectively. However, the complemented strain M2281tssM-R and M2281tssJ-R restored the pathogenicity to wild-type levels. The lesion lengths are the average
of three replicate. Statistical significance was determined by Student’s t-test. “*” Means the difference is significant at the 0.05 level; “**” means the difference is
significant at the 0.01 level. (B) The lesion observation of mutant strain M2281tssM and M2281tssJ infecting on branches of kiwi.

FIGURE 4 | Histological observation of the pathogenic strain M228 and its mutants infecting leaves of kiwi by SEM. (A) Healthy kiwi leaves; (B) after 4 days of
inoculation of the host kiwifruit leaves using wild-type strain M228, a large number of pathogens could be observed in the host tissue. (C,E) After 4 days of
inoculation of the host kiwifruit leaves using the mutants M2281tssM and M2281tssJ, only a small amount of bacterial colonization was found in the host tissue;
(D,F) after 4 days of inoculation of the host kiwifruit leaves using the mutantsM2281tssM-R and M2281tssJ-R, a large number of pathogens could be observed in
the host tissue, and there was no significant difference in the colonization and infection ability between the wild-type strain M228 and the complemented strains. UE,
upper epidermis; PT, palisade tissue; ST, sponge tissue; PH, phloem; XY, xylem; LE, lower epidermis; LVB, lateral vein; B, pathogenic bacteria.
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FIGURE 5 | Ultrastructure analysis of kiwi leaves infected by the pathogenic strain M228 and its mutants by TEM. (A) Healthy kiwi leaves; (B,C) after 4 days of
inoculation of the host kiwifruit leaves using wild-type strain M228, serious plasmolysis occurred in the host cells of the pathogenic bacteria colonized area, and
electron density of the host cell wall decreased and its chloroplast was degraded; (D,F) after 4 days of inoculation of the host kiwifruit leaves using the mutants
M2281tssM and M2281tssJ, the host cell was intact, and organelles were not significantly degraded due to pathogen colonization. (E,G) After 4 days of inoculation
of the host kiwifruit leaves using the mutants M2281tssM-R and M2281tssJ-R, serious plasmolysis occurred in the host cells of the pathogenic bacteria colonized
area, and electron density of the host cell wall decreased and its chloroplast was degraded; the mutants could cause a similar phenomenon to the host cell with
wild-type strain M228. HCW, host cell wall; N, nucleus; V, vacuole; Chl, chloroplast; M, mitochondria; B, pathogenic bacteria; CW, bacterial cell wall; “N,” host cell
plasmolysis.

FIGURE 6 | Immunoblot analysis of Psa M228 and mutants M2281T6SS, M2281tssM, and M2281tssJ Hcp export. Hcp was detected by western blot from both
cells and supernatant for the wild-type strain Psa M228, but was only detected in the cells and not in the supernatant for mutant strain M2281T6SS, M2281tssM,
and M2281tssJ. The internal control protein RNAP was stably expressed in the cell, but was not detected in the supernatant, confirming the reliability of the results.
Lane M, protein marker.

Frontiers in Microbiology | www.frontiersin.org 9 February 2021 | Volume 12 | Article 627785

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-627785 February 15, 2021 Time: 18:36 # 10

Wang et al. Pathogenicity of Pseudomonas syringae pv. actinidiae

FIGURE 7 | Competitive, biofilm formation, and environmental adaptability analysis of wild-type strain M228 and mutants M2281T6SS, M2281tssM, and
M2281tssJ. (A) Bacterial competition assay. When the competitor strains were cocultured with wild-type Psa M228 or the complementation mutants
M2281tssM-R and M2281tssJ-R, the viable cell numbers showed an obvious drop from 46.5, 58.0 to 31.0, and 35.2%, respectively. In contrast, when the
competitor strains were cocultured with deletion mutants M2281T6SS, M2281tssM, and M2281tssJ, the survival of competitor bacteria increased up to the same

(Continued)
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FIGURE 7 | Continued
level as that of the control. (B) Biofilm assays. The biofilm formation ability of the three mutants M2281T6SS, M2281tssM, and M2281tssJ was significantly lower
than that of the wild-type strain M228 and decreased by 53.8, 29.5, and 38.7%, respectively. The biofilm formation ability was restored to the same level as that of
M228 when the deletion genes were restored. (C) H2O2 tolerance assay. The H2O2 tolerance of mutant strains M2281T6SS, M2281tssM, and M2281tssJ was
significantly lower than that of the wild-type strain M228, decreased by 59.1, 26.1, and 46.6% at 12 h, respectively, and decreased by 5.0, 8.5, and 7.2% at 24 h,
respectively. The H2O2 tolerance was restored when the deletion genes were restored to the same level as that of M228 when the deletion genes were restored.
(D) Proteolytic ability assay. The proteolytic ability of mutant strains M2281T6SS, M2281tssM, and M2281tssJ was significantly lower than that of the wild-type
strain M228, and decreased by 34.8, 25.0, and 20.66%, respectively. The proteolytic ability was restored when the deletion genes were restored to the same level as
that of M228. Statistical significance was determined by Student’s t-test. “*” Means the difference is significant at the 0.05 level; “**” means the difference is
significant at the 0.01 level.

conducted in order to examine whether the mutants lacking the
T6SS gene clusters could reduce the number of E. coli DH5α and
Bacillus strains on agar plates. When the competitor strains were
cocultured with wild-type Psa M228 or the complementation
mutants M2281tssM-R and M2281tssJ-R, viable cell numbers
showed an obvious drop from 46.5, 58.0 to 31.0, and 35.2%,
respectively. In contrast, when the competitor strains were
cocultured with deletion mutants M2281T6SS, M2281tssM, and
M2281tssJ, the survival of competitor bacteria was increased up
to the same level as that of the control (Figure 7A). Overall, the
results showed that the T6SS gene cluster is related to bacterial
competition in Psa M228.

T6SS of Psa M228 Is Required for Biofilm
Formation
To investigate the function of T6SS, M228, and the deletion
mutant strains, M2281T6SS, M2281tssM, and M2281tssJ were
examined for biofilm formation. As shown in Figure 7B, the
biofilm formation ability of the three mutants was significantly
lower than that of the wild-type strain M228 (P < 0.05):
M2281T6SS decreased by 53.8%, M2281tssM by 29.5%, and
M2281tssJ by 38.7%. After the deletion genes were restored, the
biofilm formation ability of the mutants was restored to the same
level as that of M228.

The T6SS of Psa M228 Is Required for
H2O2 Tolerance and Proteolytic Ability
In order to determine whether the T6SS is functional in
environmental adaptability of Psa M228, we examined whether
the mutants lacking the T6SS gene clusters could weaken the
H2O2 tolerance and proteolytic ability.

The H2O2 tolerance results of mutants M2281T6SS,
M2281tssM, and M2281tssJ was significantly lower than
that of the wild-type strain M228, decreased by 59.1, 26.1,
and 46.6% at 12 h, respectively, and decreased by 5.0, 8.5,
and 7.2% at 24 h, respectively (Figure 7C). The hydrogen
peroxide tolerance was significantly affected by T6SS in the
early stages. The proteolytic ability of mutants M2281T6SS,
M2281tssM, and M2281tssJ was significantly lower than that
of the wild-type strain M228 (P < 0.01), and decreased by 34.8,
25.0, and 20.66%, respectively (Figure 7D). The H2O2 tolerance
and proteolytic ability were all restored when the deletion
genes were restored.

T3SS-Related Genes Show
Down-Regulated Expression in Psa
M2281T6SS
The qRT-PCR technique was used to analyze the relationship
between the T6SS cluster gene and T3SS-related gene expression.
During the interaction between the mutant strain M2281T6SS
and the host, expression levels of T3SS transcriptional regulatory
genes hrpR, structural genes hrpZ, hrcC, hopP1, and effector
genes hopM1 and hopH1were regulated. Following interaction
for 2 h, T3SS-related genes hrpR, hrpZ, hrcC, hopP1, hopH1,
and hopM1 of the mutant M2281T6SS, were down-regulated
by 2.01, 1.48, 1.46, 1.14, 1.05, and 1.2 times compared to the
wild-type strain; following interaction for 16 h, the expression
of the genes was down-regulated by 2.71, 1.76, 1.70, 1.48, 1.78,
and 1.83 times, using gyrB as an internal reference. A similar
down-regulation result was obtained using dusA and ftrA as
internal reference genes (Figure 8). The expression levels of
the T3SS related genes were significantly affected by T6SS in
the later stage.

DISCUSSION

The protein secretion system plays an important role in the
pathogenicity and host infection process of many bacterial
pathogens (Gerlach and Hensel, 2007). Among them, T3SS plays
a vital role in the pathogenicity of many pathogenic bacteria and
can directly transfer effectors from pathogenic bacteria to host
cells and exerts pathogenic functions (Cornelis et al., 2006; Zhang
et al., 2018). Many studies have confirmed that T3SS plays an
important role in the phytopathogenic bacteria of a variety of
economic crops. Our previous studies also indicated that T3SS
promoters are important pathogenic factors (Zhao et al., 2019)
by the differential proteome data of strong and weak pathogenic
strains. However, in this study, a T6SS cluster consisting of 13
core genes (A-J) was found in Psa M228. Although there is a
frameshift mutation in the transmembrane structural protein
gene tssM (1272 codons) and the ATP hydrolase gene tssH (854
codons), the pathogenicity was weaker in all deletion mutants,
including mutants M2281tssM and M2281tssH, than in the
wild-type strain M228. It seems that the frameshift mutations of
these two genes did not affect their function. This mechanism
requires further research.

We further explored whether the gene cluster in Psa 228 is
a functional T6SS and plays a similar function in pathogenicity
as it does in other pathogenic bacteria. Western blot results
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FIGURE 8 | Differential expression of T3SS-related genes analysis in the process of pathogenic strain Psa M228 and its mutant M2281T6SS infecting kiwi
branches. During the interaction between the mutant strain M2281T6SS and the host, the expression levels of the T3SS transcriptional regulatory genes hrpR,
structural genes hrpZ, hrcC, hopP1, and effector genes hopM1 and hopH1were regulated. Following interaction for 2 h, T3SS-related genes hrpR, hrpZ, hrcC,
hopP1, hopH1, and hopM1 of the mutant M2281T6SS, were down-regulated by 2.01, 1.48, 1.46, 1.14, 1.05, and 1.2 times compared to the wild-type strain;
following interaction for 16 h, the expression of the genes was down-regulated by 2.71, 1.76, 1.70, 1.48, 1.78, and 1.83 times, using gyrB as internal reference; a
similar downregulation result was obtained using dusA and ftrA as internal reference genes.

showed that the T6SS was necessary for Hcp secretion, showing
that the T6SS gene cluster in M228 is functional. To determine
whether the observed decrease in pathogenicity is related to a

functioning T6SS, we generated 13 core genes of T6SS gene
cluster deletion mutants. These mutations all led to attenuated
pathogenesis and weakened the spread ability of kiwi plants
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at different levels, especially tssM and tssJ. All these properties
of the two gene complementation mutants were restored to
the same level as those of the wild-type strain M228. The
results indicate that the pathogenicity reduction is related to
T6SS. To find out whether the effect of T6SS on pathogenicity
is related to T3SS, we also conducted a preliminary study.
Quantitative real-time results showed that T3SS genes related to
pathogenicity were all down regulated in mutant M2281T6SS
compared to those in the wild-type strain Psa M228, especially
in the later stages of infection. Further research is needed to
understand whether T6SS affects pathogenicity by regulating
the T3SS-related genes expressed indirectly or by secreting
virulence factors directly. The study results are consistent with
the experimental results of a single T6SS gene mutation in
R. solanacearum (Luo et al., 2016) and the relationship between
T3SS and T6SS in the pathogenicity of Edwardsiella tarda
(Zhang et al., 2016).

In nature or in the host, microorganisms usually exist in
complex environmental conditions. For their own survival, they
must compete with other organisms for limited nutrients and
space. Studies have shown that many Gram-negative bacteria can
kill or inhibit other bacteria through T6SS (Alcoforado et al.,
2015). For example, the human pathogen Vibrio cholerae kills
E. coli by secreting virulence factors through T6SS (MacIntyre
et al., 2010). In addition, recent studies have shown that T6SS
plays an important role in P. aeruginosa and E. coli cells.
A variety of antibacterial toxins that plays an important role
in bacterial competition can be delivered to the target cell
through T6SS (Basler et al., 2013; Brunet et al., 2013; Durand
et al., 2014; Alcoforado et al., 2015). It has been reported
that E. coli is susceptible to T6SS and can be killed by the
antibacterial toxin secreted by T6SS. Therefore, E. coli is often
used as an ideal competitor (MacIntyre et al., 2010; Zheng
et al., 2011; Weber et al., 2013). Bacillus is one of the most
abundant species of plant endophytes (Gadhave et al., 2018;
Gordon et al., 2020). Therefore, in this work, we used E. coli
and Bacillus as competitors. Our results showed that T6SS is
required for efficient bacterial competition. Moreover, how the
competition is carried out in vitro requires further research
and needs to be confirmed using in vivo survival assays. In
addition, we investigated the role of the T6SS in bacterial biofilm
formation, which is essential during infection and pathogenic
processes (Yu et al., 2016). Our research indicated that T6SS
plays an important role in the pathogenicity of Psa M228.
These results present novel insights regarding the pathogenesis
of Psa.

The adaptability of plants to various pressures from the
natural environment needs to be achieved by regulating
the pressure signal transduction pathways. When plants are
attacked by pathogenic bacteria, it produces a series of
stress responses, including the oxidative burst (Nicaise and
Candresse, 2017; Kanwar and Jha, 2019; Guo and Li, 2000).
Previous studies have suggested that these reactive oxygen
species have pathological functions such as inhibiting the
growth of bacterial and fungal pathogens (Jiang et al., 2011).
Our study showed that compared to the wild-type strain
M228, the growth of the deletion mutants M2281T6SS,

M2281tssM, and M2281tssJ was significantly inhibited under
H2O2 stress. The deletion of T6SS, tssM, and tssJ from
Psa M228 may lead to reduced tolerance to H2O2, thereby
affecting the survival of the pathogenic bacteria. The results
indicate that T6SS may be associated with resistance to
environmental stress in pathogenic bacteria. However, this
requires further investigation.

CONCLUSION

Here, we found a T6SS gene cluster consisting of 13 core genes
(A-M) in the genome of Psa M228 based on a genome-wide
analysis. We provide evidence that T6SS plays an important
role in pathogenesis, bacterial competition, biofilm formation,
and environmental adaptability. The next step is to clarify
the assembly and secretion mechanism of T6SS and identify
the virulence factors secreted by T6SS in Psa. This research
has deepened our understanding of the pathogenic mechanism
of Psa.
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