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Abstract 

Background 

Most ovarian cancer patients are diagnosed at an advanced stage and have a high mortality rate. Current screening strategies fail to 

improve prognosis because markers that are sensitive for early stage disease are lacking. This medical need justifies the search for novel 
approaches using utero-tubal lavage as a proximal liquid biopsy. 
Methods 

In this study, we explore the extracellular transcriptome of utero-tubal lavage fluid obtained from 26 ovarian cancer patients and 48 

controls using messenger RNA (mRNA) capture and small RNA sequencing. 
Results 

We observed an enrichment of ovarian and fallopian tube specific messenger RNAs in utero-tubal lavage fluid compared to other 
human biofluids. Over 300 mRNAs and 41 miRNAs were upregulated in ovarian cancer samples compared with controls. Upregulated 

genes were enriched for genes involved in cell cycle activation and proliferation, hinting at a tumor-derived signal. 
Conclusion 

This is a proof-of-principle that mRNA capture sequencing of utero-tubal lavage fluid is technically feasible, and that the extracellular 
transcriptome of utero-tubal lavage should be further explored in larger cohorts to assess the diagnostic value of the biomarkers 
identified in this study. 
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Impact 

Proximal liquid biopsy from the gynecologic tract is a promising s
ovarian cancer. 

Neoplasia (2022) 24, 155–164 
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Introduction 

Ovarian cancer, the fifth leading cause of cancer-related mortality in
women, a five-year survival rate below 45%, largely driven by late stage
diagnoses [1] . In Europe, the incidence of ovarian cancer is 12.9 per 100,000
[2] . Ovarian cancer is often referred to as a ‘silent killer’ because local
disease is usually asymptomatic and symptoms of advanced stage disease
are nonspecific. More than 75% of affected women are diagnosed with
metastatic disease that is rarely curable. Early detection of ovarian cancer
is key as stage I disease has a 5-year survival rate of 93% [3] . Ovarian
cancers are classified into histological subtypes, with various underlying
transcriptional and mutational patterns. High-grade serous carcinoma is
the most prevalent and most challenging subtype, which is common in
genetically predisposed populations, such as germline BRCA1/2 mutation
carriers, having an estimated lifetime risk of 54% and 23%, respectively. A
risk-reducing bilateral salpingo-oophorectomy (RRBSO) around the age of
40, is the only effective approach to avoid ovarian cancer in these women,
resulting in significant morbidity of early menopause [3 , 4] . Currently, no
effective screening method for this cancer entity is available. Serum cancer
antigen 125 (CA125), the most studied test for ovarian cancer screening,
has important limitations [5 , 6] . Less than 50% of patients with early stage
ovarian cancer have elevated CA125 levels, and elevated CA125 levels can
also be observed in benign conditions, such as pelvic inflammatory disease,
endometriosis, and ovarian cysts [7] . Human Epididymis Protein 4 (HE4)
is another protein marker that has been evaluated as serum biomarker for
ovarian cancer diagnosis and the test has received approval from the US
Food and Drug Administration for use in women presenting with an ovarian
mass in 2011 [8] . HE4 expression shows high specificity for ovarian cancer,
however serum HE4 levels vary in smokers, in hormonal contraceptive users
and the levels increase with aging [9] . Unfortunately, the use of CA125
and HE4 have not been effective in improving patient survival [10–13] .
Therefore, there is a clinical need for non-invasive, robust, and reliable
diagnostics for ovarian cancer detection. 

Extracellular RNAs (exRNAs) in blood and other biofluids have been
identified as potential biomarkers for a wide range of diseases, including
ovarian cancer [14–17] . These so-called ‘liquid biopsies’ may offer a non-
invasive alternative to tissue biopsies for diagnosis, prognosis and treatment
response monitoring. The biomarker potential of extracellular RNAs in
serum, plasma, urine and ascites has previously been investigated for
the early diagnosis of ovarian cancer. These studies mainly focused on
selected microRNAs using reverse transcription quantitative polymerase
chain reaction (RT-qPCR) [14] , while few applied RNA sequencing as a more
unbiased and transcriptome wide approach [18–20] . 

There is increasing evidence that precursor lesions of high-grade serous
carcinoma originate from the epithelium of the fallopian tube fimbriae
rather than intraperitoneally. The fimbriae represent the distal end of the
ource for mRNA and miRNA biomarkers for diagnosis of early-stage 

d biopsy 

allopian tube, adjacent to the ovaries [21–23] . The lag time from emergence
f the first malignant cells to clinically overt high-grade ovarian cancer is 
pproximately six years [21] , and shedding of tumor cells from ovarian 
ancer and its precursor lesions into the gynecological tract has been reported 
24] . Sampling the cells of the fimbriae or their secreted biological products,
hrough proximal liquid aspirated from the gynecological tract, may thus 
eveal markers of the initial lesions. Utero-tubal lavage fluid can be obtained 
fter flushing saline into the uterine cavity and fallopian tubes and holds 
romise for a minimally invasive liquid biopsy technique as this can be 
erformed during a routine office-visit at the gynecology department [25 , 26] .
revious studies looking into the biomarker potential of utero-tubal lavage 
uid primarily focused on circulating mutant p53 DNA [26] and on 
roteomic profiling of extracellular vesicles isolated from utero-tubal lavage 
amples [25] . So far, the RNA content of this fluid remains to be investigated.

The goal of this proof-of-concept study was to profile the extracellular 
ranscriptome of utero-tubal lavage fluid using messenger RNA (mRNA) 
apture sequencing and small RNA sequencing to investigate the biomarker 
otential of extracellular mRNAs for ovarian cancer diagnosis. 

aterials and methods 

onor material, collection and utero-tubal lavage preparation procedure 

Sample collection was approved by the ethics committee of Chaim Sheba 
edical Center, Rabin Medical Center and Meir Medical Center, Israel 

ClinicalTrials.gov identifier: NCT03150121). Written informed consent 
as obtained from each participant in accordance with the Helsinki 
eclaration. Recruited patients underwent gynecological surgical procedures 
nder general anesthesia, including hysteroscopy, hysterectomy and/or 
RBSO. Eligible indications included high-grade ovarian cancer (primary or 

nterval debulking), suspicious ovarian mass, risk reduction, or various other 
enign gynecological disorders. Utero-tubal lavage samples were collected 
efore surgery, after induction of anesthesia, by surgeons in the three 
articipating centers. An intrauterine insemination catheter (Insemi TM -Cath, 
ook Inc. Bloomington, USA) or rigid pipelle uterine sampler (Endosampler, 
edGyn, Addison, USA) was inserted into the endometrial cavity through 

he cervical canal. Ten ml of saline were flushed into the uterine cavity and
allopian tubes and immediately retrieved (at an average volume of 4.6 ml 
er patient). The utero-tubal lavage samples were immediately centrifuged 
t 480xg for 15 min to eliminate cells and the supernatants were stored
t -80 °C. RNA extraction, library preparation and sequencing methods 
re described in detail in the supplemental methods section. Raw data is 
resented in supplemental Tables 1–7. 
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Data analysis 

Assessment of tissue and cell contribution to the extracellular 
transcriptome of utero-tubal lavage 

Using total RNA-sequencing data from 27 normal human tissue types
and 5 immune cell types from peripheral blood from the RNA Atlas [27] ,
we created gene sets containing marker genes for each individual entity,
as described in Hulstaert et al. [15] . We removed redundant tissues and
cell types from the original RNA Atlas (e.g. granulocytes and monocytes
were present twice; brain was kept and specific brain sub-regions such as
cerebellum, frontal cortex, occipital cortex and parietal cortex were removed)
and we used genes where at least one tissue or cell type had expression values
greater or equal to 1 TPM normalized counts. A gene was considered to be
a marker if its abundance was at least 5 times higher in the most abundant
sample compared to the others. For the final analysis, only tissues and cell
types with at least 3 markers were included, resulting in 26 tissues and 5
immune cell types. Gene abundance read counts from the biofluids in the
discovery cohort of Hulstaert et al. and the gene abundance read counts of
the utero-tubal lavage cohort from this study, were normalized using Sequin
spikes as size factors in DESeq2 (v1.22.2) [15] . For all marker genes within
each gene set, we computed the log2 fold changes between the median read
count of a biofluid sample pair versus the median read count of all other
biofluids. 

Differential expression analysis with DeSEQ2 

Further processing of the count tables was done with R (v3.5.1) making
use of tidyverse (v1.2.1). Gene abundance expression read counts obtained
were normalized using the sum of all reads mapping to Sequin spikes or RC
spikes as size factors in DESeq2 (v1.20.0) [28] . To assess the biological signal
in the case/control cohorts, we performed differential expression analysis
between the patients and control groups using DESeq2 (v1.20.0). Only
mRNAs present in at least 80% of each group (cancer or benign) with at
least 7 read counts per sample were included in the analysis. Genes were
considered differentially expressed when the absolute log2 fold change > 1
and at q < 0.05. Principle component analysis was performed and the first
two principle components for the normalized sequencing data were plotted
using the plotPCA function in R [29] . 

Differential exon usage with DEXSeq 

To perform differential exon usage analysis the mapped sequencing data
was preprocessed according to the two preparation Python scripts provided
in the DEXSeq package (version 1.36.0, [30] ). In first script a GTF file with
gene models was transformed into a GFF file listing counting bins. In the
second script such a GFF file and an alignment file in the BAM format were
used to produce a list of exon counts. Next, the count tables consisting of
exon counts were further processed with R (v3.5.1) making use of tidyverse
(v1.2.1). Exon expression read counts were normalized using the sum of
all reads mapping to Sequin spikes as size factors in DESeq2 (v1.20.0)(28).
Differential expression analysis between the patients and control groups was
performed using DESeq2 (v1.20.0). Exons were considered differentially
expressed when the absolute log2 fold change > 1 and at q < 0.05. In order
to identify genuine differentially abundant exons, only exons that were not
part of differentially abundant genes were considered. 

Gene set enrichment analysis 

A pre-ranked gene set enrichment analysis was performed using the
50 hallmark gene sets (version 7.2.) available on the Molecular Signatures
atabase (1000 permutations, classic analysis) [30] . All mRNA lists were
rdered based on the log-transformed fold change obtained after differential
xpression analysis with DeSEQ2 (ovarian cancer versus control). The R
ackage Fast Gene Set Enrichment Analysis (fgsea, version 1.8.0) was used
o determine normalized enrichment scores [31] . Significant enrichment was
efined at false discovery rate < 0.05. A pre-ranked gene set enrichment
nalysis allows to select from an a priori defined list of gene sets those which
ave non-random behavior in a considered experiment. 

etection of fusion transcripts 

Fusion transcript identification was performed using FusionCatcher 
version 1.30) with default parameter settings [32] . Stringent filtering was
pplied to exclude potential false positive fusion transcripts. First, transcripts
ith a fusion description label indicative for a false positive result (i.e. the

ed annotations in supplemental Table 5) were excluded. Second, transcripts
ith reads mapping on both fusion partners were excluded. Third, transcripts
ith fusion partners less than 100 kb apart were also excluded. Only exon-

xon fusions were included. 

lassifier build using mRNA capture seq data, small RNA seq data and 
ifferential exon data 

Pre-processing of the spike normalized data was performed as previously
escribed [33] . Briefly, expression levels lower than a lower threshold of
0 were set to this lower threshold. Expression levels higher than an
pper threshold of 30,000 were set to this upper threshold. Next, ratio
ltering was applied, i.e. genes for which the ratio between the highest
nd lowest expression level was less than 5 were removed. Range filtering
as applied, i.e. genes for which the difference between the highest and

owest expression level was less than 500 were removed. A base-2 logarithmic
ransformation was applied to the gene expression levels. The most significant
enes between both groups (cancer and control) were defined using a
airwise t -test. Seven different classification methods were then applied to
he data using the m most significant genes according to the preprocessing
rocedure, where n ranges over the values m = 5, 10, …, 500. The following
lassification methods with the publicly available R implementations, were 
sed: [1] lasso [34] and elastic net logistic regression [35] , computed using
he glmnet package [2 , 36] adaptive [37] and relaxed lasso [38] for logistic
egression, computed using the gcdnet and glmnet packages, respectively, 
3] minimum concave penalized logistic regression [39] , computed using
he ncvreg package, [4] split-Lasso and split-EN logistic regression [40] ,
omputed using the SplitGLM package, [5] random forest [41] , computed
sing the randomForest package, [6] random generalized linear model 
GLM) [42] , computed using the RGLM package and [7] extreme gradient
oosting [43] , computed using the xgboost package. Cross-validation was
sed to select the penalty parameters in methods 1–4 and the default settings
ere used for other tuning parameters. 

For each of the individual data layers (mRNA, miRNA, exon), and for all
ossible combinations of these data layers, the performance of the different
lassification methods was evaluated to select the best classifier for each of
he data layers. To evaluate the performance of the classifiers, the data set was
andomly split into training and test data. 75% of the samples ( n = 55) were
sed to train the classification method and the remaining 25% ( n = 19) was
sed as test data to evaluate its performance. This process of random splitting
as repeated 100 times. The misclassification rate, the sensitivity, and the

pecificity, averaged over the 100 test sets is reported. The misclassification
ate was used as criterion to select the best classifier. 
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Table 1 

Patient characteristics for utero-tubal lavage samples included in the transcriptomic analysis. 

ovarian cancer ( n = 26) control ( n = 48) 

age in years, mean (min-max) 61.5 (46–78) 63.8 (51–83) 

stage 

early stage (I-II) 4 - 

late stage (III-IV) 22 - 

BRCA status 

germline mutation 7 8 

no mutation 17 0 

unknown 2 40 

indication for surgery 

high grade ovarian cancer 26 - 

benign ovarian mass/cyst - 9 

menorrhagia - 3 

pelvic organ prolapse - 6 

leiomyomatous uterus - 2 

normal endometrium - 6 

RRBSO - 5 

mature teratoma - 2 

mucinous cystadenoma - 6 

other - 9 
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Results 

Patient population 

Eighty-one utero-tubal lavage samples collected from 31 ovarian cancer
patients and 50 patients with benign ovarian lesions were analyzed in this
study. Upon RNA extraction and mRNA capture sequencing, 7 of the 81
samples (5 ovarian cancer and 2 control samples) were excluded for statistical
analysis because of too low sequencing depth, resulting in a final cohort of
74 samples collected from 26 ovarian cancer patients with an average age of
61.5 years old and 48 patients with benign ovarian lesions with an average
age of 63.8 years old. The demographic and clinical patient information is
provided in Table 1 . Details for all samples with the reason of exclusion for
further analysis is provided in supplemental Table 2. 

Messenger RNA profile of utero-tubal lavage fluid 

Over all samples, the mapping rate to Ensembl genes was 90%, with a
minimum of 20% and a maximum of 96% (Supplemental Fig. 1A). The
total reads mapped to Ensembl genes varied from 1.2 million to 24.8 million
per sample with a mean of 11.9 million reads per sample. Based on the
coverage of artificial spike-in controls, the endogenous RNA mass per sample
was calculated. The mean endogenous RNA mass detected per 1 mL fluid
was 0.09 ng, with a minimum of 0.002 ng and a maximum of 0.72 ng.
The endogenous RNA mass did not differ between the ovarian cancer group
and the control group (Wilcoxon signed-rank test, two-sided, p = 0.196,
Supplemental Fig. 1B). Despite the high variability in mapping rate across
the samples, RNA complexity of the samples was very stable. The total
number of unique mRNAs ranged from 11,887 to 17,850 with a mean of
15,451 mRNAs per sample (Supplemental Fig. 1A). In total, 8139 genes were
detected in all samples. 

Tissue contribution to the utero-tubal lavage fluid exRNAs 

To assess which tissues or cell types contribute mRNA molecules to the
utero-tubal lavage fluid RNA profile, we evaluated tissue- and cell-type-
specific mRNA signatures. The boxplots in Fig. 1 A highlight the relative
ontribution of tissues and cell types to utero-tubal lavage fluid compared 
o 23 human biofluids that were included in the Human Biofluid RNA 

tlas [15] . Esophagus RNA markers were more abundant in utero-tubal 
avage fluid than in the other biofluids, likely reflecting an epithelial RNA- 
ignature shared between epithelial cells from esophagus and endometrium. 
allopian tube and ovary specific mRNAs were the second and third most 
nriched signatures, suggesting that the wash procedure enables detection 
f RNA originating from ovary and fallopian tube tissue. When comparing 
he relative RNA content of utero-tubal lavage to the 23 other biofluids, 
tero-tubal lavage fluid ranked as the twelfth highest concentrated fluid 
 Fig. 1 B). The relative mRNA content of utero-tubal lavage was similar to
hat of ascites, broncho-alveolar lavage and platelet-rich-plasma. Utero-tubal 
avage fluid contained 8-fold more RNA than platelet-free plasma, the most 
tudied biofluid in the biomarker field. 

ifferential abundance analysis revealed upregulation of mRNAs and 
iRNAs in cancer samples 

Differential abundance analysis revealed 330 mRNAs that were 
ignificantly more abundant in utero-tubal lavage fluid from ovarian cancer 
atients compared to that from controls ( Fig. 2 A). Amongst the 330 mRNAs
re bona-fide proliferation markers, such as Ki-67 and aurora kinase B 

AURKB). A list with the results of the differential abundance analysis 
an be found in Supplemental Table 4. The normalized abundance of 
he 20 most differentially abundant mRNAs is shown in Fig. 2 B. Of
ote, principal component analysis of all expressed genes did not reveal 
lustering based on the clinical diagnosis of the donor (Supplemental Fig. 
). Gene set enrichment analysis of Hallmark gene sets demonstrated a 
tatistically significant enrichment of four gene sets representing cell cycle 
eregulation: genes encoding cell cycle related targets of E2F transcription 
actors (normalized enrichment score (NES) = 2.34, padj = 0.02), genes 
nvolved in the G2/M checkpoint, as in progression through the cell division 
ycle (NES = 2.25, padj = 0.02), genes up-regulated by activation of 
edgehog signaling (NES = 1.85, padj = 0.03) and genes that are important
or mitotic spindle assembly (NES = 1.71, padj = 0.02; Fig. 3 ). PAX8,
A125 (MUC16) and HE4 (WFDC2), known lineage markers, were not 
ifferentially abundant between ovarian cancer patients and control samples 
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Fig. 1. Assessment of the tissues contributing RNA molecules to utero-tubal lavage fluid. (A) Boxplots showing the log2 fold change for a gene set with 
markers specific for a certain tissue or cell type. The log2 fold change is calculated between the median read count of all utero-tubal lavage samples and the 
median read count of all other biofluids. The tissues or cell types for which markers were selected based on the RNA Atlas Project are shown on the x -axis. 
(B) Barplot showing the relative mRNA content in 24 human biofluids. BAL, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; PFP, platelet-free plasma; 
PPP, platelet-poor plasma; PRP, platelet-rich plasma. 
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Fig. 2. Differentially abundant mRNAs and miRNAs. (A) Volcano plot of differentially abundant mRNAs in ovarian cancer ( n = 26) versus controls ( n = 48). 
Upregulated genes with an adjusted p -value of less than 0.05 are shown in pink. No downregulated genes are detected. (B) Volcano plot of differentially 
abundant miRNAs in ovarian cancer ( n = 26) versus controls ( n = 48). Upregulated miRNAs with an adjusted p -value of less than 0.05 are shown in pink. No 
downregulated miRNAs are detected. (C) Boxplots comparing the Sequin spike normalized read counts per group for the top 20 most differentially abundant 
genes. The normalized read count per sample is shown as a dot. Samples obtained from ovarian cancer patients are pink, samples obtained from controls are 
blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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Fig. 3. Enrichment plots of the four gene sets of the hallmark pathways that are enriched in ovarian cancer versus controls (adjusted p -value < 0.05). (A) 
Enrichment plot for genes encoding cell cycle related targets of E2F transcription factors (NES = 2.34, padj = 0.02). (B) Enrichment plot for genes involved 
in the G2/M checkpoint, as in progression through the cell division cycle (NES = 2.25, padj = 0.02). (C) Enrichment plot for genes upregulated by activation 
of hedgehog signaling (NES = 1.85, padj = 0.03). (D) Enrichment plot for genes important for mitotic spindle assembly (NES = 1.71, padj = 0.02). NES, 
normalized enrichment score; padj, adjusted p -value. 
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(Supplemental Fig. 3). Differential abundance analysis on miRNA level
revealed that 41 miRNAs were more abundant in the ovarian cancer group
compared to the control group ( Fig. 2 B, Supplemental Table 4). Five of
these miRNAs (let-7d-5p, miR-203a, miR-200b, miR-200c, miR-191) have
previously been linked to the pathogenesis of ovarian cancer and were more
abundant in plasma, serum or ascites of ovarian cancer patients compared to
healthy controls [14] . 

Differential exon usage analysis identified exons that are more abundant
in cancer 

Altered gene expression levels represent only a part of the complex
transcriptional program in cancer cells. Alternative splicing, the differential
inclusion and exclusion of exonic sequences in mRNA, is an additional
mechanism that impacts the transcriptome. In a complementary analysis,
we profiled differential exon usage in utero-tubal lavage fluid from cancer
and control samples. Differential exon usage analysis revealed 407 exons that
were significantly more abundant in utero-tubal lavage fluid from ovarian
cancer patients compared to that from controls ( Fig. 4 ). A list with the
esults of the differential abundance analysis can be found in Supplemental
able 4. Of interest, 203 out of the 407 differential exons did not overlap
ith differentially abundant genes that were previously identified. Among 

hese differentially abundant exons were exonic sequences belonging to TP53.
P53 is a tumor suppressor gene mutated in over 95% of all ovarian cancer

ases, leading to either complete or partial loss of function. The exon segments
hat are differentially abundant in our cohort match with exon 5 of the main
P53 isoform [44] , which encodes for the highly conserved DNA-binding
omain of the p53 protein and which contains the majority of the somatic
utations detected in ovarian cancer [45] . Also for MUC16, encoding the
A125 protein, and the oncogene Forkhead box M1 (FOXM1), increased

bundance of selected exons was identified in samples from cancer patients. 

tero-tubal lavage fluid does not contain bona-fide ovarian cancer 
usion transcripts 

Fusion gene analysis of all 74 transcriptomes revealed a total of 414
aw fusion predictions in 26 ovarian cancer samples and 816 raw fusion
redictions in 48 control samples. After stringent filtering, 64 high confidence



162 RNA biomarkers from proximal liquid biopsy for diagnosis of ovarian cancer E. Hulstaert et al. Neoplasia Vol. 24, No. xxx 2022 

Fig. 4. Differentially abundant exons. (A) Volcano plot of differentially abundant exonic parts in ovarian cancer ( n = 26) versus controls ( n = 48). Upregulated 
exons with an adjusted p -value of less than 0.05 are shown in pink and yellow. Exonic sequences that belong to genes that are differentially abundant at gene 
level are shown in pink. Exonic sequences that do not belong to differentially abundant genes are shown in yellow. No downregulated genes are detected. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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fusion transcripts remained in the cancer group and 173 high confidence
fusion transcripts were detected in the control group. A detailed list of the
high confidence fusion transcripts is provided in Supplemental Table 5. The
median number of high confidence fusion transcripts per control sample
was 3 (min 0, max 11) and the median number of high confidence fusion
transcripts per cancer sample was 2 (min 0, max 7). No significant difference
in the number of fusion transcripts between both groups was detected (Mann-

hitney-U test, two-sided, p -value = 0.11). There was no overlap between
the transcripts detected in our cohort and reported fusion transcripts in
ovarian cancer [46–48] . 

A multi-omics classifier outperforms diagnostic classifiers based on single 
layer RNA sequencing data 

Prior to the pre-processing step, the mRNA data contained 13,386
predictors, the miRNA data contained 1527 predictors and the exon
data contained 509 predictors. The misclassification rate, sensitivity, and
specificity for the individual data layers and for all possible combinations of
the data layers are summarized in supplementary Table 6. The best classifiers
were obtained with elastic net logistic regression when the 15 most significant
markers were retained from each of the individual data layers after the
pre-processing step. The multi-omics classifier based on combined mRNA,
miRNA and exon data yielded the best performance, achieving an overall
misclassification rate of 21%, a sensitivity of 66% and a specificity of 88%.
A receiver operating characteristic (ROC) curve was built by repeating the
analysis on 100 random splits of the data into training and test sets with
 varying threshold ranging from 0 to 1 (Supplemental Fig. 4). The lowest
isclassification rate was achieved with a threshold of 0.5 and resulted in an

rea-under-the-curve of 0.86. An overview of the most important predictors 
or the multi-omics classifier is provided in Supplemental Table 7. 

iscussion 

Utero-tubal liquid biopsy can be collected in a minimally invasive way 
nd is an intriguing fluid to study in the context of ovarian cancer diagnosis,
ue to its contact with the epithelium of the fallopian tube, where these
umors arise. Here, we provide proof-of-principle that isolating RNA from 

tero-tubal lavage fluid is technically feasible. The mRNA capture sequencing 
ata that was generated from utero-tubal lavage contains mRNA signatures 
pecific for ovary and fallopian tube and can thus be used to explore liquid
iopsy applications for ovarian cancer diagnosis. 

Bulk RNA sequencing allows to inspect RNA derived from the tumor 
s well as RNA representing the complex tumor-microenvironment. Our 
tudy revealed an upregulation of mRNAs involved in cell cycle regulation 
nd proliferation in utero-tubal lavage fluid from ovarian cancer patients 
ompared to control samples. Over 300 mRNAs were upregulated in 
varian cancer compared to control samples. V-Myb avian myeloblastosis 
iral oncogene homolog-like 2 (MYBL2), the most differentially abundant 
RNA, showed an 8-fold upregulation in ovarian cancer patients compared 
ith healthy donors. MYBL2 is a physiological regulator of cell proliferation, 

ell survival and cell differentiation, but it is frequently deregulated in 
varian cancer, contributing to tumorigenesis and progression [49 , 50] . The 
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marker of proliferation Ki-67 is also among the upregulated genes, probably
reflecting the persistent cell proliferation of ovarian cancer cells [51] . Two
members of the E2F family of transcription factors (E2F1 and E2F8) are
more abundant in ovarian cancer samples compared to controls. Deregulation
of E2F transcription factors has been reported as a crucial player in ovarian
cancer pathogenesis [51–53] and E2F1 has been suggested as therapeutic
target. At exon level, centromere protein I (CENPI) is more abundant in
the cancer group compared to the control group. CENPI is a known target
gene of E2F1 that promotes chromosome instability in cancer [54] . Cell
division cycle associated gene 5 (CDCA5) and aurora kinase B (AURKB)
are upregulated in both utero-tubal lavage of ovarian cancer and in tumor
tissue of ovarian cancer patients relative to benign ovarian tissue [55] . Both
at gene and at exon level, no downregulated RNA markers were detected,
which is in line with the hypothesis that ovarian cancer samples contain tumor
derived RNA that is absent in the control samples. Beside identification of
differentially abundant genes and exons, we also interrogated the presence of
fusion genes in our dataset. In our cohort, high confidence fusion transcripts
were detected in both cancer and control samples. Fusion gene analysis in
ovarian cancer tissue and in ascites from relapsed patients has been reported
in only a few studies and the contribution of fusions in this cancer entity
remains unclear [46–48] . 

To our knowledge, this is the first time that RNA sequencing has been
successfully applied to utero-tubal lavage samples of ovarian cancer patients to
profile the extracellular RNA content. Barnabas et al. explored the proteomic
profile of extracellular vesicles isolated from utero-tubal lavage fluid and
constructed a 9-protein classifier for ovarian cancer diagnosis with 70%
sensitivity and 76.2% specificity [25] . None of the 9 proteins that were
included in the classifier, showed corresponding upregulation of mRNA in
our cohort. It is known that the correlation between mRNA transcripts and
generated protein expressions can be low due to differences in half lives
and the post transcription machinery. Based on the available mRNA data,
miRNA data and exon data, a multi-omics classifier was built to predict
ovarian cancer. Combining the three different data layers resulted in the
best classifier, with a sensitivity of 66% and specificity of 88%, indicating
the added value of combining complementary data layers. A limitation of
our study is that we did not have large enough cohort to segregate germline
BRCA mutations carriers from BRCA -WT cases and controls, which could
have highlighted a more robust classifier. This approach should be taken in
future studies, since accumulating data hints that the expressional profile
of BRCA -mutated müllerian epithelium significantly differs from the WT
pattern. 

Another caveat to our study is that CA125 serum levels were lacking. As
a result, the performance of our classifier could not be compared with the
current gold-standard. A joint analysis of the transcriptomic and proteomic
data could thus reveal useful insights that may not be deciphered from the
separate analysis of mRNA or protein expressions. Biomarker development
efforts to date clearly indicate that no individual biomarker, can provide
sufficient sensitivity at high specificity for the early detection of ovarian
cancer. In order to identify a robust multi-marker algorithm, it is necessary
to explore alternative biofluids, such as utero-tubal lavage, and to combine
different -omics approaches for biomarker discovery. 
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