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Abstract

Optimal methods could effectively improve the accuracy of predicting and identifying candidate driver genes. Various computational
methods based on mutational frequency, network and function approaches have been developed to identify mutation driver genes
in cancer genomes. However, a comprehensive evaluation of the performance levels of network-, function- and frequency-based
methods is lacking. In the present study, we assessed and compared eight performance criteria for eight network-based, one
function-based and three frequency-based algorithms using eight benchmark datasets. Under different conditions, the performance
of approaches varied in terms of network, measurement and sample size. The frequency-based driverMAPS and network-based
HotNet2 methods showed the best overall performance. Network-based algorithms using protein–protein interaction networks
outperformed the function- and the frequency-based approaches. Precision, F1 score and Matthews correlation coefficient were low
for most approaches. Thus, most of these algorithms require stringent cutoffs to correctly distinguish driver and non-driver genes. We
constructed a website named Cancer Driver Catalog (http://159.226.67.237/sun/cancer_driver/), wherein we integrated the gene scores
predicted by the foregoing software programs. This resource provides valuable guidance for cancer researchers and clinical oncologists
prioritizing cancer driver gene candidates by using an optimal tool.
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Introduction
Cancer is a collection of diseases characterized by
cellular abnormalities and uncontrolled growth mainly
caused by gene mutations [1]. Cancer genomes are
characterized by the accumulation of molecular alter-
ations such as driver and non-driver mutations. Driver
mutations have selective advantages and initiate cancer
and propagate tumors. By contrast, non-driver mutations
have no selective advantage in tumor progression [2].
The prognostic effect of individual mutations is usually
significantly changed by the presence or absence of
other driver mutations [3]. Driver gene mutations usually
occur in a group of genes (‘cancer driver genes’) that
affect the homeostatic development of key cellular

functions. Hence, several massive cancer sequencing
projects such as The Cancer Genome Atlas (TCGA) [4],
the International Cancer Genome Consortium (ICGC)
[5] and the Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) [6] have been
designed and applied to identify driver mutations and
genes. The driver genes identified by these projects
shed new light on cancer initiation, tumor propagation,
remote organ metastasis, the development of paradigm
of targeted anticancer therapies, and the search for
genomic biomarkers of prognosis as well as response
to treatments [7].

Several computational methods have been developed
to identify cancer driver genes based on their mutation
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profiles. These methods are classified into frequency-
, function- and network-based categories according to
their predicting principles. Frequency-based methods
such as driverMAPS [8], WITER [9] and DriverML [10]
identify candidate driver genes based on the assumption
that their mutation rates are higher than the background
mutation rate (BMR) across a patient cohort. However,
it is still challenging for accurate estimation of the
background mutation frequency [11]. Function-based
methods such as MutPanning [12] assess the functional
impact of mutations in hotspot functional domains.
They identify oncogenes harboring gain-of-function
mutations but are inadequate in terms of predict-
ing tumor suppressor genes characterized by loss-of-
function mutations [10]. Somatic mutations in different
genes and patients are enriched in various functional
pathways in each cancer type. Thus, network-based
methods such as HotNet2 [13], MUFFINN [14] and NetSig
[15] comprehensively elucidate pathways, networks and
mutation frequencies. They can identify driver genes
with low-mutation frequencies that are usually missed
by frequency-based methods [16]. Methods of analyzing
cancer drivers are also gradually diversifying. These
include our recently developed platform OncoVar, which
identifies cancer driver genes based on the ensemble
learning method AI-Driver [17] and prior oncological
knowledge [18].

Previous studies have evaluated the performance of
algorithms at predicting pathogenic and driver muta-
tions and genes [10, 14, 19–24]. However, most evalua-
tion studies only compared newly developed methods
against other limited software. Therefore, independent
assessments of driver gene identification methods are
urgently needed. Recently developed methods such as
Moonlight [25], nCOP [26], OncoIMPACT [27], MutPanning
[12], driverMAPS [8], WITER [9] and DriverML [10] have
not yet been compared against each other. Furthermore,
comparisons among various network datasets used in
network-based approaches have not been made. The lack
of accepted gold standards for driver genes and appropri-
ate measurements has limited studies assessing cancer
driver gene prediction methods. Thus, a comprehensive,
independent evaluation of computational methods for
predicting cancer driver genes is required.

In the present study, we independently assessed the
performance of 12 recently published (eight network-
based, one function-based and three frequency-based)
methods of driver gene prediction. We then integrated
the gene driver scores into a website named the
Cancer Driver Catalog. The gene driver scores represent
the possibility of correct cancer driver prediction by
various tools. We performed eight measurements on
12 methods with six network datasets based on eight
benchmark datasets. The relative performance levels
of these approaches varied under different conditions,
and driverMAPS and HotNet2 outperformed all other
methods. To the best of our knowledge, this study is
the first to assess the performance of algorithms at

predicting candidate cancer driver genes and to compare
the properties of various network datasets considering
gene length and sample size. Our findings provide
important guidance for researchers and clinicians in
ranking mutational cancer driver genes.

Materials and methods
Existing methods of driver gene identification
The performance levels of 12 computational methods
published since 2014 (and not heretofore comprehen-
sively compared against each other) were assessed
based on the published dates for the cancer driver
gene identification methods and source code avail-
ability (Figure 1). They comprised (i) eight network-
based algorithms [Moonlight (Moonlight score) [25],
nCOP (nCOP score) [26], OncoIMPACT (IMPACT score)
[27], HotNet2 (HotNet2 score) [13], MaxMIF (MaxMIF
score) [20], DNsum (MUFFINN_DNsum, MUFFINN score)
[14], DNmax (MUFFINN_DNmax, MUFFINN score) [14]
and NetSig (log10(1/p)) [15]], (ii) one function-based
algorithm [MutPanning (log10(1/FDR)) [12]] and (iii)
three frequency-based algorithms [driverMAPS (Model-
based Analysis of Positive Selection) (BayesFactor) [8],
WITER (RandomForestScore) [9] and DriverML (DriverML
score) [10]]. They were analyzed using unified somatic
mutation and network datasets. Most methods showed
no significance level such as P-value or false discovery
rate (FDR), and the numbers of genes predicted by each
software program were inconsistent. Therefore, their
performance was evaluated using the top 100 gene scores
ranked by each method and by indicating the probability
of true cancer driver detection. We noted that reasonable
changes in the number of selected genes (top 50 genes,
top 150 genes and all genes) did not influence the overall
conclusion (Supplementary Figure S1).

Benchmark driver gene datasets
The lack of comprehensive, unbiased gold standard
benchmark driver gene sets poses a challenge for optimal
method selection [14, 23]. Seven benchmark datasets
were curated and combined into an independent
‘benchmark’ dataset (Figure 1; http://159.226.67.237/sun/
cancer_driver/resource/benchmark-datasets.xlsx). From the
Cancer Gene Census (CGC; Tier 1; January 2019), 576
genes were collected [28]. The genes included in the
CGC set had documented cancer-associated activity and
harbored mutations that could alter their oncogenic
activity. A CGC subset containing 118 cancer genes was
also curated. These genes participated in carcinogenesis
via point mutations (CGCpointMut). Another 124 cancer
genes were included on the basis of characteristic
mutational patterns in oncogenes and tumor suppressor
genes (20/20 Rule) [2]. There were 288 high-confidence
driver genes that were identified by the rule-based
HCD approach [29]. Candidate genes were defined as
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Figure 1. Overview of the evaluation of function-based, frequency-based and network-based methods to identify driver genes.

cancer driver genes if they were predicted in a pan-
cancer or other item analysis by at least two frequency-
based methods including MuSiC [30], OncodriveFM
[31], Oncodrive-CLUST [32] and ActiveDriver [33]. There
were 797 human orthologs of mouse cancer genes that
were identified by insertional mutagenesis (MouseMut)
[34]. There were 698 human oncogenes that were
manually curated from 8849 articles and a public
oncogene database (OncoGene) [35]. There were 299
CTAT (combined tool adjusted total) genes that were
obtained according to a previously reported method
[36]. Briefly, 258 genes were identified by systematic
methods and 41 others were recovered after manual
curation of earlier TCGA-labeled reports. Most of the
latter were supported by other omics network tools used
to detect the original significantly mutated genes (SMGs).
By eliminating redundancy among these datasets, 233
driver genes common to at least three of the curated

benchmark datasets were collected and defined as
‘benchmark.’

Somatic mutation datasets
These software programs required mutation data to
predict driver genes in the cancer cohorts. Hence, MAF
(mutation annotation format) files including SNVs and
INDELs for 36 types of cancers were downloaded from
TCGA database (https://gdc-portal.nci.nih.gov/) [4]. The
cancer types included adrenocortical carcinoma (ACC),
bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), cholangiocar-
cinoma (CHOL), colon adenocarcinoma (COAD), colon
adenocarcinoma (COAD/READ), lymphoid neoplasm
diffuse large B-cell lymphoma (DLBC), esophageal car-
cinoma (ESCA), glioblastoma multiforme (GBM), glioma
(GBMLGG), head and neck squamous cell carcinoma

https://gdc-portal.nci.nih.gov/
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(HNSC), kidney chromophobe (KICH), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma, (KIRP), pan-kidney cohort (KICH+KIRC+KIRP)
(KIPAN), acute myeloid leukemia (LAML), brain lower
grade glioma (LGG), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian serous cystadenocarcinoma
(OV), pancreatic adenocarcinoma (PAAD), pheochromo-
cytoma and paraganglioma (PCPG), prostate adenocarci-
noma (PRAD), rectal adenocarcinoma (READ), sarcoma
(SARC), skin cutaneous melanoma (SKCM), stomach
adenocarcinoma (STAD), stomach and esophageal carci-
noma (STES), testicular germ cell tumors (TGCT), thyroid
carcinoma (THCA), thymoma (THYM), uterine corpus
endometrial carcinoma (UCEC), uterine carcinosarcoma
(UCS) and uveal melanoma (UVM). A total of 11 858
samples were collected. MAF data including pan-cancer
SNVs and INDELs (PCAWG cohort; 1950 samples) were
downloaded from the UCSC Xena database (https://
xenabrowser.net/) to facilitate the subsequent analyses
and evaluations (Supplementary Table S1). Finally, 18
499 protein-coding genes were retained to calculate
mutation rates and perform network analyses.

Weighted gene co-expression network analysis
Gene co-expression analyses effectively identify genes
involved in the same molecular processes and regulatory
relationships [37]. The gene expression profiles of 36
human cancers (RNA-seq) and pan-cancer were curated
from the TCGA and UCSC Xena database, respectively,
and used to build a gene co-expression network (Supple-
mentary Table S1). For pan-cancer and each cancer type,
WGCNA was employed for the co-expression analysis
using a previously developed pipeline [38] (Figure 1). The
weight score represented the degree of co-expression.
When it was <0.1, the network was filtered.

Protein–protein interaction networks used
in performance evaluation
Five protein–protein interaction (PPI) networks includ-
ing STRINGv10, HumanNet, InBio_Map, GeneMANIA and
mentha were used to establish whether the various pro-
tein–protein network datasets and the WGCNA network
affect network-based software performance (Figure 1).
All networks contained the weight values between two
genes that are required as inputs for the network-based
methods. Edges with larger weights in the network had
higher confidence levels and, therefore, higher priority
assignment to function-related genes [39]. In STRINGv10,
there were 2 615 912 interactions. This database con-
tained direct (physical) and indirect (functional) associa-
tions [40]. In HumanNet, there were 460 479 interactions.
This database contained predicted and validated interac-
tions [41]. In InBio_Map, there were 612 996 interactions.
This database is widely used to interpret and visualize
biomedical big data within the context of system biology
[42]. In GeneMANIA, there were 6 311 975 interactions.

This database is a platform for fast gene network con-
struction and functional prediction in Cytoscape [43]. In
mentha, there were 316 376 interactions. This database
is a resource for browsing integrated protein interaction
networks [44].

Measurements used in performance evaluation
The area under the receiver operating characteristic
(ROC) are under the curve (AUC) was used to evaluate the
performance of each method. The ROC was drawn with
the ‘pROC’ package in R [45]. The other seven criteria used
to evaluate the methods [22] included (i) the accuracy
indicating the driver gene: non-driver gene ratios in the
benchmark datasets that were correctly predicted as
drivers and non-drivers, respectively; (ii) the sensitivity
representing the proportion of driver genes in the
benchmark data that were correctly predicted as driver
genes by the model; (iii) the specificity representing the
proportion of non-driver genes in the benchmark data
that were correctly predicted as non-driver genes by the
model; (iv) the precision representing the conditional
probability that the driver genes in the benchmark data
were correctly predicted as driver genes by the model;
(v) the error rate representing the proportion of false
drivers and non-drivers in the benchmark dataset that
were incorrectly predicted as drivers and non-drivers,
respectively; (vi) the F1 score representing the harmonic
means of the precision and recall numbers; (vii) the
Matthews correlation coefficient (MCC) representing
the correlation between the observed and predicted
classifications (range: −1 to 1; where 1 indicates
perfect prediction, 0 indicates random prediction and − 1
indicates inconsistency between prediction and true
classification) (Figure 1). All seven measurements were
calculated with the ‘precrec’ package in R [46]. The
foregoing measurements were also derived using true
positive (TP), true negative (TN), false positive (FP) and
false negative (FN), as shown below:

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Sensitivity = TP
TP + FN

(2)

Specificity = TN
TN + FP

(3)

Precision = TP
TP + FP

(4)

Error rate = FP + FN
TP + TN + FP + FN

(5)

F1 score = 2 × Precision × Recall
Precision + Recall

(6)

MCC = TP × TN − TP × FN√
(TN + FN) × (TN + FP) × (TP + FN) × (TP + FP)

(7)

https://xenabrowser.net/
https://xenabrowser.net/
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Similarity of driver genes predicted by various
cancer types
For the computational algorithm with score range
0–1 (MaxMIF, nCOP, HotNet2, DNsum, DNmax and
WITER) (Figure 6C and D; Supplementary Figure S6G–J),
the Euclidean distances of various cancer types were
calculated with the ‘Phyloseq’ package in R [47]. In
these cases, both the candidate driver genes and the
gene scores were predicted by computational methods.
The differences in cancer type increased with Euclidean
distance. Thus, 1 minus distance was used to represent
similarity among cancer types in the contributor
driver genes. For algorithms with scores not in the
0–1 range (including DriverML, driverMAPS, MutPan-
ning, Moonlight, OncoIMPACT and NetSig) (Figure 6B;
Supplementary Figure S6B–F), pairwise intersections of
predictor driver genes between two cancer types were
analyzed. For the similarity analysis between cancer
types, the top 100 potential driver genes from each cancer
type and the mentha network dataset were applied in the
network-based methods.

Results
Performance evaluations based on somatic
mutations in the pan-cancer dataset
The importance of drivers in pan-cancer analysis has
been empirically demonstrated [48]. Thus, we calculated
AUC scores from the PCAWG pan-cancer dataset using
various algorithms based on the foregoing eight refer-
ence gene sets (Supplementary Table S2). The mentha
network data showed the best performance for 36
cancer types relative to different network datasets. To
distinguish the differences in performance among the
computational methods under ROC, we used mentha
to analyze the network-based methods in the pan-
cancer dataset. As moonlight only supported TCGA
gene expression data for the subsequent analysis, it
was not included in the pan-cancer analysis. The ROC
curves and the AUC scores showed that the frequency-
based driverMAPS method outperformed the other 10
algorithms under most reference datasets in the pan-
cancer analysis including CGCpointMut (AUC = 0.9966),
CTAT (AUC = 0.9966), HCD (AUC = 0.9966), 20/20 Rule
(AUC = 0.9966), benchmark (AUC = 0.9966) and MouseMut
(AUC = 0.8062) (Figure 2A–E and 2G). The driverMAPS
method also exhibited better performance under the
CGC benchmarks (second rank; AUC = 0.6841), whereas
HotNet2 performed best only under CGC (AUC = 0.6986)
(Figure 2F). However, most software programs showed
lower AUC values under the OncoGene benchmark
compared with the other seven reference datasets
(Supplementary Table S2; Figure 2H). We also found
that other tools had various performance levels under
different benchmarks in the pan-cancer analysis. DNmax
performed better under the CTAT, HCD and OncoGene
benchmarks than the other tools (Supplementary
Table S2).

Performance evaluations of different methods
based on somatic mutations in 36 cancer types
To assess the ability of various algorithms at pre-
dicting cancer drivers in specific cancer types, we
used somatic mutation data from each of the 36
cancer types based on six independently developed net-
works (http://159.226.67.237/sun/cancer_driver/resource/
evaluation-scores.xlsx). The performance of these tools
varied under different conditions. Hence, we summa-
rized their overall performances under various network
datasets and cancer types by calculating the medians
and standard deviations (SD) under eight measurements
(Figure 3A and B; Supplementary Figure S2A–F). Under
the AUC measurement, the frequency-based method
driverMAPS showed the highest median AUC value
(range, 0.7083–1; mean, 0.9385) and performed best of
all 12 algorithms. The performance of HotNet2 (range,
0.6081–0.9; mean, 0.8130) was second only to driverMAPS
and HotNet2 was the best of all network-based methods.
Compared with the function-based MutPanning method
(range, 0.5248–0.7050; mean, 0.6244), all network-based
methods showed superior performance at predicting
cancer driver genes. Moreover, the performance of
MutPanning was better than those of the other two
frequency-based algorithms including WITER (range,
0.5112–0.5820; mean, 0.5462) and DriverML (range,
0.5138–0.5571; mean, 0.5431) (Figure 3A). However,
network-based methods such as HotNet2, MaxMIF,
NetSig, DNsum, DNmax and OncoIMPACT showed
much higher sensitivity than driverMAPS and the
other algorithms (Figure 3B). HotNet2 had the high-
est median sensitivity (range, 0.6013–0.8892; mean,
0.8026).

To verify the performances of the foregoing software
programs, we assessed them in terms of their accuracy,
specificity, precision, error rate, F1 score and MCC
(Supplementary Figure S2A–F). The driverMAPS had the
highest median accuracy (range, 0.55–0.6667; mean,
0.6446) (Supplementary Figure S2A), specificity (range,
0.5333–0.7292; mean, 0.6807) (Supplementary Figure S2C),
precision (range, 0.2903–0.8875; mean, 0.7884) (Supple-
mentary Figure S2B), F1 score (range, 0.3407–0.6193;
mean, 0.5719) (Supplementary Figure S2E) and MCC
(range, 0.1925–0.6369; mean, 0.5498) (Supplementary Fig-
ure S2F). For the other 11 algorithms, however, the medi-
ans of the foregoing parameters were barely satisfactory.
Their accuracy values were in the range of 0.4931–0.5392
with a mean of 0.5087 (Supplementary Figure S2A) and
their specificity values were in the range of 0.4965–0.5249
with a mean of 0.5047 (Supplementary Figure S2C). Their
precision values were in the range of 0.0098–0.0296 with
a mean of 0.0594 (Supplementary Figure S2B). Their
F1 scores were in the range of 0.0190–0.3116 with a
mean of 0.0892 (Supplementary Figure S2E). Their MCC
values were in the range of −0.0504 to 0.1445 with a
mean of 0.0605 (Supplementary Figure S2F). The nCOP,
OncoIMPACT, HotNet2 and other algorithms ranked
immediately after driverMAPS, whereas the Moonlight,

http://159.226.67.237/sun/cancer_driver/resource/evaluation-scores.xlsx
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Figure 2. Performance evaluation results of different methods with mentha network dataset. The AUC of 11 algorithms are shown, based on somatic
mutations of pan-cancer from PCAWG dataset with eight benchmark datasets (A-H). The AUC values for each computational method are shown
in figures. Different colored curves in each figure represent the performance of different algorithms. 11 algorithms include OncoIMPACT, NetSig,
MutPanning, WITER, MaxMIF, DNsum, nCOP, HotNet2, DriverML, driverMAPS and DNmax. Eight benchmark datasets include CGCpointMut, CTAT, HCD,
20/20 rule, benchmark, CGC, MouseMut and OncoGene.

WITER and DriverML algorithms ranked dead last in
terms of performance. We obtained comparable results
based on the error rates as well. Moreover, HotNet2
outperformed all other 11 software programs in terms
of sensitivity.

For pan-cancer and 36 cancer types, in order to find
the most suitable software for different cancer types
to predict potential driver genes, we listed the software
suitable for different cancer types by comprehensively
calculating the optimal results of eight measurements
(Supplementary Table S3).

Performance of various networks according
to network-based methods for predicting
driver genes
To compare the performance of the various network
datasets used in the network-based methods, we
calculated the scores of eight measurements for the
different algorithms, networks and benchmarks across
36 cancer types (http://159.226.67.237/sun/cancer_driver/
resource/evaluation-scores.xlsx). We found that the PPI
network datasets outperformed the WGCNA network
datasets despite the similarity of their performance in

http://159.226.67.237/sun/cancer_driver/resource/evaluation-scores.xlsx
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Figure 3. Overall performance evaluation results of different methods and networks. The median of AUC and the median of sensitivity of 12 algorithms (A
and B) and the median of AUC of six networks (C) are shown, based on somatic mutations of 36 cancer types from TCGA with eight benchmark datasets.
12 computational methods include DN_MAX, DN_SUM, driverMAPS, DriverML, HotNet2, MaxMIF, Moonlight, MutPanning, nCOP, NetSig, OncoIMPACT
and WITER. Six network datasets include GeneMANIA, HumanNet, InBio_Map, mentha, STRINGv10 and WGCNA. The ‘NA’ in (C) represents the case
where the non-network-based methods which do not use network data. The same group of ‘pillars’ represents the same algorithm (A and B) or network
(C), and different colors in each group represent different benchmark sets for evaluating the algorithm (A and B) and networks (C). The error bars on
each ‘pillars’ represent the standard deviation.

terms of AUC (Figure 3C). Briefly, the median AUC values
of the PPI networks were in the range of 0.6300–0.8452
(mean, 0.7530), whereas those of the WGCNA network
datasets were in the range of 0.5314–0.6685 (mean,
0.6149). Among the PPI network datasets, mentha had
the highest mean AUC value (0.7787), and the AUC range
was 0.6675–0.8452. The other leading datasets in terms of
AUC were InBio_Map (mean, 0.7650), STRINGv10 (mean,

0.7427), HumanNet (mean, 0.7417) and GeneMANIA
(mean, 0.7371) (Figure 3C). The performance of these
network datasets showed similar ranking in terms
of sensitivity (Supplementary Figure S3B) and MCC
(Supplementary Figure S3G). Therefore, mentha and
InBio_Map networks are the optimal network datasets
for identifying potential cancer drivers via network-
based methods. The six network datasets showed similar
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performance in terms of accuracy, specificity, precision,
error rate and F1 score under the six network-based
methods (Supplementary Figure S3A, S3C–F). However,
they showed different performances in terms of AUC
(Figure 3C), sensitivity (Supplementary Figure S3B) and
MCC (Supplementary Figure S3G).

Effects of sample size on cancer driver
gene identification
Sample size is an indispensable factor in calculating
mutation frequency and may affect software perfor-
mance stability [14, 49]. To determine the influence of
sample size on the various methods used to distinguish
cancer driver genes, we assessed the performance of
different algorithms and network datasets using various
sample sizes across the 36 cancer types (Figure 4A and B;
Supplementary Figure S4A–G and S4A–G). All software
programs showed similar performances in response to
changes in sample size (Figure 4A and Supplementary
Figure S4A–G). All methods except Moonlight did
not significantly change with increasing sample size.
Moonlight slightly improved as sample size increased
(Figure 4A). According to the AUC values under different
sample sizes, driverMAPS and HotNet2 had superior
performance. They had locally weighted regression and
their smoothing scatterplot (LOESS) curve values were
all ≥0.8 (Figure 4A). According to the other criteria,
these computational methods also showed stable
performance in response to change in sample size
(Supplementary Figure S4A–G).

The performance levels of two of the five PPI networks
and one WGCNA network improved with increasing sam-
ple size according to the AUC (Figure 4B) and sensitiv-
ity (Supplementary Figure S5B) values. Based on the six
other evaluation measurements, however, their perfor-
mance levels remained virtually unchanged in response
to increasing sample size (Supplementary Figure S5A and
S5C–G).

Effects of gene length on candidate driver gene
identification using different algorithms
Previous studies showed that driver gene identification
was affected both by mutation frequency and the asso-
ciated gene length [2]. Long genes are prone to somatic
mutation. Computational methods identified the long
gene TTN as a driver gene because it accumulated
variants. However, it usually acts as a passenger in
the cancer genome [50]. Therefore, the impact of gene
length on the identification of driver genes is crucial.
The pan-cancer dataset PCAWG has the largest sample
size (n = 1950) compared with each of 36 cancer datasets
from TCGA. Hence, we analyzed the length distribution of
the top 100 candidate driver genes in PCAWG predicted
by various computational methods. The lengths of the
driver genes in the reliable reference datasets (CGC and
our integrated benchmark) were included as baselines
for comparison against different computational methods
(Figure 5). Compared to the lengths of the cancer driver

genes in CGC, DriverML identified even longer candidate
driver genes (Kruskal–Wallis H test; P.adj = 0.004274). By
contrast, there were no significant differences between
the other algorithms in the PCAWG cohort and the two
reference sets in terms of the lengths of their predicted
cancer driver genes (Figure 5).

Similarities among different methods and cancer
types measured by candidate driver genes
To clarify the similarities among candidate driver genes
identified by the various computational methods, we
compared the top 100 predictions obtained from the
pan-cancer analysis. The mentha dataset served as
the network data in the analysis of the network-based
methods. The network-based methods were highly
similar, whereas the methods in the other two categories
differed (Figure 6A). We searched the functions of
these common genes using our previously developed
annotation tool called VarCards [51]. Of the 22 candidate
driver genes identified by at least five software programs,
only three were well-known cancer genes annotated
by the OMIM database to cancer-related phenotypes
(Supplementary Table S4) [52]. Thus, the remaining
19 shared genes may have been unverified drivers.
DriverML, MaxMIF, NetSig, OncoIMPACT, WITER and
driverMAPS predicted TP53 as a cancer driver. TP53 was
annotated to choroid plexus papilloma, colorectal cancer,
hepatocellular carcinoma, nasopharyngeal carcinoma,
osteosarcoma, pancreatic cancer and adrenal cortical
carcinoma-related phenotypes (Supplementary Table
S4). At least five algorithms predicted that DCC and
EGFR were driver genes annotated to colorectal cancer,
esophageal carcinoma, non-small cell lung cancer
and lung adenocarcinoma-related phenotypes, respec-
tively (Supplementary Table S4). Functional enrichment
analysis of the 22 candidate driver genes by the
WebGestalt Over-Representation method [53] revealed
that the 19 aforementioned unverified candidate driver
genes were significantly enriched only in the synaptic
transmission and glutamatergic biological processes
(Supplementary Figure S6A). Evidence is lacking for their
roles in cancer.

It has been reported that tumors from organs in the
reproductive system and those in the gastrointestinal
tract exhibited relatively similar somatic copy number
(SCNA) patterns [54]. Our analysis revealed similar driver
gene distribution patterns for cancers from related
organs and in different subtypes of the same cancer
type such as COAD versus COADREAD, STAD versus
STES, GBMLGG versus LGG, KIPAN versus KIRC and LUAD
versus LUSC (Figure 6B–D; Supplementary Figure S6B–J).
However, other non-organ-related cancer types markedly
differed in terms of their candidate driver genes.

Development of a website for searching cancer
driver genes via different algorithms
To facilitate the process of querying the candidate
driver genes identified by the foregoing 12 methods in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab548#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab548#supplementary-data
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Figure 4. Effects of sample size on cancer driver gene identification for different computational methods and networks. The AUC of 12 algorithms (A)
and 6 networks (B) based on somatic mutations of 36 cancer types from TCGA under different sample sizes with eight benchmark datasets are shown.
Different algorithms (A) and networks (B) are displayed in different colors, and each point represents the AUC of corresponding algorithm (A) or network
(B) under the corresponding sample size. Each dot plot has a smoothing scatterplot (LOESS) curve representing the performance trend. The ‘NA’ in (B)
represents the case where the non-network-based methods which do not use network data.

pan-cancer and the 36 cancer types, we integrated the
genes and their corresponding probability scores into a
website named Cancer Driver Catalog (http://159.226.67.
237/sun/cancer_driver/). Gene symbols, computational
methods, cancer types, network data used in the
network-based methods, gene ID, method scores and

gene ranks were included in the website. The gene
scores were predicted by the corresponding software
and represented the probability of a cancer driver gene
predicted by the corresponding tools. The likelihood of
cancer driver status increased with gene score. The gene
ranks were predicted by the corresponding software and

http://159.226.67.237/sun/cancer_driver/)
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Figure 5. Effects of gene length on candidate driver gene identification for different computational methods. Log10 scaled length of candidate driver
genes from 11 computational methods based on somatic mutations of pan-cancer from PCAWG dataset and driver genes from two reference sets of
benchmark and CGC are shown. The length was taken as the sum of the non-redundant exon length of each gene and the value of log10 was calculated
for normalization.

represented the probability of a true cancer driver. The
likelihood that a gene is a real cancer driver increased
with gene rank.

Discussion
In precision cancer medicine, it is a central task to
identify the driver genes in patients’ tumor cells. In this
study, we used eight benchmark data sets to compre-
hensively evaluate the ability of 12 published algorithms
to distinguish driver genes from passenger genes. The
results show that driverMAPS had the overall best
performance, especially under the MCC, F1 score and pre-
cision criteria. However, network-based methods showed
much higher sensitivity than driverMAPS and the other
algorithms. Therefore, network-based methods might
more sensitively distinguish cancer driver and non-driver
genes than function- and frequency-based methods.
Taken together, the results show that driverMAPS and
HotNet2 outperformed other network- and function-
based algorithms. By contrast, the frequency-based
methods WITER and DriverML were inferior in terms
of prioritizing driver genes across 36 cancer types.
We recommended the implementation of driverMAPS

and HotNet2 rather than well-known methods such as
MutSigCV for the prediction of driver genes. The overall
medians of precision, F1 score and MCC (< 0.2) were
much lower than those of AUC and sensitivity for all
algorithms except driverMAPS. Our results suggest that
certain genes identified as candidate drivers were, in
fact, non-driver genes. Therefore, certain algorithms
require rigorous cutoff values to be able to correctly
distinguish driver and non-driver genes. In the evaluation
of six network datasets, the PPI network outperformed
the WGCNA network. Furthermore, the network-based
method mentha showed the best performance at
predicting driver genes. For eight benchmark datasets,
the performance evaluations in the pan-cancer dataset
showed that OncoGene was inconsistent with the
other benchmark sets. Therefore, a gold standard,
experimentally validated gene set is urgently needed.
For the effects of sample size and gene length on cancer
driver gene identification, our results demonstrate that
most methods and the network datasets used in the
network-based methods showed stable performance
across various sample sizes. DriverML identifies longer
cancer driver genes than the benchmark datasets,
which suggests that gene length normalization is an
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Figure 6. Similarities among different computational methods and cancer types measured by candidate driver genes. Pairwise intersections of top 100
predictor driver genes among 11 computational methods based on pan-cancer analysis are shown in (A). Pairwise intersections of top 100 predictions
using driverMAPS among 36 cancer types are shown in (B). The numbers in the grid represent the number of candidate driver genes shared by any two
types of methods (A) or any two types of cancers (B). One minus Euclidean distance of top 100 predictions in HotNet2 (C) and nCOP (D) among 36 cancer
types are shown in (C) and (D).

important step in eliminating bias induced by calculating
mutation frequency among genes of different lengths.
Similarity analysis among different methods measured
by candidate driver genes suggests that there was
wide variation in the genes identified using different
categories of computational methods. Furthermore, the
application of only a single method to identify driver
genes introduced bias. Candidate driver genes identified

by at least five software programs should nonetheless
be verified by functional experiments based on the
gene enrichment results. Moreover, similarity analysis
among different cancer types measured by candidate
driver genes revealed physiological correlations in
driver gene screening, but also heterogeneity among
cancers. Finally, the integrated website of Cancer Driver
Catalog will provide clinicians and researchers first-hand
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information about candidate driver genes predicted
by various computational methods. The findings of
the present work also provide important guidance
for the selection of appropriate methods to identify
candidate driver genes. Finally, our study improves our
understanding of the role of cancer driver genes in early
cancer detection, therapeutic intervention and patient
prognosis.

We speculated that the optimal performance levels
of driverMAPS and HotNet2 could be attributed to
their identification principles. The driverMAPS combines
frequency- and function-based principles. It could
achieve true selection at the single-base level and under
highly heterogeneous background mutation because it
uses multiple external annotations and spatial mutation
clustering to capture high mutation rates at functionally
important sites. Network-based methods such as Hot-
Net2 showed better overall performance than function-
and frequency-based approaches. We speculated that
the superior performance of network-based methods is
attributed mainly to their network module screening
process. In the network modules, most genes were
enriched in important biological pathways. When the
number of genes was limited in the pathways or modules,
however, certain driver genes were overlooked. Thus, it
remains to be established whether design principle is a
critical factor determining the superior performance of
the two tools.

Certain computational methods were previously eval-
uated [10, 14, 19–24]. Nevertheless, the results of these
earlier studies markedly differed from those of the cur-
rent study. Of the five assessments conducted in the
previous studies to identify cancer driver genes, only
one was performed independently and without using
the methods newly developed by the researchers. There-
fore, an independent and comprehensive comparison
of the computational methods used in cancer driver
identification was necessary. Several recently developed
approaches such as Moonlight [25], nCOP [26], OncoIM-
PACT [27], MutPanning [12], WITER [9], DriverML, [10]
and driverMAPS [8] were omitted from previous assess-
ments. A gold standard, experimentally validated gene
set is still lacking. Hence, we collected seven datasets
and integrated them into a benchmark dataset including
genes reported to be associated with cancer activity and
progression. The integrated ‘benchmark’ dataset remove
redundancy from curated reference datasets and avoided
evaluation bias caused by uneven benchmark set quality.
We systematically applied eight evaluation criteria to
confirm the performance results. By contrast, most other
software programs only used AUC and one or more of
the other assessment criteria we used. We evaluated the
effects of sample size and gene length on tool perfor-
mance.

The observed high error rates indicate that these
algorithms still return many false positives and false
negatives. Our comprehensive performance evaluation
provides meaningful directions for future algorithm

development. First, integration of different principles
in the ensemble algorithms may be more promising
for more accurate identification of cancer driver genes,
because such algorithms can effectively balance the
limitations of pre-exist algorithms. For example, a
function-based principle considers the functional impact
at the nucleotide or even protein level, and a network-
based method screens the genes that prefer to interact
with other genes. Second, the high heterogeneity among
different cancer types suggests that cancer context plays
an important role in driver genes to determine the
effect of mutation. Therefore, for the identification of
cancer driver genes with the accumulation of sequencing
and functional data, it is very important to develop
new algorithms targeting specific cancers. Finally, few
of these methods were experimentally validated and
false positive data might have been included among
the results. Future research should apply functional
validations to improve the accuracy and accessibility
of high-throughput methods.

Key Points

• The frequency-based driverMAPS and network-based
HotNet2 methods showed the best overall performance
in predicting driver genes.

• The performance levels of all approaches varied in terms
of network, measurement and sample size under differ-
ent conditions.

• The present work also developed a novel online tool
providing tentative guidance for cancer researchers
and clinical oncologists seeking candidate cancer driver
genes.
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