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ABSTRACT

Recent studies have shown that RNA structural
motifs play essential roles in RNA folding and inter-
action with other molecules. Computational identifi-
cation and analysis of RNA structural motifs remains
a challenging task. Existing motif identification
methods based on 3D structure may not properly
compare motifs with high structural variations.
Other structural motif identification methods
consider only nested canonical base-pairing struc-
tures and cannot be used to identify complex RNA
structural motifs that often consist of various
non-canonical base pairs due to uncommon
hydrogen bond interactions. In this article, we pre-
sent a novel RNA structural alignment method for
RNA structural motif identification, RNAMotifScan,
which takes into consideration the isosteric (both
canonical and non-canonical) base pairs and
multi-pairings in RNA structural motifs. The utility
and accuracy of RNAMotifScan is demonstrated by
searching for kink-turn, C-loop, sarcin-ricin,
reverse kink-turn and E-loop motifs against a 23S
rRNA (PDBid: 1S72), which is well characterized for
the occurrences of these motifs. Finally, we search
these motifs against the RNA structures in the entire
Protein Data Bank and the abundances of them are
estimated. RNAMotifScan is freely available at our
supplementary website (http://genome.ucf.edu/
RNAMotifScan).

INTRODUCTION

Non-coding RNAs play a large variety of roles inside a
cell, and recent discoveries point to many of their novel
cellular functions (1,2). The variety of functionalities of
non-coding RNA is determined by their complex

structures. Unlike DNAs, which usually exhibit regular
double helical structures due to the interactions with the
complementary strands, RNAs are single strand molecules
and can fold into irregular 3D structures. Among the
complex structures, there exist conserved and recurrent
segments whose arrangement, abundance and interaction
largely determine the folding behaviors and functionalities
of the structures. These segments, viewed as the ‘building
blocks’ of RNA architecture, are usually referred to as
RNA structural motifs (3–5). The identification and
analysis of these motifs have largely enriched our experi-
ences in RNA studies.
The common approach for RNA structural motif iden-

tification is to represent the RNA structural motifs by
different 3D properties (i.e. torsion angles or atomic dis-
tances) of the key nucleotides and then apply heuristics to
searching for the topological occurrences of the motif in
the 3D RNA structures [similar to the methods for 3D
protein structure comparison (6)]. Computer program,
such as PRIMOS (7) and COMPADRES (8), represents
and searches certain backbone conformations using
pseudotorsion angles. On the other hand, NASSAM
encodes the 3D motif by using a graph to store pairwise
atomic distances between the key nucleotides (9). To
reduce the information contained in pairwise atomic dis-
tances, ARTS builds approximated anchors based on a set
of seed points before detailed matching (10). Recent
progress uses shape histograms, which are also
computed from pairwise atomic distances, to summarize
the structural motifs (11). This method has identified the
occurrences of many structural motifs in ribosomal RNAs
(12). Instead of considering solely torsion angles or atomic
distances, FR3D, which searches for recurrent motifs con-
sidering a combination of geometric, symbolic and
sequence information, achieves the most satisfying per-
formance (13). Although the existing methods have suc-
cessfully identified many occurrences of several known
RNA structural motifs, most of them require the
accurate 3D coordinates of the query motif, and thus
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are limited to structural motifs with rigid 3D topologies.
However, it is known that many motifs exhibit certain
structural variation, and thus cannot be well characterized
by their 3D topologies (14). Therefore, the more conserved
base-pairing pattern should be considered when searching
for RNA structural motifs (15,16).
It was observed that many non-canonical base pairs in

RNA structural motifs are isosteric and these base pairs
can interchange with each other without affecting the
overall RNA structure (17). Generally, a base pair
should have three properties: (i) the two nucleotides inter-
acting through hydrogen bonds; (ii) nucleotide edges
participating in the interaction; and (iii) the relative orien-
tation of the glycosidic bonds, which is either cis or trans.
Each nucleotide has three edges that can interact with
another nucleotide to form a base pair, namely the
Watson–Crick edge (denoted as ‘WC’ edge), Hoogsteen
edge (denoted as ‘H’ edge) and Sugar edge (denoted as
‘SE’ edge). Given the three properties, it is sufficient to
classify all base pairs into one of the isosteric groups (17).
Modeling RNA structural motifs through non-canonical
base pairs is theoretically sound and can largely reduce the
complexity of 3D RNA motifs. First, the definition of
isostericity serves as the foundation of relating tertiary
structure with non-canonical base pairs. Second, some
motifs are defined by their characterized non-canonical
base-pairing patterns, instead of their 3D structures.
Finally, modeling RNA structural motifs by their
base-pairing pattern is easier to understand comparing
to their atomic coordinates.
Djelloul and Denise (19) modeled the RNA structural

motifs through graphical representation of these
non-canonical base pairs. They extracted structural
segments containing non-canonical base pairs from the
annotated RNA 3D structure. By constructing clusters
through the measurement of pairwise maximum iso-
morphic base-pairing cores, they characterized the recur-
rent base-pairing patterns among these structural
segments. This method has led to the rediscovery of
many structural motifs, which shows the potential power
of utilization of non-canonical base pairs in modeling
RNA structural motifs. However, this method is not
optimized for structural motif identification, for the iso-
morphic condition is not suitable to identify the motifs
that exhibit variations in non-canonical base pairs.
Therefore, well-developed algorithms for comparing the

non-canonical base-pairing patterns between two RNA
tertiary structural segments are in urgent demand.
However, most existing methods model and compare
RNA structures only through canonical base pairs. In a
typical approach, free energy values are assigned to the
canonical base pairs, and secondary structure with
minimum free energy are computed to model the structure
(20–24). Comparative genomics approaches aim at the
identification of consensus canonical base pairs from a
set of synthetic genomic sequences of multiple species
that are previously aligned (25,26) or even unaligned
(27–30). The RNA homolog search approaches attempt
to find genome sequences that match a query RNA in
sequence and a model secondary structure annotated
with canonical base pairs (31–33). RNA canonical base

pairs are also modeled into tree structures, and the edit
distance between two tree structures is then computed
(34,35). Recently, variants of Sankoff’s algorithm (36)
are also used to compare the canonical base pairs
between two RNA structures (37,38).

These computational methods can be extended to
comparing RNA structures with non-canonical base
pairs. We need to address the following issues raised by
the inclusion of non-canonical base pairs. Most import-
antly, the similarity between two non-canonical base pairs
should be measured. The reason is that canonical base
pairs can interchange with each other while maintaining
the tertiary structure, but such possibility is not
guaranteed for non-canonical base pairs as defined in
the isosteric matrices. In addition, canonical base pairs
are usually nested stacked in forming the A-form helical
regions, while RNA structural motifs usually include
many multi-pairings (interactions involves more than
two nucleotide residues, i.e. base triples) and pseudoknots
(crossing base pairs), see Figure 3. Therefore,
non-canonical base pairs, multi-pairing and crossing
base pairs must be handled in order to properly
compare the structural motifs.

In this article we describe a new computational method
for RNA structural motif identification that takes into
account isosteric base pairs and multi-pairings. Given a
query motif (represented by base-pairing patterns, see
Figure 1b), our new method, called RNAMotifScan,
attempts to identify all possible similar motifs from the
target 3D structures. The core algorithm of
RNAMotifScan finds the maximum common isosteric
base pairs between two RNA structures, which runs in
the time complexity of O(m2n2), where m and n are the
number of base pairs in the query and target RNA struc-
tural segment. Since RNA structure motifs usually have
only a small number of base pairs, our rigorous algorithm
is extremely efficient. We tested RNAMotifScan by
searching for five previously known motifs in RNA 3D
structures from Protein Data Bank (PDB) (39) and
compared the results with related publications as well as
the SCOR database (40). It is shown that RNAMotifScan
can identify many new motif occurrences that are previ-
ously unknown and has better performance in terms of
both its speed and accuracy. The complete search results
can be found at the supplementary website
(http://genome.ucf.edu/RNAMotifScan).

MATERIALS AND METHODS

The query RNA structural motif base-pairing patterns are
adopted from related publications (see ‘Data processing’
Section). We concatenate two strands of the query RNA
motif into one sequence for the alignment (see Figure 1c
and d, there are two ways to concatenate the query and
both are searched against the target). For the target RNA
segments, we first use annotation software (see ‘Data pro-
cessing’ Section) to translate the RNA 3D coordinates
into base-pairing patterns that contain sufficient informa-
tion for isosteric group classification (i.e. pairing nucleo-
tides, interacting edges, and relative glycosidic bond
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orientations). We then cut the annotated target RNA
structure into many local (interactions within two
strands, long-range interactions are ignored) RNA struc-
tural segments. Similarly, we concatenate two strands of
the target RNA structural segments into one sequence. To
identify RNA motif instances, we use a dynamic
programming procedure to compute the similarity
between the query RNA motif and all structural
segments in the target RNA and report the significant hits.

The recursive functions of the alignment procedure need
to address three major issues. First, the isostericity of the
base pairs should be incorporated into the scoring func-
tions such that only base pairs belong to the same isosteric
group (17) can be matched to each other. Second, there
are many multi-pairings occurring in the RNA structural
motif and the target RNA, which is introduced by one
nucleotide simultaneously paired with two or more other
nucleotides. This can be observed since each nucleotide
has three edges, thus the nucleotide is able to participate
in at most three base pairs. We discuss the multi-pairing
issue in ‘Base-pairing relations in RNA structured motifs’
Section for the alignment procedure. Finally, both the
query RNA motif and the target RNA segments may
contain crossing base pairs.

We divide the alignment into two steps. We first align
non-crossing base pairs in the query. (Crossing base pairs
in query are removed temporarily and processed in the
second step, while the crossing base pairs in target struc-
ture are retained.) We then try to reinsert the removed
crossing base pairs based on the resulting alignment.
Note that we select the minimum number of base pairs
to be matched in the second step so that most of the base
pairs can be aligned optimally in the first step. Because the
structural motifs are likely to be well represented by its
major part of nested base pairs, which are matched opti-
mally, it should work in most practical cases. Also, users
can select the base pairs to form the query motif for the
first step searching.

Base-pairing relations in RNA structural motifs

Multi-pairings are not only frequently occurred, but also
important in forming the RNA structural motifs. Here, we
formally define the classifications and relations of base

pairs including multi-pairings. We denote the indices of
the left and right nucleotides of a base pair P as Pl,Pr.
Generally, two base pairs, PA and PA0, may have one of
the following relations: (i) PA and PA0 are interleaving; (ii)
PA0 is enclosed with PA (denoted by PA0< IP

A); (iii) PA0 is
juxtapose to PA and before PA (denoted by PA0< pP

A).
Specifically, RNA structural motifs may contain
multi-pairings. To handle these situations, we need to
redefine the above definition. We extend the enclosing
relation (<I) to three subgroups (Figure 2c): PA0< I1

PA

(PA
l < PA0

l < PA0

r < PA
r ), PA0< I2

PA (PA
l ¼ PA0

l <
PA0

r < PA
r ) and PA0< I3

PA (PA
l < PA0

l < PA0

r ¼ PA
r ). We

also extend the juxtaposing relation (<p) to two subgroups
(Figure 2d): PA0< p1

PA (PA0

l < PA0

r < PA
l < PA

r ) and
PA0< p2

PA (PA0

l < PA0

r ¼ PA
l < PA

r ).

Aligning two RNA structural motifs

We can use a dynamic programming algorithm to
compute an optimal alignment between two RNA struc-
tural segments (27). There are three major contributions in
this algorithm. First, the dynamic programming algorithm
is guided by the partial order base pairs. Second, we
consider non-canonical base pairs and their isostericity.
Finally, we also allow non-crossing multi-pairings for
the query and target structure.
Given an RNA structural motif A and a target RNA

structural segment B with concatenated strands and m and
n base pairs, respectively. Dummy base pairs were added
between nucleotides A[0] and A[|A|+1] and between nu-
cleotides B[0] and B[|B|+1]. Let PA ¼ PA

1 ,PA
2 ,:::,PA

m and
PB ¼ PB

1 ,PB
2 ,:::,PB

n denote the two sets of base pairs,
ordered according to increasing values of the right-most
base. Define the following terms:

Seq ðPAÞ: the two nucleotides that form the base pair PA,
given by A½PA

l � and A½PA
r �.

Loop ðPAÞ: the subsequence covered by the two nucleo-
tides of the base pair PA excluding the two nucleotides
themselves. In other words, the sequence
A½PA

l+1 . . .PA
r � 1�.

Loop ðPA,PA0 Þ: the term is defined if and only if PA0 is
completely juxtaposing to the left of PA, as the loop
region corresponding to A½PA0

r +1 . . .PA
l � 1�.

(a) (c)(b) (d)

Figure 1. Kink-turn motif. (a) 3D structure. (b) 2D diagram for base-pairing patterns (notation is the same as proposed in (18)). (c) and (d) Arc
representations built by concatenating the two strands of the motif with two different orders. For (c) and (d), the arcs rest above on the horizontal
line represents the base pairs that are optimally aligned in the first step, while the arcs below are processed in the second step. The motif is from a
23S rRNA in H. marismortui (1S72, chain ‘0’, location 77-82/92-100).
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The score of the optimal alignment between two RNA
sequences consists of three parts: the score of matching
base pairs, the score of matching paired bases, and the
score of matching unpaired subsequences (including
gaps). These scores are assigned with different weights
(w1, w2 and w3, respectively) to distinguish the importance
of them in building an RNA motif. Define the following
terms:

I (PA,PB): the matching score between two base pairs, PA

and PB. The score is evaluated by the isostericity
between two PA and PB. Base pairs within the same
isostericity group are considered to have similar struc-
tural contribution to the motifs, and their matching is
given higher bonus score. Non-isosteric matching is
also allowed, but with less bonus score.
S(A[i...j],B[k...l]): the matching score between two subse-
quences A[i...j] and B[k...l]. The score is evaluated
through the optimal global alignment between the
two subsequences.

Gap(k): the gap penalty of inserting/deleting a sequence
of length k.

M[PA,PB]: the score of the optimal alignment of the
regions enclosed by base pairs PA and PB, given that
PA and PB are aligned to each other. Entry M½PA

m,PB
n �

records the score of the optimal alignment between
two structures A and B.

All the weights and scores defined above are fixed for all
searches conducted in this work.
We can compute M[PA,PB] for all pairs in PA � PB,

which would take O(m2n2) time, where m and n are the
number of base pairs in A and B, respectively. While many
RNA structural alignment algorithms have biquadratic
time complexity in terms of sequence length, our algo-
rithm is relatively efficient since the number of base
pairs in an RNA structure is much smaller than its
length in sequence. In computing M[PA,PB], we have
two choices for matching the subsequences inside PA

and PB, as they could either form consensus hairpin
loops (the terminal case) or there are base pairs to be

matched inside (nested base pairs, internal loop or
multi-loop). Therefore,

M½PA,PB� ¼Ms½P
A,PB�+max

Mh½P
A,PB�,

Ml½P
A,PB�:

�
ð1Þ

Here, Ms[P
A,PB] is the score of matching base pairs PA

and PB based on both structure isostericity and sequence
conservation, and thus can be computed by

Ms½P
A,PB� ¼ w1I

PA,
PB

� �
+w2S

Seq ðPAÞ,
Seq ðPBÞ

� �
: ð2Þ

Mh[P
A,PB] is the score of matching the loop regions of PA

and PB, assuming that no consensus base pair is included
by PA and PB. (For example, these regions form matched
hairpin loops.) It can be computed by

Mh½P
A,PB� ¼ w3S

Loop ðPAÞ,
Loop ðPBÞ

� �
: ð3Þ

For the nested base pairs, internal-loop or multi-loop case,
we need to define some additional terms. A sequence of
base pairs P1,P2,. . .,Pk form a chain if
P1 <p P2 <p . . . <p Pk. Ml[P

A,PB] represents the
matching score between PA and PB, given that there is a
pair of chains included by PA and PB, which form the
loop. Let PA

1 ,PA
2 , . . . (PB

1 ,PB
2 , . . ., respectively) denote base

pairs enclosed by PA (PB, respectively), and ordered
according to increasing values of the last coordinate.
For two base pairs PA0, PA that PA0< IP

A, Loop(PA) is
separated into three major regions: left region,
Loop(PA0) and right region. We denote the left region as
LoopL ðPA,PA0 Þ (A½PA

l+1 . . .PA0

l � 1�) and the right region
as LoopR ðPA,PA0 Þ (A½PA0

r +1 . . .PA
r � 1�). Then, we will

have

Ml½P
A,PB� ¼ max

i,j
Mc½P

A
i ,PB

j �+w3S
LoopR ðPA

i ,PAÞ,
LoopR ðPB

j ,PBÞ

� �� �
:

ð4Þ

(c) (d)(b)(a)

Figure 2. An artificial RNA structural motif containing all base-pairing relations including multi-pairing. (a) The base-pairing pattern of the motif.
(b) The arc representation of the motif. (c) Base-pairing relation subgroups in the motif belong to enclosing relation. (d) Base-pairing relation
subgroups in the motif belong to the juxtaposing relation.
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To enforce the matched base pairs have the same
multi-pairing pattern, we must ensure that PA

i and PA,
PB
j and PB are in the same enclosing subgroup

(<I1 , <I2 , or <I3
, Figure 2). Here, Mc½P

A
i ,PB

j � is defined
as the score of two chains of the optimal matching con-
figurations that end at PA

i and PB
j , and begin at some

PA
i0 <p P

A
i , and PB

j0 <p P
B
j . Denote PA

i1
2 FðPA

i2
Þ if

PA
i1
<p P

A
i2

and there is no base pair PA
j such that

PA
i1
<p P

A
j <p P

A
i2
. Then,

Mc½P
A
i ,PB

j � ¼

max
PA
x 2 FðPA

i Þ

PB
y 2 FðPB

j Þ

w3S
LoopL ðPA

i ,PAÞ,
LoopL ðPB

j ,PBÞ

� �
,

Mc½P
A
x ,PB

y �+M½PA
i ,PB

j �+w3S
Loop ðPA

x ,PA
i Þ,

Loop ðPB
y ,PB

j Þ

� �
,

Mc½P
A
i ,PB

y �+w3GapðjLoopðP
B
y ,PB

j Þj+jLoop ðP
B
j ÞjÞ,

Mc½P
A
x ,PB

j �+w3GapðjLoopðP
A
x ,PA

i Þj+jLoop ðP
A
i ÞjÞ:

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

The Gap means the corresponding sequences are
matched to nothing (i.e. they are deleted). Similarly, to
enforce the matched base pairs have the same
multi-pairing constraint, we must ensure that PA

x and
PA, PB

y and PB are in the same enclosing subgroup, and
PA
x and PA

i , PB
y and PB

j are in the same juxtaposing
subgroup.

P-value computation

To compute the P-value for the probability that an RNA
motif hits a random substructure in the database, we used
the non-parametric Chebyshev’s inequality. In future
research, we will optimize these parameters by fitting the
distribution of the overall alignment scores between pairs
of RNA structures into a Gumbel-like distribution to get
more accurate P-value. To obtain the mean and variance,
the query is aligned against the background segments,
which are generated by randomly picking base pairs
from real RNA structures while maintaining the similar
GC content, as well as frequencies of the interacting edges
and glycosidic bonds orientations. We applied this
approach on kink-turn motif, and observed Gumbel’s dis-
tribution of the alignment scores (see supplementary
website, http://genome.ucf.edu/RNAMotifScan). Since
each motif has its own base-pairing patterns and degree
of tolerance against base-pair variations, we suggest dif-
ferent P-value cutoffs for different motifs based on tested

results (see Table 3 for the cutoffs). Additionally, false
positive rates (FPRs) are computed through simulation
and available on the supplementary website (http://gen
ome.ucf.edu/RNAMotifScan).

Data processing

Base-pair interactions of all RNA 3D structures from
PDB (39) (released on August 2008) were first annotated
by using MC-Annotate (41). RNAVIEW (42) generates
similar results based on our experiments, and
RNAMotifScan provides interfaces for both annotation
tools. After annotation, 1445 RNA structures were
generated from PDB (including incomplete RNA chains
in the raw PDB file). Five RNA structural motifs were
used as queries to test our method: the kink-turn,
C-loop, sarcin–ricin, reverse kink-turn and E-loop
motifs. Because they are well characterized, documented
and important for many RNA folding behaviors or
functionalities. The query base-pairing patterns for these
motifs come from the following references: kink-turn (43),
C-loop (14), sarcin–ricin (44), reverse kink-turn (4) and
E-loop (14). The 2D diagrams for query base-pairing
patterns of these motifs are shown in Figure 3.
RNAMotifScan was implemented in ANSI C. All experi-
ments were carried out on an Intel Xeon 2.66 GHz work-
station. The tertiary structure figures were generated using
PyMol (http://www.pymol.org).

RESULTS

To assess the performance of RNAMotifScan, we
searched five RNA motifs against a 23S rRNA structure
from Haloarcula marismortui (1S72, resolution 2.40 Å).
We compared our results with three latest methods:
FR3D (13), a de novo clustering method developed by
Djelloul and Denise (19), and the shape histogram
method developed by Apostolico et al. (11). Since the clus-
tering method mainly aims at the de novo motif discovery,
the method may miss some true instances. We also used
RNAMotifScan to search the five motifs against the entire
PDB for new motif occurrences.

Kink-turn

The kink-turn motif is an asymmetric internal loop serving
as an important site for protein recognition and RNA
tertiary interactions (45,46). The ‘kink’ can be observed

(a) (b) (c) (d) (e)

Figure 3. Base-pairing patterns of the query motif structures in 2D diagrams. (a) kink-turn motif. (b) C-loop motif. (c) sarcin-ricin motif (d) reverse
kink-turn motif. (e) E-loop motif.
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in the longer strand of the loop, which is stabilized by the
two cross-strand stacking adenine residues. It brings
together the two minor groove edges, and, consequently,
produces a sharp turn of the two supporting helices
(14,43).
RNAMotifScan has identified six local motifs (motifs

involve two or less strands) following by one composite
motif (motifs involve three or more strands) from 1S72
(Table 1). FR3D finds all these seven motifs but
introducing several ‘related motifs’ using the same query
[see Table 5 of FR3D results (13)]. FR3D also retrieves
two more composite motifs. (The reason is that FR3D
produces target segment structure based on spacial
frame instead of sequence order.) The current version of
RNAMotifScan does not focus on identifying composite
motifs, but this feature can be included in the future
(see ‘Discussion’ Section). The shape histogram
method finds all the six local motifs, but missing all

the composite motifs. The de novo clustering method suc-
cessfully rediscovers the motif, however, it misses four out
of the six local motifs and all composite motifs. The results
suggest that RNAMotifScan has higher sensitivity than
shape histogram method and de novo clustering method
in identifying kink-turn motifs.

C-loop

The C-loop motif is an RNA–protein binding site, and
characterized by the unique multi-pairings formed by its
two cytosine residues (14). The two interleaving
non-canonical base pairs from the two multi-pairings
bring together the interacting nucleotides, leaving the
unpaired adenine residue at the minor groove and fully
accessible (47).

RNAMotifScan has identified three C-loop motifs in
1S72 (Table 1). The de novo clustering method can also
classify the first two C-loop motifs. (FR3D and shape

Table 1. Top hits obtained by searching the five motifs against 1S72 using RNAMotifScan

Ranking Chain Location Score P-value FR3D
de novo

Clustering
Shape

Histogram

Kink-turn
1 0 77-82/92-100 70.2 0.009 * * *
2 0 1211-1217/1146-1156 62.1 0.014 * *
3 0 936-941/1025-1034 55.8 0.022 * * *
4 0 1338-1343/1311-1319 54.7 0.024 * *
5 0 1586-1593/1601-1609 45.4 0.062 (*) *
6 0 244-250/259-267 44.4 0.072 (*) *
7 0 2903-2906/2845-2855 43.8 0.078 (*)

C-loop
1 0 1436-1440/1424-1430 40.9 0.033 – * –
2 0 2760-2764/2716-2722 39.1 0.041 – * –
3 0 1939-1945/1892-1898 38.4 0.044 – –
4 0 1004-1009/957-964 34.4 0.081 – –

Sarcin–ricin
1 0 211-215/225-228 42.8 0.007 * * –
2 0 1368-1372/2053-2056 42.8 0.007 * * –
3 0 2690-2694/2701-2704 42.8 0.007 * * –
4 9 76-80/102-105 42.0 0.007 * –
5 0 461-466/475-478 37.5 0.010 * * –
6 0 380-383/406-408 34.4 0.013 * –
7 0 951-955/1012-1016 33.4 0.015 –
8 0 173-177/159-162 29.8 0.022 * * –
9 0 2090-2094/2651-2654 26.2 0.037 –
10 0 1775-1779/1765-1768 25.5 0.042 –
11 0 1542-1545/1640-1643 21.0 0.117 –
12 0 585-590/568-572 20.8 0.126 * –
13 0 355-360/292-296 20.8 0.126 * –

Reverse kink-turn
1 0 1661-1666/1520-1530 48.6 0.114 – * –
2 0 1530-1536/1649-1661 46.8 0.145 – * –

E-loop
1 0 706-708/720-722 21.2 0.052 – *
2 0 1543-1545/1640-1642 20.6 0.061 – *
3 0 174-177/159-161 18.7 0.098 – *
4 0 663-666/680-683 18.6 0.100 –
5 0 586-590/568-571 18.0 0.120 – *
6 0 356-360/292-295 18.0 0.120 – *
7 0 2691-2694/2701-2703 17.8 0.130 – *
8 0 1369-1372/2053-2055 17.8 0.130 – *
9 0 463-466/475-477 17.8 0.130 – *
10 0 380-383/406-408 17.8 0.130 – *

Symbol notations: ‘*’ the motif occurrences are identified by the corresponding method; ‘(*)’ motif occurrences rank below some ‘related motifs’;
‘-’ the motif is not studied by the corresponding method. The bona fide motifs validated by visual inspection are indicated with bold typeface of their
location. The underlined motifs are de novo found by RNAMotifScan (even they might be manually characterized before).
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histogram methods were not used to search C-loop motifs.
Because it is difficult for these 3D structure-based methods
to identify motifs that are small and usually exhibit high
structural variations, such as C-loops.) The first two
C-loop motifs exhibit high conservation comparing to
the query motif (isomorphic as defined in the de novo clus-
tering method), such that they can be easily detected by
the de novo clustering method. The fourth C-loop motif
[supported by (43)] has one nucleotide inserted between
the two multi-paired cytosine residues. Therefore, it
cannot be found by the de novo clustering method but
still can be detected by RNAMotifScan in which inser-
tions (deletions) are taken into account. The results
suggest that RNAMotifScan has higher sensitivity than
the de novo clustering method. At the same time, we
expect that our specificity can also be raised by carefully
distinguishing the effects of different variations (see
‘Discussion’ Section).

Sarcin–ricin

The sarcin–ricin motif in the ribosomal RNAs is involved
in the interaction with elongation factors (48). This inter-
action can be inhibited while the motif is bounded and
modified by ribotoxins such as a-sarcin (ribonuclease)
and ricin (RNA N-glycosidase) (49). The base-pairing
pattern is highly conserved in 23S–28S rRNA from large
ribosomal subunit, producing an ‘S’ shape bend in most of
the sarcin–ricin motifs.

RNAMotifScan has identified nine known sarcin–ricin
motifs, whereas eight were identified by FR3D and six
were classified by the de novo clustering method.
RNAMotifScan identified one new sarcin–ricin motif,
which was also observed by St-Onge et al. (50). Three
other motifs found by RNAMotifScan rank at low
places in the results, showing a satisfactory specificity
for our method (Table 1). Even though these instances
show higher structural variation from the query structure,
we suggest that they should be further inspected as they
show interesting conservations in base-pairing pattern
comparing to the known sarcin–ricin motifs.

Reverse kink-turn

The reverse kink-turn is also an asymmetric internal loop
that produces sharp bend as the kink-turn motif, however,
towards the opposite direction (4). Another difference is
that the longer strand of the kink-turn motif makes a tight
bend, while in the reverse kink-turn motif, the tight bend is
observed in the shorter strand as the longer strand grad-
ually turns to the major/deep groove (51).

The de novo clustering method suggests six reverse
kink-turn occurrences. (FR3D and shape histogram
method were not used to search reverse kink-turn motifs
either.) We noticed that three of these six motifs given by
clustering are false positives (2397–2399/2389–2391,
2307–2310/2298–2300 and 1132–1134/1228–1230), as
they either come from the irregular pairing regions near
hairpin loop regions instead of being the junction regions
between two helical regions, or do not produce significant
sharp turns. RNAMotifScan has identified two of the
three true reverse kink-turn motifs (Table 1). The one

motif missed is due to its higher structural variation.
Even though RNAMotifScan may miss several occur-
rences, it has much higher specificity and thus more
reliable is practical applications.

E-loop

The E-loop was originally defined as the symmetric
internal loop region in the 5S rRNA that separates its
helical regions IV and V (52,53). The motif can be
decomposed into two isosteric submotifs, which are pos-
itioned with relative 180� rotation (44,53). The submotif is
usually referred to as ‘bacterial E-loop’, and its
base-pairing pattern was summarized as a trans H/SE
base pair, a trans WC/H or trans SE/H base pair, and a
cis bifurcated or trans SE/H base pair by Leontis et al.
(44). Since the isostericity related with bifurcated base
pair is not defined, we consider only the trans SE/H as
the third base pair in the query.
There are two E-loop motifs classified by the de novo

clustering method and eight identified by the shape histo-
gram method. The two sets of results show no overlap and
the union of them gives totally 10 E-loop motifs.
RNAMotifScan has successfully identified nine of them
(Table 1), and one new E-loop occurrence. This new
E-loop occurrence, as well as a segment of regular
A-form helix, are superimposed with a well characterized
E-loop motif (Figure 4). The superimposition of the new
E-loop instance results much smaller RMSD than the
superimposition of the A-form helix, indicating that this
E-loop occurrence cannot be expected to find randomly.
RNAMotifScan has missed one E-loop motif that has
both high sequence and base-pairing variations. Note
that E-loop motifs can tolerate higher variations
comparing to other motifs. [They were clustered into
three families using the de novo clustering method (19).]
Therefore, the results generated by searching only one of
its variants could be limited. However, RNAMotifScan
outperforms both methods when given only one query,
and the E-loop identification can be further optimized
by including other variants of E-loop motifs as query.

3D Resolution affects identification accuracy

We observe that the identification results of
RNAMotifScan is dependent on the quality of the anno-
tation program, which turns out to be dependent on the
resolution of the 3D RNA structure. To demonstrate this,
we selected three PDB entries with different resolutions
for the same 16S rRNA structure from Thermus
thermophilus (PDBid: 2VQE, 1J5E and 1I95), and used
RNAMotifScan to identify the five motifs in them. Only
hits with P-value less than the defined cutoffs (Table 3) are
counted. Since the RNA structure from 2VQE contains
three RNA chains, while the other two structures
contain only one RNA chain, we only consider their
common RNA chain (chain A in the comparison). The
results are shown in Table 2. In Table 2, we can find
that MC-Annotate tends to annotate fewer base pairs in
the low-resolution RNA structures. Among those missed
base pairs, most of them are non-canonical base pairs,
which are critical for the structural motif identification.
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Even if the numbers of annotated base pairs are compar-
able for two structures with different resolutions, their
qualities differ. For example, 2VQE and 1J5E have
almost the same number of annotated base pairs, but
one kink-turn that can be identified in 2VQE is missed
in 1J5E.

Scanning PDB

Finally, we searched the entire PDB for the five query
motifs. The running time for scanning PDB is 64m35s
for kink-turn, 74m29s for C-loop, 51m49s for sarcin–
ricin, 77m59s for reverse kink-turn and 72m55s for
E-loop motif. The results are summarized in Table 3.
The motifs identified by RNAMotifScan are several

times more than the current known instances (P-value
cutoffs are shown in Table 3, the estimated FPR is
<0.01). Still, we expect the numbers are underestimated
since our cutoffs are set to be rather stringent. Although
the large difference between the identified motifs and the
currently known ones may due to the fast growing of
RNA structures deposited in PDB, we still find
new RNA motif occurrences in non-ribosomal RNAs,
such as riboswitches, ribozymes and protein–mRNA
complexes. The complete results can be found at the sup-
plementary website http://genome.ucf.edu/RNAMotif
Scan.

To demonstrate the advantages of RNAMotifScan, we
compared five query motifs (Figure 3) with five different
newly identified motifs (Figure 5). For C-loop motif, we
observed that the sequence identity is 66% between the
C-loop query (Figure 3b) and the new identified C-loop
motif (Figure 5b), which sequence-based search methods
may miss. The sarcin–ricin motif (Figure 3c) and the
E-loop motif (Figure 3e) consist of all non-canonical
base pairs, such that they cannot be searched by
methods that are restricted to canonical base pairs. The
newly identified sarcin–ricin motif and E-loop motifs also
have three isosteric base-pairing changes (Figure 5c and e).
The newly identified kink-turn motif (Figure 5a) shows
two base-pairing variations (trans SE-H to cis SE-SE,
and trans SE-H to cis WC-WC), which would be missed
by the strict base-pairing graph isomorphism search. More
importantly, we found that the newly identified kink-turn
(Figure 5a) and reverse kink-turn motifs (Figure 5d) show
structural variations comparing to the query motifs. One
nucleotide is inserted at the ‘kink’ region of the newly
identified kink-turn motif, resulting an ‘U’ shape ‘kink’
rather than the ‘V’ shape ‘kink’ in the query (Figure 6a).
For the newly identified reverse kink-turn motif, the struc-
tural variation is observed at the longer strand of its
junction between two helices. Two nucleotides are
inserted at this region, relaxing the turn significantly
(Figure 5d). At the same time, a sharp bend is created at
this region (Figure 6b), in order to accommodate the in-
sertions and maintain the proper structure of the motif.

DISCUSSION

The base pairs from the RNA 3D structures are extracted
and classified by various annotation tools. The annota-
tions of base pairs are produced based on the geometric
constraints among atoms involving the hydrogen bond

Figure 4. The superimposition of the new E-loop motif found by
RNAMoitfScan (red, 1S72, chain ‘0’, 662–669/677–684), a segment of
regular A-form helix (green, 1S72, chain ‘0’, 13–20/523–530), and a well
characterized E-loop motif (blue, 1S72, chain ‘0’, 1639–1646/1539–
1546). The RMSD resulting from superimposing the new motif (red)
and the model (blue) is 2.496 Å; while the RMSD for superimposing the
regular A-form helix (green) and the model (blue) is 4.807 Å.

Table 2. The performance of RNAMotifScan with different resolutions of RNA structures

PDB ID Resolution Length #bp #Can. bp #Non-can. bp #KT #CL #SR #RK #EL

2VQE 2.50 Å 1522 766 433 333 3 0 2 0 6
1J5E 3.05 Å 1522 761 434 327 2 0 2 0 6
1I95 4.50 Å 1514 699 422 277 1 0 0 0 3

The columns in the tables represent PDB codes of the RNA structures, the resolution, the length, the number of base pairs (bp) annotated by
MC-Annotate, the number of annotated canonical base pairs (Can. bp), the number of annotated non-canonical base pairs (Non-can. bp), the
number of kink-turn (KT), C-loop (CL), sarcin–ricin (SR), reverse kink-turn (RK) and E-loop (EL) being identified. All structures are Thermus
thermophilus 16S rRNA structures. The P-value cutoffs are the same as those shown in Table 3.
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interactions. In another word, the accurate coordinates of
atoms are critical for the classification of base pairs.
Therefore, the quality of annotation results, and conse-
quently the accuracy of RNAMotifScan, depends largely
on the resolution of the RNA 3D structure (Table 2). We
anticipate that with the advances of RNA structure deter-
mination techniques, more and more high-quality data
can be produced and the RNA motif identification can
be more reliable.
It is mentioned that FR3D is capable of discovering

composite motifs, while RNAMotifScan mainly focuses
on local motifs. However, RNAMotifScan can be easily
extended to include RNA composite motifs. If the motif

Table 3. Summary of the RNAMotifScan search results against the

entire PDB comparing with SCOR (40)

Motif P-value
cutoff

PDB NR PDB SCOR

Kink-turn 0.07 553 39 195
C-loop 0.04 167 18 –
Sarcin–ricin 0.02 633 46 107
Reverse kink-turn 0.14 56 3 –
E-loop 0.13 1356 148 37

C-loop and reverse kink-turn are not included in SCOR. Motifs
characterized in SCOR were from the entire PDB released by
October. 24, 2004. The non-redundant set (NR PDB) is constructed
by removing entries with sequence identities >90%.

Figure 6. The Superimposition between the newly identified motifs (red) and the queries (blue) at the regions where nucleotide insertion(s) are
observed. (a) The ‘kink’ regions in kink-turn motifs (red structure: 1QVF, chain ‘0’, 1027–1031; blue structure: 1S72, chain ‘0’, 94–97). (b) The longer
strands at the junctions between helices in reverse kink-turn motif (red structure: 1QVF, chain ‘0’, 1522–1526; blue structure: 1ZZN, chain B,
198–200).

(a) (b) (c) (d) (e)

Figure 5. The 2D diagrams and 3D structures of newly identified motifs with sequence or base-pairing variations. (a) Kink-turn motif from 23S
rRNA in H. marismortui (PDBid: 1QVF, chain ‘0’, location 936–941/1025–1034). (b) C-loop motif from 5.8S/28S rRNA in Saccharomyces cerevisiae
(PDBid: 1S1I, chain ‘3’, location 1436–1440/1424–1430). (c) Sarcin–ricin motif from 16S rRNA in Escherichia coli (PDBid: 1VS7, chain A, location
888–892/906–909). (d) Reverse kink-turn motif from 23S rRNA in H. marismortui (PDBid: 1QVF, chain ‘0’, location 1661–1666/1520–1530). (e)
E-loop motif from 23S rRNA in S. oleracea (PDBid: 3BBO, chain A, location 1392–1394/1379–1381).
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consists of n strands, there are in total n! combinations of
orders that these strands can be concatenated.
Theoretically, it is possible to include any number of
strands with the compensation of running time. In
practice, there is only a small number of strands in
RNA structural motifs. Therefore, it is feasible to enumer-
ate all possible strand concatenations. We plan to include
this feature in the future versions of RNAMotifScan.
Currently, RNAMotifScan uses a scoring function that

does not distinguish substitutions between different
isosteric groups. Recently, Stombaugh et al. (54) studied
the frequencies of non-canonical base pair substitution
among different isosteric groups and proposed a more
sophisticated scoring function. We plan to incorporate
such scoring function into our method. Moreover, the
scoring function should also be position dependent
(similar as the position-specific scoring matrix). For
example, the determination of C-loop motif relies on the
two multi-paired cytosine residues. We should assign
heavy penalty to the mutations on these nucleotides.
Similarly, for E-loop motifs, we should give heavy
weight to the conserved trans H/SE base pair according
to the E-loop motif definition. With the incorporation of
more sophisticated base pair substitution scoring function
and position-dependent weights, we anticipate that
RNAMotifScan will become much more accurate in iden-
tifying RNA structural motifs.
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