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Abstract
Inorganic phosphate (Pi) is an abundant element in the body and is essential for a wide variety of key biological processes. It plays
an essential role in cellular energymetabolism and cell signalling, e.g. adenosine and guanosine triphosphates (ATP, GTP), and in
the composition of phospholipidmembranes and bone, and is an integral part of DNA and RNA. It is an important buffer in blood
and urine and contributes to normal acid-base balance. Given its widespread role in almost every molecular and cellular function,
changes in serum Pi levels and balance can have important and untoward effects. Pi homoeostasis is maintained by a counter-
balance between dietary Pi absorption by the gut, mobilisation from bone and renal excretion. Approximately 85% of total body
Pi is present in bone and only 1% is present as free Pi in extracellular fluids. In humans, extracellular concentrations of inorganic Pi
vary between 0.8 and 1.2 mM, and in plasma or serum Pi exists in both its monovalent and divalent forms (H2PO4

− and HPO4
2−). In

the intestine, approximately 30% of Pi absorption is vitamin D regulated and dependent. To help maintain Pi balance, reabsorption
of filtered Pi along the renal proximal tubule (PT) is via the NaPi-IIa and NaPi-IIc Na+-coupled Pi cotransporters, with a smaller
contribution from the PiT-2 transporters. Endocrine factors, including, vitamin D and parathyroid hormone (PTH), as well as newer
factors such as fibroblast growth factor (FGF)-23 and its coreceptor α-klotho, are intimately involved in the control of Pi homeo-
stasis. A tight regulation of Pi is critical, since hyperphosphataemia is associated with increased cardiovascular morbidity in chronic
kidney disease (CKD) and hypophosphataemia with rickets and growth retardation. This short review considers the control of Pi
balance by vitamin D, PTH and Pi itself, with an emphasis on the insights gained from human genetic disorders and genetically
modified mouse models.
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Renal Pi transporters

In the early 1990s, a Na+-coupled Pi cotransport system (NaPi-
1) was first identified in the rabbit kidney cortex from expres-
sion cloning using Xenopus laevis oocytes and tracer flux stud-
ies with 32P-inorganic Pi [17]. However, due to a lack of any
response of NaPi-1 expression in oocytes to physiological
changes in Pi concentrations, the authors concluded that

NaPi-1 did not match the physiological function and character-
istics determined from isolated renal brush border membrane
(BBM) vesicle studies of renal Na+-coupled Pi cotransport
[165]. However, soon after this, additional Na+-coupled Pi-
cotransporters were identified in rat and human kidney cortex
(NaPi-2 and NaPi-3) [88]. NaPi-2-related mRNA and protein
are expressed in the BBM of the proximal tubule (PT) and their
abundance varies with changes in dietary Pi intake, as well as
changes in serum parathyroid hormone (PTH) levels [88].

The weak overall homology between NaPi-1 and NaPi-2/3
led to classification of the Na/Pi-cotransport system into two
groups: type I (NaPi-1-related) and type II (NaPi-2-related)
Na+-Pi-cotransporters [88]; a third group of Na+-coupled Pi
cotransporter proteins was described in 1996. First identified
as a retroviral receptor for Gibbon Ape leukaemia virus (Glvr-
1; [105, 153]) and for rat amphotropic virus (Ram-1; [91,
166]), it was shown that when expressed in Xenopus oocytes,
these membrane receptor proteins exhibited Pi transport
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activity in a Na+-dependent manner [71]. Considering their
ability to transport Pi, these proteins were then renamed PiT-
1 and PiT-2, respectively [70]. cDNA sequences related to
PiT-1 and PiT-2 have been cloned from human [105, 153],
rat [90] and Chinese hamster [166] tissues.

The Na+-coupled Pi cotransporter proteins have now been
classified into two groups: the SLC34 family (type II Na+-
coupled Pi transporters: NaPi-IIa, NaPi-IIb, NaPi-IIc) and
the SLC20 family (Type III Na+-coupled Pi cotransporters,
PiT-1, PiT-2). In the proximal tubule (PT), at least three dif-
ferent Na+-coupled Pi cotransporters mediate the initial step of
Pi reabsorption across the apical BBM: NaPi-IIa (SLC34A1),
NaPi-IIc (SLC34A3), and PiT-2 (SLC20A2) [96].

The SLC34 family of Na+-coupled pi
cotransporters

NaPi-IIa (SLC34A1)

In humans, specific mRNA expression of NaPi-IIa has been
detected exclusively in the kidney [104]. The major site of
expression of NaPi-IIa occurs mainly in the renal PT at the
apical BBM as an 80 to 90 kDa protein (639 amino acids)
[36]. Under normal conditions, the abundance of NaPi-IIa is
highest in the S1 segment of the PT of juxtamedullary neph-
rons [36], whereas during Pi depletion, expression is
also observed in the S2 and S3 segments [81]. Loss-of-
function mutations in NaPi-IIa have been associated with
hypophosphataemia, kidney stones, nephrocalcinosis, the re-
nal Fanconi syndrome, and chronic kidney disease [89, 120].

NaPi-IIb (SLC34A2)

In humans, NaPi-IIb mRNA has been detected in lung, testis,
salivary gland, thyroid gland, small intestine, liver, mammary
gland and uterus, but not in renal tissue [104]. However, a
recent study in rat kidney has reported detection of NaPi-IIb
expression by in situ hybridisation in the distal nephron, with a
seemingly paradoxical increase in expression on a high Pi
diet, which is hypothesised to reflect an adaptive and poten-
tially secretory role in this location [140].

NaPi-IIc (SLC34A3)

In humans, the distribution of NaPi-IIc is kidney specific
[104]. Like NaPi-IIa, the localisation of NaPi-IIc as a 75-
kD protein (599 amino acids) is at the apical BBM of the
PT of juxtamedullary nephrons [122]. Mutations in
SLC34A3 can cause hypophosphataemic rickets, hyper-
calciuria, increased 1,25-(OH)2D3, nephrocalcinosis and
nephrolithiasis [16, 61, 87].

The SLC20 family of Na+-coupled Pi
cotransporters

PiT-1 and PiT-2

The mRNAs for the isoforms of the two members of the
SLC20 family, PiT-1 and PiT-2, have been described as ubiq-
uitously expressed in rodent and human tissues [31, 104]. PiT-
2 is localised to the BBM of the PT, colocalising with NaPi-IIa
and NaPi-IIc [112, 156]. The expression of both PiT-1 and
PiT-2 has also been reported in the intestine [10, 50].
However, no renal phenotype or disorder related to mutations
in SLC20 Pi transporters have been reported to date. In the
kidney, the role of SLC20A2 (PiT-2) in renal Pi handling and
inherited disorders of mineral balance remains unclear.

Renal Pi transport: kinetics
and structure-function

In the kidney, Pi reabsorption occurs primarily via a transcel-
lular pathway in the PT, paracellular reabsorption being con-
sidered insignificant [68]. Na+-coupled Pi cotransporters
NaPi-IIa, NaPi-IIc and PiT-2 are the three transporters identi-
fied to be responsible for the apical uptake of Pi from the
glomerular filtrate [96]. Apical Pi entry is facilitated by active
inward flux of Na+, which is matched by the action of the
basolateral Na+/K+-ATPase. All three isoforms of the SCL34
family show a preference for divalent Pi (HPO4

2−). pH is
another regulator of Pi transport in the PT: protons (H+) can
directly modulate the Pi transporter or indirectly by changing
the monovalent/divalent Pi ratio in the lumen of the PT [46].
NaPi-IIa is electrogenic (couples 3 Na+ to 1 Pi), whereas
NaPi-IIc is electroneutral (couples 2 Na+ to 1 Pi) [6, 122].
Animal studies have demonstrated that NaPi-IIa is the major
renal Pi transporter, because NaPi-IIa-deficient mice exhibit
severe hypophosphataemia due to urinary Pi losses [14]. In
contrast, NaPi-IIc deficiency is associated with normal serum
Pi and urinary Pi excretion [124]. However, in humans, it
seems that NaPi-IIc plays a more important role in calcium
homeostasis (see later). The capacity of Pi transport in the PT
is mainly determined by the abundance of Na+-coupled Pi
cotransporters, which is controlled by multiple factors that
can regulate Pi homeostasis, including dietary Pi intake,
PTH, 1,25(OH)2D3 and FGF-23/klotho.

The 3-D structure of mammalian SCL34 is unknown, but it
is supposed that SLC34 proteins comprise 12 transmembrane-
spanning domains of which the intracellular linker region is
critical for PTH sensitivity [44, 67].

Na+-coupled Pi cotransport mediated by PiT-2, which is
electrogenic (couples 2 Na+ to 1 Pi), has a greater affinity
for monovalent Pi ions (H2PO4

−) [116, 118]. In contrast with
SLC34 proteins, SCL20 Pi transport is insensitive to a reduced
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pH and is not only exclusively driven by Na+ but also by Li+

[155]. In the absence of Na+, a drop in pH from 7.5 to 6.0
allows PiT-2 to transport Pi, suggesting that Na+ can also be
replaced by H+ for this transporter [21]. As for SLC34 pro-
teins, the proposed topology for SLC20 proteins is a 12 trans-
membrane domain protein; however, relatively few structure-
function studies have been undertaken. The contribution of
PiT-2 to Pi uptake in the PT is still unclear, but it has been
assumed to be small, accounting for approximately 5% of the
total renal Pi reabsorption [157]. In the kidney, few metabolic
factors participate in the regulation of PiT-2 expression, in-
cluding dietary Pi, K+ deficiency or metabolic acidosis [24,
157].

To date, the basolateral exit pathway for Pi remains un-
known, although a candidate has emerged recently [54].
Nephron-specific knockout of the xenotropic and polytropic
retroviral receptor gene XPR1 in mice resulted in
hypophosphataemia and hyperphosphaturia, suggesting a role
for this transporter in renal tubular Pi reabsorption. This pro-
tein is of some interest, because of its high degree of homol-
ogy with PHO1, a Pi extrusion transporter found in plants,
which has been shown to mediate Pi transport from roots to
shoots [54]. XPR1 has also been shown to mediate Pi efflux in
cells in vitro [49]; however, more studies are needed to clarify
the exact role of XPR1 in basolateral Pi extrusion.

Hormonal factors that affect Pi balance

Vitamin D

In the kidney, the PT is the major site of 1,25(OH)2D3 syn-
thesis, as well as the main site of Pi absorption. Under normal
dietary conditions, ~ 97% of filtered Pi is reabsorbed across
the apical BBM by Na+-coupled Pi cotransporters NaPi-IIa
and NaPi-IIc [157]. This reabsorption can be regulated by
several factors, including FGF23, PTH and 1,25(OH)2D3 it-
self. PTH and FGF23 promote renal Pi loss by stimulating the
internalisation and lysosomal degradation of the transporters
[9] or by decreasing their expression [170]. In contrast,
1,25(OH)2D3 stimulates Pi absorption by decreasing the
PTH level [15].

Vitamin D3 (cholecalciferol), the natural form of vita-
min D, is a steroid hormone that can be synthesised endog-
enously or taken in from the diet (see Fig. 1). In the skin,
irradiation of 7-dehydrocholesterol produces pre-vitamin
D3 that is immediately converted to vitamin D3 (cholecal-
ciferol). The production of vitamin D in the skin is the
most important source of vitamin D and depends on the
intensity of UV irradiation and exposure. Vitamin D can
also be provided to a small extent in the diet, being mainly
present in fish oils and fortified dairy products [52].

In its native form, vitamin D3 is not biologically active: as a
precursor of vitamin D, it is transported to the liver by vitamin
D-binding protein (DBP) and in the liver hydroxylated by a
25-hydoxylase enzyme (25-OHase) to produce 25-
hydroxyvitamin D3 (25(OH)D3). Studies conducted in
humans have shown that CYP2R1 is a good candidate for
the enzymatic conversion of vitamin D3 to 25(OH)D3, since
patients with a mutation in CYP2R1 have a deficiency of
25(OH)D3 and exhibit signs and symptoms of vitamin D de-
ficiency and develop rickets [147, 148]. In animals, CYP2R1
has also been shown to be the main enzyme responsible for
25-hydroxylation of vitamin D [172]. 25(OH)D3 concentra-
tion, the major circulating form of vitamin D measured in
blood, is used by clinicians as an index of vitamin D status
[55]. It has not been shown that synthesis of 25(OH)D3 is
highly regulated, but the production of 25(OH)D3 in Cyp2r1
null mice, although very low, is not completely abolished,
suggesting the presence of other 25-hydroxylases not yet iden-
tified [172].

25(OH)D3 is a biologically inactive form of vitamin D and
needs to be hydroxylated to 1,25(OH)2D3, the active form of
vitamin D. Bound to DBP, 25(OH)D3 is then transported to
the kidney where it is filtered by the glomerulus and taken up
by the PT via endocytic internalisation involving the megalin/
cubilin surface receptor system [30]. Megalin is thought to be
the key protein for renal DBP/25(OH)D3 uptake and a major
component in vitamin D synthesis, since megalin knockout
mice show a phenotype similar to that observed in vitamin
D-deficient rickets [80]. Hydroxylation of 25(OH)D3 to form
1,25(OH)2D3, the hormonally active and functional form of
vitamin D, occurs predominantly in the kidney proximal
straight tubule (S3) [66]. The enzyme responsible for the con-
version of 25(OH)D3 to 1,25(OH)2D3 is renal 25(OH)D3
1-α-hydroxylase (mitochondrial CYP27B1), which largely
determines the circulating concentrations of 1,25(OH)2D3
[130, 136, 142]. The importance of CYP27B1 has been con-
firmed in Cyp27b1 null mice (see later). The presence of
extrarenal expression of CYP27B1 has also been shown in
the macrophages of patients with sarcoidosis and Crohn’s dis-
ease, in some cancer cells and in the parathyroid gland [1, 41,
171]; all clinical settings in which hypervitaminosis D and
hypercalcaemia can occur. However, whether there is a func-
tionally important impact of CYP27B1 activity in vivo at sites
other than the kidney and placenta under normal physiological
conditions is unclear.

Regulation of 1,25(OH)2D3 production

Vitamin D synthesis, and thereby renal Pi reabsorption, can
also be regulated by a direct action on the enzymes responsi-
ble for vitamin D synthesis. CYP27B1 expression is upregu-
lated by PTH but downregulated by FGF23 and 1,25(OH)2D3
[85, 173]. Besides the action of PTH and FGF23 on
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1,25(OH)2D3 formation, hydroxylation of 1,25(OH)2D3 and
its precursors can also regulate the amount of vitamin D pro-
duced by the kidney and thereby regulate Pi loss; 25(OH)D3
can be converted to 24,25(OH)2D3 by hydroxylation with
CYP24A1, a mitochondrial inner-membrane cytochrome
P-450 enzyme [65]. This enzyme can hydroxylate both
25(OH)D3 and 1,25(OH)2D3, the latter being considered
the preferred substrate for CYP24A1 [129]. By catalysing
the conversion of 1,25(OH)2D3 to 24,25(OH)2D3 or
1,25(OH)2D3-26,23 lactone, which is rapidly excreted,
CYP24A1 limits the circulating concentrations of
1,25(OH)2D3 [65, 129]. CYP24A1 is also known to convert
25(OH)D3 to 24,25(OH)D3 or 25(OH)D3-26,23 lactone, re-
ducing the synthesis of active 1,25(OH)2D3 [65]. Although
1,25(OH)2D3 can regulate its own production by inhibiting
CYP27B1 [23], further studies are needed to determine
genome-wide mechanisms involved in 1,25(OH)2D3-mediat-
ed suppression of CYP27B1. When compared with the regu-
lation of CYP27B1, CYP24A1 is reciprocally regulated: stim-
ulated by 1,25(OH)2D3 and inhibited by low calcium and
PTH [18, 56, 113].

In addition to upregulation by PTH and downregulation by
increased serum calcium and Pi levels, 1,25(OH)2D3

concentration is also downregulated by increased FGF23
levels. FGF23 is an important physiological regulator of vita-
min Dmetabolism that results in renal Pi excretion by decreas-
ing reabsorption in the PT [170]. In parallel, α-klotho, a trans-
membrane protein that is highly expressed in the renal distal
tubule (DT), acts as an obligate coreceptor for FGF23; α-
klotho is also expressed at lower levels in the PT. Together,
FGF23 and α-klotho, by suppressing the expression of
CYP27B1 and inducing CYP24A1, can inhibit the synthesis
and promote the catabolism of 1,25(OH)2D3 [60]. Indeed, the
phenotypes of FGF23 and α-klotho deficiency are very sim-
ilar, with hyperphosphataemia and increased synthesis of
1,25(OH)2D3, and indicate the cooperative action of α-
klotho and FGF23 in a common signalling pathway [79, 128].

Effect of vitamin D on the parathyroid gland

It was originally thought that the parathyroid gland is not itself
a target for vitamin D (see Fig. 2). Vitamin D deficiency as-
sociated with hypocalcaemia due to a decrease in calcium
absorption from the diet is known to result in increased PTH
secretion from the parathyroid [137]. It has been shown that
elevated PTH resulting from hypocalcaemia mediates the

Kidney

1-(OH)ase
(CYP27B1)

24(OH)ase
(CYP24A1)

Low calcium/PTH
Low Pi

PTH

7-dehydrocholesterol

Skin    Diet

(UV)

Vitamin D3

Liver     25-OHase
(CYP2R1)

25(OH)D3 24,25(OH)2D3

1,25(OH)2D3 Target tissues Biological response

1,24,25(OH)3D3 1,23,25(OH)3D3

Oxidation,
side chain cleavage

1,25(OH)2D3
26,23 lactone

Calcitroic acid
(excretion)

Oxidation,
side chain cleavage

Kidney
24(OH)ase
(CYP24A1)

FGF23/
Klotho

+

-

-

++

-

Fig. 1 The metabolic pathway for
vitamin D (Adapted/modified
from Schlingmann et al. [119].)
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induction of CYP27B1, which in turn stimulates the synthesis
of 1,25(OH)2D3 via the nuclear orphan receptor 4A2, also
known as NURR1 [173]. The discovery of 1,25(OH)2D3 as
the active metabolite of vitamin D, allowed testing of the
effect of vitamin D on the parathyroid gland. Silver et al.
showed in vitro that 1,25(OH)2D3 decreases PTH production
in bovine parathyroid cells in primary culture at the level of
the transcription of the PTH gene [133]. They then confirmed
in vivo the physiological relevance of these observations by
administrating physiological doses to rats. They observed that
1,25(OH)2D3 decreases the level of PTH mRNA in the para-
thyroid gland of normal rats without changing the level of
serum calcium. Moreover, 1,25(OH)2D3 receptor mRNA is
highly expressed in the parathyroid gland, similar to what has
been reported in the duodenum, and its abundance is amplified
with 1,25(OH)2D3 administration, thereby increasing the ef-
fect of 1,25(OH)2D3 on PTH transcription [101].
Confirmation of the effect of 1,25(OH)2D3 on PTH levels in
humans came from findings in patients with chronic kidney
disease (CKD) [134] (see later).

As well as the direct effect of 1,25(OH)2D3 on PTH tran-
scription, it was also shown that it can affect PTH

concentrations via serum calcium and the calcium sensing
receptor (CaSR). It has been reported that 1,25(OH)2D3
upregulates the transcription of the gene encoding the CaSR
in the parathyroid gland, making it more sensitive to the am-
bient serum calcium concentration that can cause a decrease in
PTH secretion [25].

Although it is well known that 1,25(OH)2D3 can regulate
the metabolism and homeostasis of calcium and Pi, there is
still a debate about direct effects of 1,25(OH)2D3 on Pi reab-
sorption in the PT. In normal rats, supplementation with
1,25(OH)2D3 decreases PTH secretion and Pi excretion,
whereas in thyroparathyroidectomised (TPTX) rats, chronic
administration of 1,25(OH)2D3 was reported to inhibit Pi re-
absorption in the PT [28, 95]. The explanationmay come from
data suggesting an indirect action of 1,25(OH)2D3 on renal Pi
handling via altered serum levels of a phosphatonin [135], one
of the candidates being FGF-23 [110, 128]. Despite the fact
that a 1,25(OH)2D3 responsive element has been identified in
the promoter region of the human NaPi-lla gene [141], no
clear evidence of a direct effect of 1,25(OH)2D3 has been
reported. Moreover, in vitamin D receptor (VDR) or 1α-
hydroxylase null mice, despite the fact that the expression of
the NaPi-lla protein in vesicles prepared from apical BBM of
the PT is significantly decreased compared with wild-type
mice [123], no difference was observed in in the knockout
mice after they were fed a low-Pi diet [27], which suggests
that at least in mice the regulation of NaPi-lla abundance by
low dietary intake of Pi may not be 1,25(OH)2D3-VDR-
dependent.

Parathyroid hormone

Effect of Pi and Ca2+ on PTH secretion

PTH is the major modulator of bone and mineral metabolism
through its regulation of calcium and Pi homeostasis.
Synthesis and cleavage of PTH occur within the parathyroid
gland. PTH is a polypeptide synthesised in the endoplasmic
reticulum following two successive cleavages: 115 amino acid
pre-pro-PTH cleaved to 90 amino acid pro-PTH. Pro-PTH is
then cleaved again to form an active mature full-length 84
amino acid PTH, which is stored in secretory granules within
the parathyroid gland. The whole process of PTH synthesis,
its cleavage and storage, is fast and has been estimated to take
less than an hour. Active PTH is secreted when storage gran-
ules fuse with the outer membrane releasing the hormone into
the extracellular compartment. In vitro, it has been shown that
this mechanism is quick and regulated by the extracellular
calcium concentration [Ca2+]e [97]: an increase in extracellu-
lar [Ca2+]e from 0.5 to 2.0 mM inducing a 50% reduction in
PTH secretion. After release, PTH is rapidly removed from
the serum by the kidney and the liver. Because the amount of
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active mature PTH is limited and its degradation rapid, most
of the regulation of PTH is at the gene expression level [26].

As with synthesis, the secretion of PTH is also mainly
under the control of [Ca2+]e. However, it can also be af-
fected by an increase in serum Pi levels (upregulation), an
increase in serum 1,25(OH)2D levels (downregulation)
and potentially by an increase in FGF23 levels. [Ca2+]e
and Pi play an important role in the regulation of the
abundance of PTH mRNA. In rats fed a diet high in Pi
or low in calcium, decreased calcium and increased Pi
serum concentrations were observed, and associated with
an increase in PTH mRNA concentration [77, 92, 167];
although, PTH regulation by serum calcium or Pi occurs
at the post-transcriptional level [77, 92]. Moallem et al.
have performed nuclear transcript run-ons and shown that
despite similar transcription rates in rats fed a normal or
low calcium diet, there was a tenfold increase in PTH
mRNA levels in hypocalcaemic animals, confirming that
the effect of a low serum calcium is at the level of mRNA
stability [92]. Kilav et al. have shown a similar
post- transcriptional effect of a low serum Pi in
hypophosphataemic rats, leading to a decrease in PTH
mRNA concentration [77]. The role of protein-RNA
interactions after transcription was also assessed
in response to diet- induced hypocalcaemia and
hypophosphataemia. It was shown that in the parathyroid
gland of hypocalcaemic rats, protective cytosolic proteins
bind to a defined region in the 3′-untranslated part of
PTH mRNA (3′-UTR) that can prevent ribonucleases
from degrading it; conversely, in hypophosphataemic an-
imals, reduced binding was observed [92]. Serum calci-
um and Pi are important regulators of these cytosolic
factors, helping to maintain the normal balance between
degradation and protection. Using different PTH cDNA
constructs, a 60 nucleotide sequence of the 3′-UTR has
been identified as being the binding site for these para-
thyroid cytosolic proteins [92].

By using an in vitro assay, it has been shown that degrada-
tion of PTH mRNA is increased by 80% within 5 min when
incubated with proteins from hypophosphataemic rats; where-
as when PTH mRNA is incubated with proteins from control
animals, it remains intact after 40 min. Furthermore, cytosolic
proteins from hypocalcaemic rats increase the stability of PTH
mRNA for up to 180 min, whereas the mRNA transcript with-
out the 3′-UTR was not affected at all by cytosolic proteins
from normal and low Pi rats [92]. Besides the degradation of
mRNA, there are proteins such as AUF1 (A +U-rich element
binding factor 1) that bind to the PTH mRNA to stabilise it
[100, 102]. It is believed that the mRNA half-life is deter-
mined by a balance of these degrading and stabilising pro-
teins, and that both serum calcium and Pi determine PTH
mRNA levels by regulating the binding of these proteins to
the 3′-UTR of the PTH mRNA.

Effect of PTH on renal pi transport

Pi homeostasis is maintained primarily by control of Pi excre-
tion in the urine. Of the many mechanisms that regulate the
urinary excretion of Pi, the effect of PTH is considered to be of
major importance. In 1971, Agus et al. showed an inhibitory
effect of PTH on Pi transport mediated by cAMP, the only
known second messenger at the time [2]. Pi transport was also
shown to correlate with NaPi-IIa transporter protein abun-
dance, which was decreased by PTH [58]. In 2002, it was
demonstrated that NaPi-IIa bound to apical membrane scaf-
folding PDZ domain-containing proteins such as NHERF-1.
NHERF-1 null mice were found to be hypophosphataemic
and that this was due to renal Pi wasting [57, 127].

NHERF-1 is bound to NaPi-IIa at the apical membrane and
its role is to interact with the transporter, extending its time for
residence and expression at the BBM [159]. PTH fails to in-
hibit Pi transport in NHERF-1 null mice, indicating an inter-
action between the PTH11 receptor and NHERF-1 [33]. In PT
cells, the PTH1 receptor is expressed at both apical and
basolateral membranes [69] and signals via protein kinase C
(PKC) and protein kinase A (PKA), respectively [152]. It has
been shown that in the apical membrane, NaPi-IIa is associat-
ed with structural and anchoring proteins that play a role in
regulating PTH signalling and functional responses [51, 74,
75]. In contrast, NHERF-2, which is also present at the PT in
both humans and animals, does not seem to play a role in renal
Pi handling [158, 160]. In animals, in the absence of NHERF-
2, the serum concentration of Pi, the urinary excretion of Pi
and abundance of NaPi-IIa in the PT were no different from
those in wild-type control mice [34].

The regulation of Pi transport and NaPi-IIa surface expres-
sion in response to PTH occurs through the major second-
message signalling pathways PKC and PKA used by the
PTH1 receptor [35]. In the presence of the PKC inhibitor
chelerythrine, PTH-mediated inhibition of renal Pi transport
is completely abolished; whereas the PKA inhibitor Rp-
cAMP has no effect, suggesting that PKC is key to PTH signal
transduction, which is consistent with findings that PKC di-
rectly phosphorylates NHERF-1 [32] (see Fig. 3).

Pi transporters are not directly affected by PTH-activated
second messengers, since no phosphorylation of the NaPi
transporters has been reported [39]. In contrast, NHERF-1
has been reported in vitro to be directly phosphorylated by
PKC, but not PKA, at a serine77 residue [159, 161, 162].
In vitro, it has been observed that PTH inhibition of Pi trans-
port in PT requires the dissociation of the NaPi-IIa/NHERF-1
complex, which occurs following phosphorylation of serine77
of NHERF-1, causing a decrease in its affinity for NaPi-IIa

1 PTH1 receptor binds PTH and PTH-related peptide or hormone, whereas
PTH2 receptor has limited tissue distribution (mainly brain and pancreas) and
is selective for PTH.
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[159]. Furthermore, it has been reported that phosphorylation
of the threonine95 residue of the PDZ I domain of NHERF-1
by PTH-activated pathways is a necessary modification for
PKC to phosphorylate the serine77 residue [163]. The de-
crease in affinity of the phosphorylated NHERF-1 for NaPi-
IIa may facilitate its binding to other proteins such as myosin
IV, resulting in the retrieval of the transporter from the BBM
[19]. Using specific markers of different endocytic pathways
and compartments (insulin for receptor-mediated endocytosis,
horseradish peroxidase and FITC-dextran for fluid phase en-
docytosis, early endosomal antigen 1 for early endosomes and
Igp120 for late endosomes/lysosomes), Bacic et al. have
shown that after acute PTH administration in mice, NaPi-IIa
is removed from the BBM by receptor-mediated endocytosis
via clathrin-coated vesicles, early and late endosomes and
degradation in lysosomes [9]. However, the direct participa-
tion of megalin, which serves as a receptor for uptake and
endocytosis of multiple ligands in the PT, has not been
established with certainty. Nevertheless, it has been observed
that NaPi-IIa and megalin are colocalised at the BBM [7, 8],
but then follow two distinct routes after PTH-induced
internalisation, with megalin recycled to the apical membrane
[30] and NaPi-IIa degraded in lysosomes [111, 151].

Non-hormonal factors that affect Pi balance

Effects of dietary Pi on the parathyroid gland

For many decades, the effect of Pi on parathyroid cell function
(see BEffect of Pi and Ca2+ on PTH secretion^ section for

more details) has always been considered secondary to a de-
crease in serum calcium and 1,25(OH)2D3 levels [132].
However, it has been demonstrated in CKD patients, as well
as in animal models, that the correction of serum Pi alone,
with no change in serum calcium or 1,25(OH)2D3 levels, is
able to correct serum PTH levels by regulating PTH mRNA
[4, 103, 132]. This regulatorymechanism seems to involve the
inhibition of cytosolic phospholipase A2 (cPLA2) [3].
Moreover, it has been reported that PiT-1 is the only NaPi
cotransporter in the parathyroid grand [143]. These authors
have shown that the abundance of PiT-1 mRNA in the para-
thyroid gland varies according to the intake of Pi. In rats fed a
low-Pi diet, the abundance of Pit1 mRNA is higher than when
on a high-Pi diet. Tatsumi and al. proposed that PiT-1 present
in the parathyroid gland may be involved in the effects of Pi
and vitamin D on parathyroid function [143].

Effects of dietary Pi on NaPi transporters

Dietary Pi is an important regulator of renal Pi reabsorption. It
is well known that dietary Pi restriction is associated with an
increase in PT Pi reabsorption. Variations in serum Pi caused
by changes in dietary Pi intake are paralleled by plasma PTH
levels: high Pi intake is associated with higher PTH levels and
a low Pi diet is associated with reduced PTH levels [22].
However, studies in thyroparathyroidectomised rats have
shown that adaptation to chronic Pi restriction remains intact,
demonstrating that PTH is not the major regulator in this set-
ting [138]. It has been shown that mice fed with a low Pi diet
exhibit an elevated abundance of NaPi-IIa mRNA and protein;
both transcriptional and post-transcriptional levels of NaPi-IIa
seem to be affected by a change in Pi concentration in the diet
[76, 93, 94]. Kido at al. have identified in cortical renal nuclear
extracts isolated from mice fed a low Pi diet a DNA sequence
responsible for the Pi response, which they named the Pi
Responsive Element (PRE). The PRE of the NaPi-IIa gene
promoter has a region with 9 of 10 bp identity to the binding
element of the yeast Pi-responsive transcription factor Pho4.
At the centre of this region, there is a CACGTG motif, the
core recognition site for the helix-loop-helix family of tran-
scription factors [76]. The 5-CACGTG-3 motif is sufficient to
confer transactivation by dietary Pi deprivation. Using a yeast
one-hybrid system, the authors isolated the transcription factor
TFE3 that can bind to the 5-CACGTG-3 motif of PRE of
NaPi-IIa, which is sufficient to confer transactivation by die-
tary Pi deprivation. During Pi diet depletion, a significant
increase in the amount of TFE3 mRNA in the kidney is ob-
served, suggesting a role in transcriptional regulation of the
NaPi-IIa gene by dietary Pi [76]. Under hypophosphataemic
conditions, the stability of NaPI-IIa mRNA is also increased.
Moz et al. have identified the mechanisms involved in the
post-transcriptional effect of dietary Pi. They have shown that
a protein-RNA interaction with the 5-UTR region of NaPi-IIa

PKC PKA

NaPi-IIa
PTH1R

S77

NHERF-1

S77P

+

+

+ -

Endocytosis
(Inhibition of Na+-coupled Pi 

Transport)

Fig. 3 Downregulation of NaPi-IIa by PTH in renal proximal tubule
(PT)cells (Adapted/modified from Cunningham et al. [32])
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occurs, increasing its translation [93, 94]. The stabilisation of
NaPi-IIa by renal cytosolic proteins of rats fed a low Pi diet
depends on the presence of a region within the 3 terminal
698 bp of the mRNA. Using an in vitro degradation assay,
they observed that the protein-binding region of NaPi-IIa
mRNA functions as a cis-acting stability element and that this
binding is increased during hypophosphataemia, increasing
the stabilisation of NaPi-IIa mRNA [93, 94]. Similar to
NaPi-IIa, the expression of NaPi-IIc is significantly increased
in the PTapical membrane of rats fed a chronically low Pi diet
[106]. However, any direct interaction of Pi with NaPi-IIc
activity and protein abundance has not been defined.

Direct Pi sensing

Direct Pi sensing has been suggested as another mechanism
by which Pi transport can be regulated in the renal PT.
Activation of MAPK by calcium-Pi crystals in primary fibro-
blasts was described by Nair et al. [99] and Beck et al. have
shown that 5 to 10 mM Pi is sufficient to activate MAPK in
MC3T3 mouse fibroblast cells [13]; several more studies have
demonstrated an activation of MAPK by inorganic Pi in var-
ious cell lines, including human embryonic kidney (HEK) 293
cells [168]. In the latter cells, extracellular Pi activates Raf/
MEK/ERK pathway via FGF receptors (FGFR1). Since
FGFR1 is also activated by FGF23, which increases renal Pi
excretion, it is likely that by activating FGFR1, extracellular
Pi can stimulate the urinary excretion of Pi. However, it is still
unknown whether physiological concentrations of extracellu-
lar Pi can interact with MAPK signalling in vivo.

Disorders Pi balance

Disorders of Pi homeostasis can occur in a range of clinical
conditions. The three main causes of disturbed Pi balance are
changes in oral intake, changes in gastrointestinal tract reab-
sorption and changes in renal excretion. Since serum inorgan-
ic Pi accounts for only a small fraction of total body Pi, alter-
ations in serum Pi levels can occur when total body Pi is low,
normal or high.

Hyperphosphataemia

Chronic kidney disease

Hyperphosphataemia (see Table 1) is a major cause of mor-
bidity and mortality in patients with CKD [73] and can also be
a cause of acute kidney injury (AKI). Apart from cell shifts,
which are rare, and tend to occur in acidotic and hypoxic
states, or with decreased intracellular consumption and in-
creased cellular release of Pi, hyperphosphataemia occurs
more commonly in the presence of renal insufficiency and is

due to a decrease in Pi excretion from reduced filtration, de-
spite an associated decrease in PT Pi reabsorption [59, 82].
CKD associated with a glomerular filtration rate < 30 mL/min
is usually associated with an increase in serum Pi [82]. In
human as well as in animals, calcium and Pi disturbances
are a hallmark of CKD and are implicated in the development
of vascular and valvular calcification, microvascular disease
and endothelial dysfunction [115, 121].

Both CKD patients and experimental animal models of
kidney failure show increased serum PTH and FGF23 levels.
In humans, increased FGF23 levels appear before a detectable
rise in PTH and hyperphosphataemia, suggesting that an in-
crease in FGF23may be the earliest sign of disorderedmineral
metabolism in CKD [64]. In 4-week adenine-enriched diet
(ADE)-fed mice, elevation of serum Pi, PTH and FGF23 is
accompanied by the clinical features of CKD such as elevated
urea and creatinine, and elevated renal expression of tubular
injury markers like NGAL, whereas in partial nephrectomised
(5/6 Nx) mice and in 2-week ADE-treated mice, despite the
clinical features of renal failure, the blood Pi levels were nor-
mal [115]. In the renal tubule, a low expression of
transmembrane-α-klotho is generally associated with
kidney tubular cell resistance to FGF23 leading to
hyperphosphatemia. Soluble α-klotho, which is thought to
mimic the expression of transmembrane α-klotho seems to
be another early marker of renal failure since a decrease in
circulating soluble α-klotho has been observed during the
very early stage of CKD [117]. This phenotype is also ob-
served in 2- and 4-week ADE-treated mice and in a mouse
model with partial deletion of klotho in distal tubular
segments (Ksp-KL− /−) , which is associated with
hyperphosphataemia and elevated FGF23 [107, 115].
Furthermore, acute and chronic inflammation are also
recognised to be stimuli for elevated FGF23 in CKD patients,
as well as in normal mice [38, 115]. Growing evidence for a
link between Pi and FGF23 excess and increased cardiovas-
cular disease risk in CKD has led to a recent focus on Pi- and
FGF23-lowering therapies. Based on the use of dietary restric-
tion and Pi binders, different studies have shown a decrease in
serum Pi and FGF23 but have so far failed to prevent progres-
sion of vascular calcification [20].

Other causes

Hyperphosphataemia as a result of increased PT reabsorption
of Pi occurs in hypoparathyroidism, acromegaly, treatment
with bisphosphonates and following vitamin D toxicity, with
hypercalcaemia also reducing Pi excretion and PTH secretion
[53, 108, 131, 154]. In autosomal recessive familial tumoral
calcinosis, renal Pi reabsorption is increased, often associated
with raised levels of 1,25(OH)2D3. Originally attributed to
mutations in GALNT3, a glycosyltransferase involved in
FGF23 breakdown, mutations have also been found in
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FGF23 itself and klotho [43]. This condition is the mirror
image of X-linked hypophosphataemic rickets in which in-
creased FGF23 reduces Pi reabsorption and increases urinary
Pi excretion [63]. Other clinical scenarios of Pi overload in
which hyperphosphataemia can occur are following an acute
exogenous Pi load (e.g., Pi-containing laxatives), in tumour
lysis syndrome and in rhabdomyolysis [5, 45, 86].

Pseudohypoparathyroidism (PHP) types Ia, Ib and II are
autosomal dominant, sporadic/autosomal dominant, and spo-
radic disorders, respectively, and conditions associated pri-
marily with resistance to the parathyroid hormone in the renal
PT [12]. They are associated with hypocalcaemia,
hyperphosphataemia, and elevated serum concentration of
PTH, which reflect end-organ resistance to PTH [164]. In type
Ia (PHP-Ia), end-organ resistance is usually not limited to the
actions of PTH but can also affect other hormones such as
thyrotropin and gonadotropins [164]. Patients affected by
PHP-Ia also have the physical features of Albright hereditary
osteodystrophy (AHO), including obesity, short stature,
brachydactyly and ectopic tissue ossification. PHP-Ia is asso-
ciated with inactivating defects of the stimulatory G protein α
subunit (Gsα) caused by heterozygous mutations in one of the
13 exons of GNAS that encode Gsα [78]. Type Ib is another
variant in which end-organ resistance appears to be limited
primarily to the actions of PTH in the renal cortex. Unlike
PHP-Ia, the mutation responsible for PHP-Ib is in a cis-
acting element of GNAS that controls exon A/B methylation.

The loss of methylation at this site leads to a profound reduc-
tion or a complete lack of Gsα expression in the renal PT (and
possibly a few other tissues) [169]. Type II is a third variant of
PHP in which patients do not show AHO, despite an impaired
phosphaturic response. It is interesting to note that in PHP-II,
patients show an increased renal Pi excretion associated with
normal urinary excretion of cAMP; whereas patients with
PHP-I fail to show increases in urinary excretion of either
cAMP or Pi [47, 126].

Hypophosphataemia

Clinical hypophosphataemia (see Table 2) is typically
manifest as a serum Pi < 0.32 mM [48]. Chronic
hypophosphataemia is usually due to diminished Pi reabsorp-
tion associated with an increase in circulating PTH levels (pri-
mary or secondary hyperparathyroidism), vitamin D deficien-
cy or resistance [48, 139]. Hypophosphataemia is often mild
in primary hyperparathyroidism, but can be more severe when
secondary to vitamin D deficiency in which gastrointestinal Pi
absorption is also reduced. Cell shifts can reduce serum Pi
levels during refeeding in malnourished individuals, especial-
ly alcoholics, following treatment of diabetic ketoacidosis,
and during parenteral feeding.

Oncogenic osteomalacia is associated with renal phosphate
wasting leading to hypophosphataemia, osteomalacia and ab-
normal vitamin D metabolism [62]. The first symptoms of

Table 1 Genetically determined hyperphosphataemic disorders with their phenotype Online Mendelian Inheritance in Man (OMIM) numbers; the
genes involved together with their MIM numbers and the chromosomal locations of the genes

Disorders Abbreviation Phenotype
OMIM number

Inheritance Gene/locus Gene/locus
MIM number

Gene
location

Hyperphosphataemia

Hyperphosphatemic familial
tumoral calcinosis type 1

HFTC1 211900 Autosomal recessive GALNT3 601756 2q24.3

Hyperostosis-hyperphosphatae-
mia syndrome

HSS 610233 Autosomal recessive

Hyperphosphatemic familial
tumoral calcinosis type 2

HFTC2 617993 Autosomal recessive FGF23 605380 12p13.32

Hyperphosphatemic familial
tumoral calcinosis type 3

HFTC3 617994 Autosomal recessive KL 604824 13q13.1

Pseudohypoparathyroidism type
Ia

PHP1A 103580 Autosomal dominant GNAS 139320 20q13.32

Pseudohypoparathyroidism type
Ib

PHP1B 603233 Autosomal dominant STX16
GNASAS1
GNAS

603666
610540
139320

20q13.32

Pseudohypoparathyroidism type
Ic

PHP1C 612462 Autosomal dominant GNAS 139320 20q13.32

Pseudohypoparathyroidism type
II

PHP2

Familial isolated
hypoparathyroidism

FIH 146200 Autosomal dominant GCM2 603716 6p24.2

Hypoparathyroidism Autosomal dominant or
Autosomal recessive

PTH 168450 11p15.3

Blomstrand chondrodysplasia BOCD 215045 Autosomal recessive PTHR1 168468 3p21.31
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oncogenic osteomalacia are typically fatigue, muscle weak-
ness, bone pain, fractures and osteomalacia [29]. Causes are
thought to be due to production and secretion of proteins—
phosphatonins—by mesenchymal tumours, of which FGF23,
sFRP4 and FGF-7 are those identified so far (see article
Physiological regulation of phosphate: klotho, FGF23 for full
review). Surgical removal of the tumour can reverse the symp-
toms and normalise levels of serum Pi and 1,25(OH)2D3.
Non-surgical treatment consists of phosphate supplements
and vitamin D (calcitriol) [37].

Autosomal dominant hypophosphataemic rickets (ADHR)
presents as rickets, hypophosphataemia, hyperphosphaturia,
fatigue, bone pain, and bone deformities with inappropriately
low or normal vitamin D3 levels. ADHR is the prototype
disorder of primary FGF23 excess [72]. A mutation in

FGF23 has been described in its cleavage motif, resulting in
increased levels of active FGF23 [72]; this finding has been
confirmed in mice transgenic for proteolytically resistant hu-
man FGF23 [11].

X-linked hypophosphatemic rickets (XLH), mentioned
earlier, is the most common form of hereditary rickets and is
due to a loss of function mutation in the phosphate regulating
gene with homology to endopeptidases on the X chromosome
(PHEX) gene. XLH is characterised by hypophosphataemia
due to renal phosphate wasting, leading to rickets, inappropri-
ately normal to low concentrations of 1,25(OH)2D3 and high
circulating levels of FGF23 [42]. Short stature and rachitic
osseous lesions are characteristic features of XLH, although
the severity of these manifestations is highly variable among
patients [42]. Recently, a new nonsense mutation (p.E145*) in

Table 2 Genetically determined hypophosphataemic disorders with their phenotype Online Mendelian Inheritance in Man (OMIM) numbers; the
genes involved together with their MIN numbers and the chromosomal locations of the genes

Disorders Abbreviation Phenotype OMIM
number

Inheritance Gene/locus Gene/locus MIM
number

Gene
location

Hypophosphataemia

X-linked hypophosphataemia XLH 307800 X-linked dominant PHEX Xp22.11

Autosomal dominant hyphosphatemic
rickets

ADHR 193100 Autosomal
dominant

FGF23 605380 12p13.32

Autosomal dominant hyphosphatemic
rickets

ADHR1 or
ARHP

241520 Autosomal
recessive

DMP1 600980 4q22.1

Autosomal dominant hyphosphatemic
rickets

ADHR2 613312 Autosomal
recessive

ENPP1 173335 6q23.2

Hereditary hypophosphatemic rickets with
hypercalciuria

HHRH 241530 Autosomal
recessive

SLC34A3 609826 9q34.3

Vitamin D-resistant rickets type 1A VDDR1A 264700 Autosomal
recessive

CYP27B1 609506 12q14.1

Vitamin D-resistant rickets type 2A VDDR2A 277440 Autosomal
recessive

VDR 601769 12q13.11

Familial hypocalciuric hypercalcemia type
I

HHC1 145980 Autosomal
dominant

CASR 601199 3q13.3-q21.1

Neonatal severe hyperparathyroidism NSPH 239200 Autosomal
recessive

CASR 601199 3q13.3-q21.1

Jansen type of metaphyseal
chondrodysplasia

156400 Autosomal
dominant

PTHR1 168468 3p21.31

Hypophosphataemica
nephtolithiasis/osteoporosis-1

NPHLOP1 612286 Autosomal
dominant

SLC34A1 182309 5q35.3

Hypophosphataemica
nephtolithiasis/osteoporosis-2

NPHLOP2 612287 Autosomal
dominant

SLC9A3R1 604990 17q25.1

Osteoglophonic dysplasia OGD 166250 Autosomal
dominant

FGFR1 136350 8p11.23

Opsismodysplasia OPSMD 258480 Autosomal
recessive

INPPL1 600829 11q13.4

Schimmelpenning-Feuerstein-Mims
syndrome, somatic mosaic

SFM 163200 Postzygotic somatic
mutation

NRAS 164790 1p13.2

HRAS 190020 11p15.5

KRAS 190070 12p12.1

Mc Cune-Albright fibrous dysplasia,
somatic mosaic

MAS/FD 174800 Postzygotic somatic
mutation

GNAS 139320 20q13.32

Neurofibromatosis type I NF1 162200 Autosomal
dominant

NF1 613113 17q11.2

Neurofibromatosis type II NF2 101000 Autosomal
dominant

NF2 607379 22q12.2
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exon 4 of PHEX has been predicted to be responsible for XLH
[83]. Animal models of XLH have demonstrated a defect in
PT phosphate reabsorption and decreased expression of NaPi-
IIa and NaPi-IIc [144–146]. In mice, FGF23 levels are high
and it has been suggested that PHEX and FGF23may regulate
each other’s expression, the loss of PHEX leading to higher
expression levels for FGF23 [84, 109]. However, the interplay
between PHEX and FGF23 is still not fully understood.

Defects in Na+-coupled Pi cotransporters

NaPI-IIa (SLC34A1) mutations

Impaired NaPi-IIa function is associated with a variety of
ov e r l a pp i ng c l i n i c a l s y nd r ome s t h a t i n c l u d e
hypophosphataemia, nephrolithiasis, osteoporosis, renal
Fanconi syndrome and CKD. An early analysis of 20 pa-
tients with urolithiasis or bone demineralisation and per-
sistent idiopathic hypophosphataemia associated with a
decrease in maximal renal Pi reabsorption was published
in 2002. Two patients, one with urolithiasis and one with
bone demineralisation, were shown to have two distinct
mutations on one allele of the gene encoding NaPi-IIa.
The expression of the two mutants in oocytes showed
reduced Pi-induced current and Na+-coupled Pi uptake.
However, these gene mutations were also found in several
subjects with normal renal Pi excretion, suggesting that
their relevance to renal Pi handling required more clarifi-
cation [114]. In 2010, the sequence analysis of NaPi-IIa in
two siblings with autosomal recessive proximal
tubulopathy associated with severe renal Pi wasting,
hypophosphataemic rickets and renal failure revealed a
21-nucleotide stretch of duplicated sequence. Functional
and expression studies of the mutant gene product in oo-
cytes and opossum kidney cells showed a complete loss
of function of the mutant NaPi-IIa as a consequence of its
mislocalisation within the intracellular compartment and
failure to reach the cell membrane [89]. More recently,
whole-exome sequencing in two unrelated patients with
idiopathic infantile hypercalcaemia with partial proximal
tubulopathy revealed a homozygous loss-of-function
inserted duplication (p.I154_V160dup) in NaPi-IIa. The
in vitro local isat ion and traff icking analysis of
p.I154_V160dup mutant indicated aberrant retention at
the endoplasmic reticulum in an immature and under-
glycosylated state, leading to premature proteasomal deg-
radation of NaPi-IIa [40]. Homozygous mutations in
NaPi-IIa seem to be responsible for renal Pi wasting, al-
though more studies are needed to provide stronger evi-
dence for their biological and clinical importance in hu-
man kidney function.

NaPI-IIc (SLC34A3) mutations

Hereditary hypophosphataemic rickets with hypercalciuria
(HHRH) is a very rare disease caused by biallelic mutations
in NaPi-IIc [16, 61, 87]. First described in 1985 by Tieder
[149], this inherited disease is characterised by decreased re-
nal Pi reabsorption, hypophosphataemia, vitamin D3 refracto-
ry rickets, hyperphosphaturia, hypercalciuria, elevated circu-
lating 1, 25(OH)2D3 levels, and low serum parathyroid hor-
mone (PTH) levels, leading to growth retardation, limb defor-
mities, bone pain, muscle weakness, rickets and osteomalacia
[16, 87, 149, 150]. Unlike mice, NaPi-IIc seems to have a
more important role in calcium homeostasis: kidney-specific
deletion of NaPi-IIc in mice does not affect renal calcium or Pi
handling [98, 125] .

In conclusion, phosphate homeostasis is the result of a
highly complex metabolic, hormonal, ion transporter and
whole organ interplay that serves to maintain serum Pi levels
within narrow limits. Both Pi deficiency and overload are
reflected in serum Pi levels and have their consequences for
disease, particularly the emergence of Pi as an important risk
factor for cardiovascular disease and progression in CKD.
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