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This study determined the inhibitory activity of oligopeptides against

angiotensin-converting enzyme (ACE) and pancreatic lipase through in vitro

tests, molecular docking, and enzyme inhibition. The results showed that the

IC50 of GLLGY, HWP, and VYGF for ACE inhibition was 1 mg/mL, and the IC50 of

HWP for pancreatic lipase was 3.95 mg/mL. Molecular docking revealed that

the binding energies between GLLGY, HWP, and VYGF and ACE were –9.0,

–8.4, and –9.2 kcal/mol, respectively. The binding free energy between HWP

and pancreatic lipase was –7.3 kcal/mol. GLLGY, HWP, and VYGF inhibited ACE

compentitively. HWP inhibited pancreatic lipase through non-competition.

in vitro simulated gastrointestinal digestion, the three oligopeptides still had

inhibitory activity and low toxicity. The results revealed that the peptides

GLLGY, HWP, and VYGF may be suitable candidates for further research on

ACE inhibition, and HWP may be a suitable candidate for studying pancreatic

lipase inhibition.

KEYWORDS

ACE, bioactive oligopeptides, inhibitory kinetic, molecular docking, pancreatic lipase

Introduction

Obesity has recently shown an epidemic trend globally (1). Obesity is also considered
the driving force for the development of chronic diseases, such as hypertension, coronary
heart disease, and diabetes (2, 3). Therefore, obesity is closely related to lipase activity
in humans, and the human body degrades and digests fat taken from food through
pancreatic lipase. Then fat was reabsorbed and synthesized in the intestine to lead to fat
accumulation (4). The pancreatic lipase inhibitor can effectively inhibit pancreatic lipase
activity, impede excessive fat accumulation, and play a role in controlling and treating
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obesity (5, 6). Orlistat is a drug considered clinically beneficial
in treating overweight, but it is associated with side effects such
as gastrointestinal (GI) flatulence and arrhythmia (4, 7).

Hypertension is regulated by various mechanisms, one of
which is related to the activity of the angiotensin-converting
enzyme (ACE) (8). ACE plays a vital role in regulating blood
pressure balance by acting on the renin angiotensin–aldosterone
system and kallikrein–kinin system (9, 10). ACE inhibitors are
widely used in hypertension treatment. However, commonly
used ACE inhibitors, such as captopril, enalapril, and benazepril,
can cause side effects including renal function damage, phlegm-
free dry cough, hyperkalemia, and renal function injury. Safer
ACE inhibitors with no side effects are urgently required (8,
11, 12).

At present, most synthetic drugs used in clinics for the
prevention and treatment of chronic diseases exhibit side
effects, which also urges researchers to focus on natural
substances or food for therapeutic uses (13–15). Natural
substances and food have many active substances, especially
bioactive peptides, which have various human metabolism
and physiological regulation functions, easy digestion and
absorption, and promote immunity, reduce blood pressure and
blood lipid (16, 17). Joyce Irene Boye et al. reported that the IC50

of red lentil protease hydrolysate for ACE was 111 ± 1 µmol/L
(18). Priti Mudgil et al. found that peptide Leu-Pro exhibits
pancreatic lipase inhibitory activity against bovine and camel
casein hydrolysates (19). Uriel urbizo Reyes et al. showed that
canary seed peptides inhibit ACE and pancreatic lipase. Among
them, the peptides LHPQ, QTPHQ, KPVPR, and ELHPQ are
noncompetitive inhibitors of ACE. The peptides VPPR, LADR,
LSPR, and TVGPR are noncompetitive inhibitors of pancreatic
lipase (16). These studies have shown that bioactive peptides can
inhibit ACE and pancreatic lipase and can be used to prepare
functional foods and nutritional drugs.

In this study, Bacillus subtilis MK15 was used to ferment rice
bran to extract bioactive peptides and synthesize several better
oligopeptides through molecular docking. in vitro inhibition
experiments, molecular docking, and enzyme inhibition kinetics
revealed that these oligopeptides can inhibit ACE and pancreatic
lipase. Finally, in vitro simulated GI digestion and toxicity
studies (in silico) were conducted to explore whether these
oligopeptides can be used in health products.

Materials and methods

Materials

The polypeptide was synthesized by Hangzhou Dangang
Biotechnology Co., Ltd (Hangzhou, China). Human ACE, N-
[3-(2-furanyl) acryloyl]-l-phenylalanyl glycyl glycine (FAPGG),
p-nitrophenyl butyrate (pNPB), and pancreatic lipase were
purchased from Sigma Co., St. Louis, Missouri, United States.

Obtaining bioactive peptides

The peptides used in the study were obtained from
Bacillus subtilis MK15-fermented rice bran (20). Bioactive
peptides were extracted from broth. Ultrafiltration
was performed, and DEAE Sepharose Fast Flow ion
column and Sephadex G-25 column were used for
purification. The peptides identified through LC-MS/MS
were FPF, HWP, QSFF, MKNLPKYRQIVHFIKEKIGNG,
ALGHIKEAISEGYKVVVVVSAMGR, GLLGY, SHEVK, FSGF,
VYGF, QFAKYILFVKDITSKIEEKRG, IANLTEPTDFRIEL
RIKRDRG, GLIGY, QSFLQRYYFLFRILP, LFSGF, and PSR.
The peptide segments were scored with hydrophobicity,
and their inhibitory activities against ACE and pancreatic
lipase were measured.

Determination of
angiotensin-converting enzyme
inhibitory activity of peptides

According to the experimental method of Yu Fu et al. (8),
with slight changes, 50 µL ACE (0.1 U/mL, prepared from
borate buffer with pH 8.3 and 80 mM), 50 µL FAPGG (1 mM),
and 100 µL borate buffer (80 mM, pH 8.3) were added to a
96-well plate. Then, 100 µL borate buffer was replaced with
1 mg/mL sample, which are three groups of parallel samples, and
the initial absorbance values a1 and b1 were measured at 340 nm.
Then, the plate was placed at 37◦C and reacted for 30 min.
The absorbance values a2 and b2 were measured at 340 nm
(Multiskan GO, Thermo Scientific, Waltham, MA, USA). The
absorbance value was incorporated into the following formula to
calculate the inhibition rate of polypeptide against ACE activity:

ACE inhibition rate (%) =
(A− B)

A
× 100 (1)

Where a1 and b1 are initial absorbance values of the blank and
sample groups, respectively. a2 and b2 are absorbance values
of the blank and sample groups after the reaction, respectively.
A = a1–a2; B = b1–b2.

Determination of pancreatic lipase
inhibitory activity of peptides

According to the method of Magdalena mendoza-s á nchez
(1). In the blank group, 100 µL of 0.1 M sodium phosphate
buffer (pH 7.2), 50 µL pNPB (5 mM), and 50 µL pancreatic
lipase (0.2 U/mL) were added to a 96-well plate. In the blank
control group, 150 µL sodium phosphate buffer and 50 µL
pNPB were added to the 96-well plate. In the sample group,
50 µL sodium phosphate buffer, 50 µL pNPB, 50 µL sample
(1 mg/mL), and 50 µL pancreatic lipase were added to the
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96-well plate. For the sample blank group, 100 µL sodium
phosphate buffer, 50 µL pNPB, and 50 µL sample were added
to the 96-well plate. At 37◦C, the absorbance values A, B, C,
and D were measured at 405 nm after 30 min of reaction. The
absorbance values were incorporated into the following formula
to calculate the inhibition rate of polypeptide against pancreatic
lipase activity:

Pancreatic lipase inhibition rate (%) =

(
1−

C − D
A− B

)
× 100

(2)
Where A, B, C, and D are absorbance values of the blank, blank
control, sample, and sample blank groups, respectively.

Molecular docking

Autodock Vina 1.1.2 docking software was used for
molecular docking. From the protein database1, the crystal
structures of human ACE (PDB ID:1O86; resolution 2.00 Å)
and porcine pancreatic lipase (PDB ID:1ETH; resolution 2.80
Å) were retrieved in PDB format. Subsequently, co-crystalline
ligands and water molecules were removed from the protein
structures using PyMOL version 2.5.0.

When the polypeptide was docked with ACE, the docking
site was the same as that reported by Dong (21). The grid size
(xyz point) was set to 126, 126, and 126, and the specified size
(x, y, and z) of the grid center was 43.82, 38.31, and 46.65. Other
parameters were set to default values. When the polypeptide
was docked with porcine pancreatic lipase, the docking site of
Akpovwehwee A. Anigbor et al. (4). The grid size (xyz point)
was set to 126, 126, and 126, and the specified size (x, y, and z) of
the grid center was 64.00, 29.16, and 125.43. Other parameters
were set to default values. After docking, the best objects were
elected and analyzed using PyMOL 2.5.0.

1 https://www.rcsb.org/

Inhibitory kinetic analysis

The inhibition kinetics of oligopeptides GLLGY, HWP, and
VYGF on ACE and pancreatic lipase were tested to determine
their efficiencies. For the ACE inhibition test, the concentration
of the samples GLLGY, HWP, and VYGF was 1 mg/mL, and
the concentrations of the substrate FAPGG were 0.2, 0.4, 0.6,
0.8, and 1 mM. For the pancreatic lipase inhibition test, the
sample HWP concentration was 1 mg/mL and the substrate
pNPB concentrations were 1, 2, 3, and 5 mM. The initial
velocity data were used to construct the Lineweaver–Burke
plots to determine the enzyme Km (Michaelis constant), Vmax
(maximum velocity), and Ki (inhibitory binding constant)
(8, 22).

In vitro simulated gastrointestinal
digestion

Simulated GI digestion through an in vitro pepsin–
pancreatin hydrolysis method was carried out (23). The
oligopeptides GLLGY, HWP, and VYGF were re-dissolved (3%
w/v in distilled water) and adjusted to pH 2.0 with 1 M
HCl. Then, pepsin (4% weight as received/weight of protein
in the powder) was added. The mixture was incubated at
37◦C for 2 h. The pH was then adjusted to 5.3 with 0.9 M
NaHCO3 solution and further to pH 7.5 with 1 M NaOH.
Pancreatin was added (4% weight as received/weight of protein
in the powder), and the mixture was further incubated at
37◦C for 2 h. To terminate the digestion, the test tubes
were kept in boiling water for 10 min. The gastric digests
(GDs) and gastric-intestinal digests (GIDs) were obtained
through centrifugation (8000 × g, 10 min, 4◦C), and then,
the supernatants were collected, lyophilized, sealed in plastic
bags, and stored at 4◦C until further analysis. The ACE and
pancreatic lipase inhibitory activities of GDS and GID were

FIGURE 1

(A) The ACE inhibitory activity of peptides. The pancreatic lipase inhibitory activities of (B) peptides and (C) HWP. The small letters represent the
significant difference p < 0.05.
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measured at a concentration of 1 mg/mL, and the results
were expressed as activity (%) relative to that without any
treatment (control group, 100%). All determinations were
made in triplicate.

Toxicity studies (in silico)

The evaluation of pharmacologically active substances
during the new drug development is an indispensable
parameter. The in vitro evaluation of ADMET (absorption,
distribution, metabolism, excretion, and toxicity) provides data
for the identification of new molecules (24). ADMET parameters
were calculated using the free web interface pkCSM2 for
predicting the toxicities of the oligopeptides GLLGY, HWP, and
VYGF (25).

Statistical analysis

Three parallel tests were conducted in all experiments. Data
are presented as mean± SD. SPSS version 17.0 for Windows was
used for statistical analysis. P < 0.05 was set as the threshold for
statistical significance.

Results

Inhibitory activity in vitro

ACE inhibitory activity in vitro
Nine peptides were selected for the ACE inhibitory activity

assay. As shown in Figure 1A, at 1 mg/mL, the ACE inhibitory
activities of GLLGY, VYGF, and HWP were considerably higher
than those of other peptides. The IC50 of GLLGY, VYGF, and
HWP for ACE was 1 mg/mL.

Pancreatic lipase inhibitory activity in vitro
As shown in Figure 1B, at 1 mg/mL, HWP exhibited the

highest inhibitory activity against pancreatic lipase (inhibition
rate: 20%), followed by PSR. A slight difference was observed
in the inhibitory activities of VYGF and PSR against pancreatic
lipase, and the inhibition rate of FSGF was 13%. The pancreatic
lipase inhibition rate of the remaining peptides was <10%. Next,
HWP was subjected to a gradient test of concentration and
inhibitory activity. A linear relationship was observed between
the lipase inhibitory activity of HWP and HWP concentration.
With an increase in the concentration, the inhibitory activity
also increased, and the IC50 of HWP for pancreatic lipase was
3.95 mg/mL (Figure 1C).

2 http://structure.bioc.cam.ac.uk/pkcsm

Molecular docking

Molecular docking of angiotensin-converting
enzyme

The GLLGY characteristics are as follows: isoelectric point,
6.2; average hydrophilicity, –1.1; hydrophilic residue, 0%; net
charge, 0.0 at pH = 7.0. The HWP characteristics are as
follows: isoelectric point, 7.8; average hydrophilicity, –1.3;
hydrophilic residue, 0%; net charge, 0.1 at pH = 7.0. The VYGF
characteristics are as follows: isoelectric point, 6.2; average
hydrophilicity, –1.5; hydrophilic residue, 0%; net charge, 0.0 at
pH = 7.03. Figure 2a depicts the three-dimensional structure
of human ACE (PDB ID:1O86). The structural diagrams of
GLLGY, HWP, and VYGF are presented in Figures 2c,d,e,
respectively. GLLGY was bound to 9 ACE residues to form
hydrogen bonds: Thr282, 2.2 Å; Ser284, 2.2 Å; His353, 2.3 Å;
Glu376, 2.2 Å; Glu411, 2.5 Å; Gly414, 2.7 Å; Asp415, 2.1 Å and
2.2 Å; and His513, 2.2 Å (Figure 2f, hydrogen bond distance not
marked). HWP was bound to 11 ACE residues to form hydrogen
bonds: Ala356, 1.9 Å, 2.1 Å, and 3.4 Å; Asp358, 2.6 Å; His383,
2.6 Å; Glu384, 2.4 Å; His387, 2.4 Å; Glu403, 2.6 Å; Glu411, 3.3
Å and 3.4 Å; and Tyr523, 1.8 Å (Figure 2g, hydrogen bond
distance not marked). VYGF was bound to 6 ACE residues to
form hydrogen bonds: Thr166, 2.0 Å; Asn277, 2.5 Å; Gln281, 2.7
Å; Thr282, 2.1 Å; His353, 2.4 Å; and Tyr523, 2.3 Å (Figure 2h,
hydrogen bond distance not marked). The binding free energies
of GLLGY, HWP, and VYGF were –9.0, –8.4, and –9.2 kcal/mol,
respectively.

Molecular docking of pancreatic lipase
Figure 2b depicts the three-dimensional structure of

PDB ID:1ETH. Molecular docking was used to simulate the
interaction between HWP and porcine pancreatic lipase. The
binding free energy of HWP was –7.3 kcal/mol. HWP was
bound to the bottom of the pocket and had hydrogen bond
interactions with 9 residues of pancreatic lipase: Asn329, 2.3
Å; Thr330, 3.5 Å; Arg338, 2.5Å; Arg340, 2.5 Å; Tyr370, 2.8 Å;
Asp388, 1.9 Å, 2.5 Å, and 3.5 Å; and Asp390, 2.6 Å (Figure 2i,
hydrogen bond distance not marked).

Enzyme inhibition kinetics

Kinetics of angiotensin-converting enzyme
inhibition

Enzyme kinetic studies showed that GLLGY, HWP, and
VYGF were competitive inhibitors of ACE (Figures 3A,B,C).
Vmax remained unchanged and Km increased. The calculated
inhibitory binding constants (Ki) of GLLGY, HWP, and VYGF
were 1.573, 1.340, and 0.933 mM, respectively. Ki is an

3 https://pepcalc.com/
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FIGURE 2

Binding of oligopeptides to human ACE and porcine pancreatic lipase. Three-dimensional structures of (a) human ACE and (b) porcine
pancreatic lipase. Structural diagrams of (c) GLLGY peptide, (d) HWP peptide, and (e) VYGF peptide. A visual interaction diagram of (f) GLLGY,
(g) HWP, and (h) VYGF with ACE. (i) A visual interaction diagram of HWP with pancreatic lipase. The yellow dotted lines indicate hydrogen bonds.

indicator that defines the binding (affinity) ability of inhibitors
to enzymes to form enzyme–inhibitor complexes, and a lower
Ki value indicates a higher affinity. GLLGY, HWP, and VYGF
compete with the substrate for the ACE active center and
form a reversible enzyme–inhibitor complex with ACE, thereby
preventing the substrate from binding to the enzyme (16).

Kinetics of pancreatic lipase inhibition
Enzyme kinetic studies revealed that HWP was a non-

competitive inhibitor of pancreatic lipase (Figure 3D). Vmax
decreased and Km remained unchanged. The calculated
inhibitory binding constant (Ki) of HWP was 2.583 mM. pNPB
and HWP bind at different sites of pancreatic lipase, which
reduces the pancreatic lipase activity (26).

Oligopeptides simulated
gastrointestinal digestive activity

Effect of simulated gastrointestinal digestion
on angiotensin-converting enzyme activity

As shown in Figure 3E, the inhibition rate of GLLGY
against ACE without GI digestion was 55.800%, after gastric

digestion was 52.570%, and after GI digestion was reduced to
51.271%. The inhibition rate of HWP against ACE without
GI digestion was 57.020%, after gastric digestion was 54.391%,
and after GI digestion was reduced to 53.631%. The inhibition
rate of VYGF against ACE without GI digestion was 54.757%,
after gastric digestion was 50.922%, and after GI digestion was
reduced to 49.064%. After in vitro simulation of GI digestion,
GLLGY, HWP, and VYGF decreased the ACE activity slightly.
The inhibitory effect of GDS and GIDS on ACE did not change
significantly, and the oligopeptides GLLGY, HWP, and VYGF
continued to inhibit ACE after GI digestion.

Effect of simulated GI digestion on pancreatic
lipase activity

As shown in Figure 3F, the inhibition rate of HWP against
pancreatic lipase without GI digestion was 21.451%, after gastric
digestion was 19.887%, and after GI digestion was reduced
to 18.353%. After in vitro GI simulation, HWP decreased the
pancreatic lipase activity lightly. The inhibitory effect of GDS
and GIDS on pancreatic lipase did not change significantly, and
the oligopeptide GLLGY continued to inhibit pancreatic lipase
after GI digestion.
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FIGURE 3

Lineweaver–Burk plots of ACE-catalyzed reactions in the presence of (A) GLLGY, (B) HWP, and (C) VYGF. Lineweaver–Burk plots of pancreatic
lipase-catalyzed reactions in the presence of (D) HWP. Each dot represents a mean of three independent experiments conducted in triplicates.
Effect of simulated GI digestion on (E) ACE activity and (F) pancreatic lipase activity. The small letters represent the significant difference
p < 0.05.

TABLE 1 Toxicity studies (in-silico) of oligopeptides GLLGY, HWP, and VYGF.

Descriptors GLLGY predicted value HWP predicted value VYGF predicted value Unit

AMES toxicity No No No Categorical (Yes/No)

Max. tolerated dose (human) 0.662 0.138 0.552 Numeric (log mg/kg/day)

hERG I inhibitor No No No Categorical (Yes/No)

hERG II inhibitor No No No Categorical (Yes/No)

Oral Rat Acute Toxicity
(LD50)

2.308 1.969 2.612 Numeric (mol/kg)

Oral Rat Chronic Toxicity
(LOAEL)

3.726 2.451 3.776 Numeric (log mg/kg_bw/day)

Hepatotoxicity Yes Yes Yes Categorical (Yes/No)

Skin Sensitisation No No No Categorical (Yes/No)

T. Pyriformis toxicity 0.285 0.285 0.285 Numeric (log ug/L)

Minnow toxicity 5.934 4 5.464 Numeric (log mM)

Toxicity studies (in silico) of
oligopeptides

On the pkCSM website, AMES toxicity shows that the
three oligopeptides do not cause cancer and are not hERG
I/II inhibitors. The maximum tolerated dose of ≤ 0.477
log (mg/kg/day) is considered low and that of >0.477 log
(mg/kg/day) is considered high. The dose of HWP was
considered low, whereas that of GLLGY and VYGF was
considered high. Tetrahymena pyriformis is a protozoan

bacterium whose toxicity is often used as a toxic endpoint. The
T. pyriformis toxicity value of > –0.5 log µg/L is considered
toxic. The toxicity of the oligopeptides GLLGY, HWP, and
VYGF was > –0.5 log µg/L. The lethal concentration (LC50)
value represents the concentration of a molecule necessary to
cause the death of 50% of the fathead minnows. LC50 values of
<0.5 mM (log LC50 <-0.3) represent high acute toxicity. The
LC50 values of GLLGY, HWP, and VYGF were >0.5 mM. The
three oligopeptides were regarded as of low toxicity because the
toxicity was likely associated with the disrupted function of the
liver. These oligopeptides did not cause skin sensitization. Thus,
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these three oligopeptides were concluded to be of low toxicity
(Table 1).

Discussion

According to the report of Dong Wei et al. (21), the ACE
(PDB ID: 1O86) active site is mainly composed of three active
pockets and Zn2+, which contain Ala354, Glu384, Tyr523,
Gln281, His353, Lys511, His513, Tyr520, and Glu162 residues.
GLLGY, HWP, and VYGF are docked with ACE. GLLGY
formed 9 hydrogen bonds with the ACE residues Thr282,
Ser284, His353, Glu376, Glu411, Gly414, Asp415, and His513
to produce 9 hydrogen bonds (Figure 2f). HWP formed 11
hydrogen bonds with the ACE residues Ala356, Asp358, Glu384,
His383, His387, Glu403, Glu411, and Tyr523 (Figure 2g). VYGF
formed 6 hydrogen bonds with the ACE residues Thr166,
Asn277, Thr282, Gln281, His353, and Tyr523 (Figure 2h).

Dong Wei et al. found that the peptide PR inhibited ACE
activity in a competitive manner and formed 6 hydrogen bonds
with the ACE residues Asp415, Glu383, Glu384, Lys511, Tyr520,
and Gln281 (21). Mingyang Li et al. reported that RGLSK
formed 10 hydrogen bonds with the ACE residues Ala354,
Glu384, Tyr523, Glu376, Asp415, His383, and Glu411 (27).
Compared with the docking of these peptides with ACE, it can
be found that they bind to S1 (Ala354, Glu384, and Tyr523)
and S2 (Ala354, Tyr523, and His353) active pockets and inactive
sites like these peptides. WG binds to the ACE residues Arg157,
Thr7, and Glu17 and does not bind to the ACE active sites;
therefore, it has a low inhibitory effect on ACE (8). In docking,
hydrogen bonds play a critical role in stabilizing complex
ligands and receptors. Hydrogen bonds formed enhance the
interaction between the polypeptide and ACE, thus leading to
strong ACE inhibition (28). According to the enzyme inhibition
kinetics experiment, GLLGY, HWP and VYGF were competitive
inhibitors (Figures 3A,B,C) that competed with the substrate
and combined with the enzyme active site to inhibit ACE
activity, as observed through molecular docking (Figure 2).
GLLGY, HWP, and VYGF each contain two hydrophobic amino
acids, and the strong inhibition by the polypeptide may be
related to the presence of these hydrophobic amino acids (29).

The main active sites of pancreatic lipase (PDB ID: 1ETH)
are Ser153, Asp177, His264, Phe78, Ile79, His152, Phe216,
Trp253, and Arg257 (19). Sha Li et al. found that apigenin
interacted with the active center residues of pancreatic lipase
and competitively inhibited its activity, with an IC50 value of
0.45± 0.03 mM (22). HWP interacted with the pancreatic lipase
residues Asn329, Thr330, Arg338, Arg340, Tyr370, Asp388,
and Asp390 to form 9 hydrogen bonds (Figure 2i); however,
these residues are not the active sites of pancreatic lipase.
According to the enzyme inhibition kinetics test, HWP is a non-
competitive inhibitor (Figure 3D), which may be the reason for
its low inhibition rate. The IC50 value of HWP was 8.988 mM

(Figure 1C), which is far lower than the IC50 of apigenin.
However, HWP has two hydrophobic amino acids tryptophan
and proline, and non-polar residues play a crucial role in
establishing the interaction with lipophilic enzymes. Thus, this
may also be the reason for HWP’s high rate of pancreatic lipase
inhibition (8).

The inhibitory activities of oligopeptides GLLGY, HWP,
and VYGF after simulated GI digestion in vitro were not
considerably lower than those before digestion. Tausif Ahmed
(30) described the structural characteristics of bioactive peptides
and their stability in simulated GI digestion. Their research
showed that peptides resistant to in vitro GI digestion have
a shorter chain length, smaller molecular weight (23), lower
hydrophobicity, and higher positive net charge at pH 7.0. The
average chain length and molecular weight of peptides resistant
to in vitro GI digestion were 4.5 ± 2.0 amino acid residues and
547.78 ± 233.17 g/mol, respectively, and their net charges were
slightly positive. Peptides with a lower molecular weight may
possess fewer protease recognition and cleavage sites (30). The
oligopeptide GLLGY contains 5 amino acids, with a molecular
weight of 522.292 g/mol and net charge of 0.0 at pH = 7.0. The
oligopeptide HWP contains 3 amino acids, with a molecular
weight of 439.209 g/mol and net charge of 0.1 at pH = 7.0. The
oligopeptide VYGF contains 4 amino acids, with a molecular
weight of 485.241 g/mol and net charge of 0.0 at pH = 7.0, which
is similar to that of the reported stable peptide. This may be the
reason the oligopeptides GLLGY, HWP, and VYGF continued to
exhibit strong inhibitory activity in the simulated GI digestion
in vitro (Figures 3E,F). The three oligopeptides were predicted
to be low toxicity by the pkCSM website (Table 1).

Obesity is accompanied by chronic diseases such as
hypertension, hyperglycemia and coronary heart disease, which
affect human health (3). In the metabolism of dietary fat,
pancreatic lipase plays a major role to promote fat absorption
of small intestine, which leads to fat accumulates and obesity.
Therefore, it is an important recognized target for controlling
obesity (31). ACE converts the inactive protein angiotensin I
into an effective vasoconstrictor angiotensin II, which leads to
an increase in blood pressure (12). Myocardial infarction and
stroke that are significantly relative with higher blood pressure
are top mortality in the world (32). Hence, the inhibitors of
ACE and pancreatic lipase are very important to protect human
health and has been widely concerned by researchers.

Study showed that oligopeptides could inhibit pancreatic
lipase and ACE in vitro, and they had the same effect in vivo.
Luis Jorge coronado-c á Ceres et.al studied the inhibitory effect
of cocoa protein (CP) hydrolysate (CPH) on pancreatic lipase,
and found that cocoa peptides EEQR, GGER QTGVQ and
VSTDVNIE had inhibitory effect on pancreatic lipase. The
IC50 of CP hydrolysate was 1.38 mg/mL. In vivo experiments,
compared with the high-fat diet group, the high-fat diet and
CP group significantly reduced the apparent absorption rate
of fat (33). Li Peng et.al. researched on the inhibitory effect
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of pistachio hydrolysate on ACE and found that the IC50 of
oligopeptide ACKEP on ACE was 126 µM. Four hours after oral
administration in mice, the pepsin–trypsin hydrolysate (Pe–Tr–
H) can reduce systolic blood pressure (SBP) by about 22 mmHg
and diastolic blood pressure (DBP) by about 16 mmHg in vivo
(34). Our oligopeptides had the ability to inhibit ACE and
pancreatic lipase in vitro, furthermore, they had anti digestion
ability. It is preliminarily inferred that they might have an
inhibitory effect in vivo and promote human health. The
oligopeptides extracted from fermented rice bran are worthy to
be investigated the effect in vivo and application in further.

Conclusion

The biological activity of better peptide components was
determined in vitro. The IC50 of GLLGY, HWP, and VYGF
for ACE inhibition was 1 mg/mL and that of HWP for
pancreatic lipase was 3.95 mg/mL. Molecular docking results
showed that 9, 11, and 6 hydrogen bonds were present
between GLLGY, HWP, and VYGF and ACE, respectively. Nine
hydrogen bonds were present between HWP and pancreatic
lipase. GLLGY, HWP, and VYGF competitively inhibited ACE,
and HWP non-competitively inhibited pancreatic lipase. The
oligopeptides GLLGY, HWP, and VYGF continued to exhibit
strong inhibitory activity during simulated GI digestive activity.
Three oligopeptides are low toxicity. The oligopeptides extracted
from fermented rice bran have great prospective application for
protect human health.
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