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ABSTRACT

Circadian-regulated genes are essential for tissue
homeostasis and organismal function, and are there-
fore common targets of scrutiny. Detection of rhyth-
mic genes using current analytical tools requires ex-
haustive sampling, a demand that is costly and raises
ethical concerns, making it unfeasible in certain
mammalian systems. Several non-parametric meth-
ods have been commonly used to analyze short-term
(24 h) circadian data, such as JTK cycle and MetaCy-
cle. However, algorithm performance varies greatly
depending on various biological and technical fac-
tors. Here, we present CircaN, an ad-hoc implementa-
tion of a non-linear mixed model for the identification
of circadian genes in all types of omics data. Based
on the variable but complementary results obtained
through several biological and in silico datasets, we
propose a combined approach of CircaN and non-
parametric models to dramatically improve the num-
ber of circadian genes detected, without affecting ac-
curacy. We also introduce an R package to make this
approach available to the community.

INTRODUCTION

Circadian rhythms are cycles in biological processes that
last ∼24 h (circa diem). They have been described from bac-
teria to primates (1), and have a profound impact in a wide
range of physiological processes, including body tempera-
ture, active/resting periods, hormonal regulation, immunity
and even mood states (2,3). It is therefore not surprising that
circadian gene expression has been the object of great inter-

est and scrutiny, especially since the rise of technologies that
have popularized whole transcriptomic analysis.

Immune and epidermal stem cells, as well as organs, are
among the many biological systems in which circadian os-
cillations have been scrutinized. These studies have revealed
cell- and tissue-specific patterns of gene expression featur-
ing circadian patterns (4–7). Detection of circadian genes in
each system has in turn been critical to unveil key mecha-
nisms of tissue physiology that operate in healthy individ-
uals, and become aberrant during aging or disease (4,7–9).
To accurately identify true circadian transcriptional oscilla-
tions, it is imperative to sample the system under study with
high frequency (e.g. every hour) and for extended periods of
time, typically 48 h in practical scenarios. This intense sam-
pling, however, is usually only feasible for non-mammalian
organisms, such as flies, or for cells in culture, in which sam-
ples are abundant and simple to collect. When dealing with
complex mammalian systems, however, repeated sampling
can be unfeasible given the cost and difficulty to access cer-
tain genetic models or species. A common approach to deal
with the limited number of animals is to space sampling fre-
quency to every 2–6 h (7,10–12). While this may not be a
problem for 48 h long experiments, sampling frequencies
longer than 2 h in 24 h long experiments make it difficult
to infer infradian or ultradian genes (5), and complicate the
identification of circadian genes. An additional effect of lim-
ited experimental samples is the need to reduce the num-
ber of biological replicates per time point, which greatly in-
creases noise.

These experimental limitations demand robust statistical
methods to identify circadian genes and proteins in biolog-
ical settings, particularly in mammalian systems. Two pop-
ular algorithms are mainly used to analyze circadian ex-
periments; the first is JTK cycle (herein JTK) (13), which
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applies the non-parametric Jonckheere–Terpstra test and
the Kendall tau correlation for the detection of circadian
transcripts. The second is MetaCycle (herein MC) (14),
which integrates the P-values of JTK and Lomb–Scargle
[or LS; another existing algorithm for analyzing rhythmic
patterns (15)], using Fisher’s meta-analysis approximation.
Both methods are non-parametric, and hence have low sta-
tistical power. To avoid the scarcity of identified genes with
these methods, JTK results are often reported with unad-
justed P-values and MetaCycle combines the P-values ob-
tained using JTK and LS (16,17) using Fisher’s method, de-
spite the problems of combining dependent P-values with
this method (18)

Here, we have developed CircaN, a natural approach for
the detection of circadian-like expression profiles based on
fitting circadian curves to the data using non-linear least
squares (NLS). Our method fits several curve types to time-
series omics data and selects the one with the best fit, pro-
viding amplitude, period and phase estimations, along with
their P-values, and goodness of fit measures. To facilitate
the process of identifying circadian genes, we provide a com-
bined corrected P-value of the amplitude and period of
the curve, which when used along with the goodness-of-fit
can be used to divide circadian from other patterns. By an-
alyzing multiple biological and in silico datasets, here we
find that the performance of circadian-mining algorithms
greatly depends on technical and biological characteristics
that cannot always be anticipated, such as the amount of
noise, or sampling strategy. We show that by combining
CircaN with non-parametric models (JTK and MC), we
robustly identify almost every circadian gene in a given
dataset, with a negligible number of false positives (FPs).
We also provide here an R package to ease the implementa-
tion of this combined approach, enable optimal identifica-
tion of circadian genes and promote new discoveries on cir-
cadian physiology. Finally, because CircaN is able to accu-
rately determine the main parameters of a circadian curve,
our method opens new possibilities to work with circadian
genes in a quantitative manner, rather than mere identifica-
tion of circadian-like patterns.

MATERIALS AND METHODS

In silico data generation

We generated in silico values simulating a 24 h long dataset,
with sampling once every hour, and with three replicates.
The dataset contained a total of 10 000 genes, from which
30% featured circadian oscillations. The non-circadian por-
tion of the genes was generated using a normal distribution
with mean and standard deviation randomly obtained from
gamma distributions, reproducing the range of amplitudes
and variance between replicates and across conditions. The
rhythmic features were created using eight different curve
patterns, namely, cosine, cosine + outlier, squared cosine,
triangular, dampened cosine, cosine + linear, cosine + ex-
ponential and peak, following the recommendations previ-
ously published (19). Figure 1A shows every shape poten-
tially defined as circadian, except for the cosine + outlier
pattern, which consists of a cosine curve with a deliberate
random outlier point, and is considered a cosine-type curve.

The rhythmic genes were created with periods randomly se-
lected from a uniform distribution between 20 and 28 h,
and phases also randomly generated from a half-normal
distribution (θ = 0.2). To create datasets with different sam-
pling frequencies, we created subsets with the samples cor-
responding to frequencies of 2, 3 and 4 h.

In silico benchmarking

CircaN, JTK (R package, https://openwetware.org/wiki/
HughesLab:JTK Cycle) and MetaCycle (14) v.1.1.0 were
run on the in silico data.

Molecules (genes, proteins and metabolites) with a q-
value < 0.05 were considered rhythmic in JTK and Meta-
Cycle. For CircaN, genes were considered rhythmic if they
had a combined q-value of the estimated parameters (pe-
riod and amplitude) below 0.05 and an R-squared ≥ 0.7.
These results were then analyzed, and the number of true
positives (TP), FP or false negatives was calculated for each
algorithm.

CircaN workflow

For the CircaN analysis we ran the following workflow
that can be found at https://github.com/AndreaRP/CircaN.
Briefly, first the expression data and the metadata corre-
sponding to the sample (e.g. animal ID), time point and
individual of each sample are introduced. The parameters
that can be specified in the function include the algorithm
for the NLS regression (Port, plinear or Gauss–Newton),
the initial value for the period (set to the desired period for
the target genes) and maximum and minimum periods to
regress. The gene expression (X) of each gene i at each time
point t is standardized as in (1):

Zti = (Xti − μi )
Si

(1)

where � is the average expression of the gene across time,
and S its standard deviation. The time is given in hours.

The algorithm fits the data to the wave patterns as de-
tailed in Figure 1B. The initial value for the amplitude is
automatically calculated for each gene as the absolute value
of half the range of its standardized expression. The ini-
tial value for the period can be manually specified; for our
benchmarking we set it to 24 h, which is the default for Cir-
caN. Of note, CircaN delivers the phase estimates as the ac-
tual phase, not the peak time of expression, which is dif-
ferent from other analytical tools. Next, CircaN calculates
the R-squared, the AIC and BIC to assess the goodness
of fit. It also computes the adjusted P-value for each esti-
mated parameter. After this step, CircaN has seven poten-
tial results for each gene, one per theoretical circadian pro-
file, according to (19), and on the next step it selects the fit
with the lowest AIC as the best match and the rest are dis-
carded. Finally, CircaN calculates the combined P-value of
the period and amplitude parameters using Fisher’s method
(20) and its corresponding adjusted P-value by Benjamini–
Hochberg Procedure (21). Fisher’s procedure merges the
probability values of each independent test into one statistic

https://openwetware.org/wiki/HughesLab:JTK_Cycle
https://github.com/AndreaRP/CircaN
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Figure 1. CircaN curve patterns and workflow. (A) Curve types included in the CircaN algorithm (19). (B) CircaN workflow. Normalized expression and
metadata are introduced as parameters in the CircaN function. The data are then standardized and fit to each of the curve types in (A). The curve best
fitting the data is selected and a combined P-value is computed for the amplitude and period parameters. Finally, multiple testing correction is applied to
each P-value and the results are returned, including gene lists, parameter estimations and goodness-of-fit measures.

by means of the formula in (2):

X2
2k = −2

k∑

i = 1

ln (pi ) (2)

where pi is the P-value of the ith hypothesis test.

Sample processing for RNA-sequencing and raw data pre-
processing

Mice were kept in a normal 12 h light/12 h dark controlled
mouse facility and experimental procedures were approved
by the Animal Care and Ethics Committee of CNIC and
the regional authorities. Whole intact livers were harvested
at zeitgeber times (ZT) 1, 5, 9, 13, 17 and 21, for all mice
and snap-frozen in 1 ml of TRIzol each. Whole RNA was
obtained subsequently using mechanical disruption (Poly-
tron PT 6100; Kinematica) and chloroform extraction and
cleaned up using silica-based spin columns (Qiagen) ac-
cording to manufacturer instructions. RNA quality was
checked using capillary electrophoresis (Agilent). Five mice
per group were experimented upon, but only the best quality
RNA from three of the mice from each group was submit-
ted for whole RNA next generation sequencing in the Ge-
nomics Unit of CNIC. A total of 200 ng of RNA was used
to generate barcoded RNA sequencing libraries using the
NEBNext Ultra RNA Library preparation kit (New Eng-
land Biolabs). Libraries were sequenced with HiSeq2500 (Il-
lumina) to generate 50-nt single reads, with minimum of 8
million reads per sample. FastQ files for each sample were
obtained using CASAVA v1.8 software (Illumina). Reads
were further processed using the CASAVA package (Illu-
mina) to demultiplex reads according to adapter indexes
and to produce FastQ files. Read quality was determined

with the application FastQC. For data analysis, sequenc-
ing adaptor contaminations were removed from reads using
Cutadapt v1.7.1, and the resulting reads were mapped on
the transcriptome (GRCm38 Ensembl gene-build 84) and
quantified using RSEM v1.2. Only genes with counts in
at least one sample were considered for statistical analysis.
The R package limma v3.32.2 was used to normalize the
estimated counts from RSEM. Raw data for the RNA se-
quencing analyses, as well as the normalized counts can be
publicly accessed at the Gene Expression Omnibus (GEO;
NCBI) with GEO accession no. GSE125867.

Circadian analyses on biological data

We analyzed data from four different publications
(7,11,22,23), and one in-house liver dataset. These data
featured different cell types (liver tissue and epidermal
stem cells) with varying sampling frequencies and lengths.
We performed circadian analyses with CircaN, JTK as
a standalone algorithm and MetaCycle 2d, using the
combined results of JTK and LS. For all algorithms we
established a minimum period of 20 and a maximum of 28.
When necessary, we cropped longer datasets to adjust them
to a 24 h time frame.

Gene ontology analysis

All gene ontology (GO) analyses were made using David
GO, focusing on the Biological Processes section of the re-
sults. We chose to perform a so-called Direct analysis, which
provides GO terms that are directly annotated by the source
database, without parent terms, and thus reduces the redun-
dancy often found in these type of functional exploration by
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grouping terms belonging to the same hierarchy family to-
gether. For all the gene lists, only terms with an adjusted
P-value (Benjamini) below 0.05 were considered to be ‘en-
riched’.

RESULTS

Detection of circadian genes using CircaN

CircaN fits a circadian-like curve to the data using NLS.
NLS algorithms provide a numerical approximation to ob-
tain the optimum value that minimizes the mean square er-
ror in non-linear models for which an analytical solution
does not exist (24,25). To encompass the majority of possi-
ble expression kinetics featuring true circadian frequencies,
we considered seven different oscillatory curve types as tem-
plates, namely cosine, cosine square, triangular, cosine plus
linear, dampened cosine, cosine plus exponential and peak
curves (Figure 1A) (19). CircaN takes the normalized gene
expression data as input and performs a standardization to
unify the data range. Each gene is then fitted to every curve
pattern using NLS optimization to estimate its period, am-
plitude and phase. If replicates are available, a random ef-
fect is included in the model to account for sampling uncer-
tainty, thereby improving the estimation of the parameters
of interest, and P-values are then calculated for each param-
eter. Because the rhythmicity of circadian genes is mainly
captured by the amplitude and the period parameters, we
used Fisher’s procedure to combine the P-values for both
the amplitude and the period, as an overall estimate of each
gene’s oscillatory behavior. Finally, this new combined P-
value is corrected for multiple testing using the Benjamini–
Hochberg procedure (21). CircaN also provides statistics of
the goodness of the fit; for instance, both the Akaike and
Bayesian Information Criteria are provided (AIC; BIC, re-
spectively), as well as the R2, along with the estimation of
the parameters for the curve that best fit the data (Figure
1B). Using the adjusted combined P-value and the R2 we
obtain a reliable list of circadian genes. An additional fea-
ture of our NLS model is that it can be used with uneven
sampling data, i.e. when the samples have been collected at
irregular intervals, or when there are missing time points or
replicates.

CircaN detects circadian genes with larger amplitude and
replicate variability

In order to test the performance of our NLS algorithm,
we used different datasets from publicly available studies,
as well as from an in-house circadian RNA sequencing
dataset. We selected data with experimental setups as di-
verse as possible, featuring different total lengths, sampling
frequencies, number of replicates and sequencing technolo-
gies (Figure 2A), and performed a comparative analysis
using CircaN and the two most widely used algorithms
in the field, JTK and MC. We initially sought to estab-
lish the performance of each algorithm in 24 h-long circa-
dian datasets, which are common in research with mammals
(mostly mice), from two different studies (7,22), as well as an
in-house dataset of circadian gene expression in the mouse
liver. (Figure 2A). We first analyzed a mouse whole liver

RNAseq dataset, with sampling every 4 h for 24 h. Anal-
ysis of this dataset (Yang et al.; (22)) revealed that although
many circadian genes were detected by all three algorithms
(1837), MC and JTK captured an additional 1512 genes.
While this overlap was expected given that JTK is incor-
porated into the MC model, JTK captured 529 additional
genes that were missed by MC. Notably, CircaN further de-
tected unique 983 genes that were undetected by the non-
parametric methods (Figure 2B).

We used the results from this first dataset to search for
possible causes underlying the differential performance of
each method. In particular, we examined the possibility that
the identification of circadian patterns in genes was associ-
ated with variability of gene expression within and across
time points. Variability between time points is a measure of
the amplitude, while inter-replicate variability reports tech-
nical or biological noise. Hence, we calculated the coeffi-
cient of variation (CV) between time points and between
replicates for the sets of genes uniquely identified by each al-
gorithm. We found that CircaN and JTK allowed for larger
variability between replicates than MC, which in contrast
was able to identify circadian genes with smaller ampli-
tudes (Figure 2C). Analysis of a second, in-house generated
dataset of the circadian liver transcriptome yielded similar
results (Figure 2D): strong coincidence of genes identified
by the three methods (2068 genes), a large number of genes
shared by MC and JTK (1482), but not CircaN and a no-
ticeable set of genes detected only by CircaN but none of the
other two algorithms (700). The characteristics of the genes
detected by each method followed the same trend than the
previous dataset: CircaN captured genes with larger ampli-
tude and more variability between replicates than MC (Fig-
ure 2E). Contrasting with these RNA sequencing analyses,
in an additional microarray dataset (Solanas et al.; (7)) the
number of genes detected by all three algorithms was low
(227) (Figure 2F). Notably, in this set CircaN outperformed
the other algorithms with 803 unique circadian genes de-
tected, while JTK and MC captured very few specific genes
individually (4 and 102, respectively), and 110 genes were
detected by both. Once more, the CV across time points was
smaller for the genes detected by CircaN than by MC or
JTK, but the CV between replicates remained higher than
that of the genes detected by MC (Figure 2G). These results
might be the consequence of the ‘noisier’ nature of microar-
ray data versus NGS data (26).

Heatmaps of the different collection of genes revealed
circadian-like patterns for genes that had been missed by the
other algorithms. (Figure 3A and B). Additionally, the R2

values of the genes detected by CircaN show the close fit of
the genes detected by CircaN to circadian curves. (Supple-
mentary Figure S1a). Thus, the different algorithms identify
common as well as distinct gene sets featuring circadian dy-
namics: CircaN is able to detect rhythmic patterns with a
higher degree of noise between replicates, thereby identify-
ing genes with more subtle changes across time. This feature
critically allows identification of a substantial number of
circadian genes not detected by existing methods, as clearly
illustrated in the microarray dataset (Figure 3C and D; Sup-
plementary Figure S1b). MC, in turn, is less permissive with
the experimental and biological noise but it is able to detect
weaker circadian oscillations.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 5

803

102
4 8

227

0

250

500

750

In
te

rs
ec

tio
n

S
iz

e

JTK
MC

CircaN

JTK
MC

CircaN

JTK
MC

CircaN

01000 500
Set size

700

144 74

1482

173
33

2068

0

500

1000

1500

2000

In
te

rs
ec

tio
n

S
iz

e

04000 2000
Set size

Set size

DDaattaasseett DDeessccrriippttiioonn AAcccceessssiioonn RReeffeerreennccee TToottaall LLeennggtthh FFrreeqq.. RReeppss.. TToottaall SSaammpplleess TTyyppee

Yang

Rubio-Ponce

Mouse liver GSE70499 Yang et. al., 2016 24 4 3 18 RNAseq

Solanas Mouse Epidermal SCs GSE84511 Solanas, et. al., 2017 24

24

4 4 24 Array

Mouse liver GSE125867 This study 4 3 18 RNAseq

Zhang Mouse liver GSE54652 Zhang, et. al., 2014 48 2 1 96 RNAseq

Ray Mouse liver GSE111696 Ray, et. al., 2020 72 3 3 72 RNAseq

A

983

529

78

1512

236
122

1837

500

1000

1500

2000

In
te

rs
ec

tio
n

S
iz

e

S
ol

an
as

et
al

.
R

ub
io

-P
on

ce
Ya

ng
et

al
.

020004000

0

●

●

●

●●●

●

●

●
●

●
●●

●

●●

●●

●●
●
●

●

●

●

●

●

●

●

●

****
**

0

1

2

C
irc

aN JT
K

M
C

Ti
m

ep
oi

nt
V

ar
.C

oe
ff.

R
ep

lic
at

e
V

ar
.C

oe
ff.

Ti
m

ep
oi

nt
V

ar
.C

oe
ff.

R
ep

lic
at

e
V

ar
.C

oe
ff.

Ti
m

ep
oi

nt
V

ar
.C

oe
ff.

R
ep

lic
at

e
V

ar
.C

oe
ff.

●

●

●●●●

●
●●

●●

●●●

●

●

●

●

●●

●

●

●●

●●●●

●●●

●

●

●●

●●●

●

●

●●

●

●

●
●●●

ns
****

0.2

0.0

0.4

0.6

0.8

C
irc

aN JT
K

M
C

C
irc

aN JT
K

M
C

C
irc

aN JT
K

M
C

C
irc

aN JT
K

M
C

C
irc

aN JT
K

M
C

B C

D E

F G

●

●
●
●●

●

●●

●●●●

●

●●

●●

●●

●

●●

●
●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

ns
ns

0.0

0.3

0.6

0.9

1.2

●

●●●●

●

●

●●

●●●●

●●●●

●

●●

●

●

●●

●●

●●●

●●●
●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

ns
***

0.25

0.50

0.75

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

*
*

0.00

0.05

0.10

0.15

0.00

●

●

●
●

●
●●

●
●

●

●

●
●●

●

●

ns
*

0.025

0.050

0.075

0.100

190
110

Figure 2. Non-redundant mining of circadian genes across algorithms. (A) Table with analyzed dataset configurations. (B) Upset plot depicting the con-
cordance of detected genes in the Yang et al. dataset (24 × 4 × 3) and (C) the variation coefficients between time points and replicates. (D) Upset plot
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CircaN outperforms non-parametric methods in 24-h experi-
ments when biological replicates are limiting

To further assess the performance of each algorithm in dif-
ferent experimental setups, we next analyzed datasets with
varying sampling lengths and frequency, as well as number
of replicates. In the Zhang dataset (11), which sampled ev-
ery hour for 48 h (Figure 2A), we found that most oscillating
genes were detected by all algorithms (3108 genes), some
only captured by CircaN (667), and others were detected
only by both MC and JTK (578) (Figure 2A). In silico re-
duction of this data into a 24 h-long experiment, with only
one sample every hour, yielded completely different results
(Figure 2B). While JTK or MC detected very few genes, Cir-
caN detected over 6800 circadian genes. Similarly, when we
analyzed a 72 h-long dataset ((23).; Figure 2C), CircaN de-
tected fewer genes while JTK and MC both captured over
6000 genes. Interestingly, when these data were cropped to a
24-h setting, the results were again similar to the Yang and
Rubio-Ponce datasets (Supplementary Figure S2d).

Together, these observations reveal that JTK, MC and
CircaN feature strikingly different strengths and weak-
nesses in identifying bona fide circadian genes, depending
of the noise, robustness of the circadian pattern and sam-
pling scheme. Since these features cannot be known before-
hand, we next examined whether optimal circadian tran-

script mining could be achieved by the routine combina-
tion of non-parametric (MC) and parametric (CircaN) ap-
proaches.

Combination of non-parametric and NLS models optimizes
discovery of circadian programs in tissues

To assess the robustness of circadian data mining with the
different methods, we submitted the gene lists identified by
CircaN and MC separately or in combination for path-
way analysis. In the Yang et al. dataset, the combined list
of genes resulted in more biological terms than either of
the analyses separately (Figure 4A and B). Moreover, vir-
tually all terms enriched in the combined analysis assem-
bled under relevant categories for liver function, such as
lipid metabolism, autophagy, insulin signaling pathway and
circadian rhythms (Supplementary Table S1). Similarly, the
analysis of the genes detected with the combined strategy
for the Rubio-Ponce dataset yielded new functional path-
ways (GO terms) than either of the separate lists (Figure
4C and D). Again, most terms in the combined list were
relevant for liver function (Supplementary Table S2). Thus,
combination of MC and CircaN is superior at identifying a
substantially higher number of circadian genes and relevant
functional pathways.
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Optimal signal-to-noise performance with the combined ap-
proach

An obvious caveat of approaches that identify large num-
bers of genes is that non-circadian events (i.e. FP) can be
incorporated and generate biological noise, bias pathway
analyses and confound interpretation of the data. To get
an estimation of the proportion of FP genes that were in-
troduced by our combined strategy, we built an in silico
dataset (Supplementary Table S3) in which genes with bona
fide circadian behavior were pre-determined. We generated
a dataset containing 10 000 genes, of which 30% had a type
of circadian behavior randomly selected from the different
curves shown in Figure 1A, plus a cosine wave with a ran-
dom outlier point, to assess the performance when there is
an outlier in the temporal series. To further reproduce a re-
alistic scenario, transcript values were generated with differ-
ent variabilities across time points and across replicates in a
24-h experiment, with different sampling frequencies (every
2, 3 and 4 h). Using this approach, we successfully identified
virtually all circadian genes from our dataset (98.2–99.2%)
and, more importantly, we obtained very low rates of FP
gene detection, regardless of the sampling frequency (0.8–
3.1%) (Figure 5A–C). Detailed analyses further demon-
strated that the majority of TP genes were identified by the
combination of all three algorithms, while false positivity
was more common for individual algorithms, especially at
low sampling frequencies (Figure 5C). Thus, by combining
strategies that exploit different statistical strengths, we sig-
nificantly extend the efficient mining of circadian genes in
multiple experimental datasets, with almost complete iden-
tification of the circadian transcriptome.

DISCUSSION

Adjusting a non-linear mixed model to the data generated in
circadian experiments is, together with time-series analysis,
the most natural statistical approach to the detection of cir-

cadian patterns from experimental observations. However,
economical and ethical concerns and the inherent noise
of gene expression data have made non-parametric meth-
ods (13) emerge as the tool of reference. Non-parametric
tests are known to have less statistical power than para-
metric ones, and this drawback is typically overcome by
using unadjusted P-values, especially for microarray data,
which usually produce noisier data than NGS (7), or by in-
tegrating P-values from different methods (14), which rep-
resent a relaxation of statistical standards and, more impor-
tantly, may introduce biological noise. Here, we have devel-
oped a robust computational approach for the identification
of circadian genes from transcriptomic data. Our method
adds to previously existing algorithms in studies with mam-
malian models or in other experimental setups in which the
available number of individuals is limited, and also when it
is necessary or advantageous to use uneven sampled data.
Other methods, such as Lomb–Scargle, also offer the pos-
sibility to analyze uneven sampling but perform poorly as
stand-alone algorithms, particularly in short-term experi-
ments (in-house testing; not shown), whereas commonly
used non-parametric models such as JTK do not allow un-
even sampling. CircaN analyzes the data generated in gene
expression experiments and fits a wide range of curve types,
through NLS modeling, to obtain estimates from each fitted
curve. It then automatically selects the model that best fits
the actual data and presents the corresponding estimation
for period, phase and amplitude, along with several metrics
regarding the goodness of fit.

The inconsistent performance of the most widely used
circadian algorithms on different datasets inspired the de-
velopment of CircaN. We reasoned that, as a parametric
method, it would have the statistical power to detect rhyth-
mic patterns in a broader range of data distributions. In-
deed, in our own systematic analysis of several biologi-
cal datasets, we have found that while MetaCycle is gen-
erally able to detect genes with lower amplitudes than ei-
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ther JTK or CircaN, it requires data with low CV across
replicates, i.e. a smaller amount of technical and biological
noise. When confronted with data of a more variable nature,
such as those generated from biological samples (including
live animals or patients), the detection of circadian genes
using MC drops dramatically. In contrast with these meth-
ods, CircaN’s performance is comparatively stable in all the
tested datasets. This effect is particularly evident when test-
ing highly variable data, such as microarray-based exper-
iments, where CircaN alone detected 56% of all captured
genes. Because the sampling frequency and number of repli-
cates are a strong source of variability, we addressed this im-

portant issue by testing several configurations. As expected,
in silico data show that sampling frequencies closely corre-
late with overall performance, specifically with the number
of FPs detected. Based on our results, we recommend that
a minimum of six time points with three replicates be col-
lected for an accurate analysis.

A key conclusion of our study is that the combined use
of CircaN and MetaCycle maximizes the detection of circa-
dian genes, without escalating the number of FPs, as shown
by analysis of our in silico dataset. Importantly, the com-
bined use of non-parametric and NLS-based models op-
timizes the results and allows a much more stable perfor-
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mance in a wide range of experimental conditions, and
should be amenable and simple to use for those interested in
dissecting biological patterns in the mammalian transcrip-
tome. This functionality is included into a CircaN R pack-
age by means of the full mode analysis function, which runs
all three methods and combines the results into a single file.
CircaN is freely available to the community as an R package
(https://github.com/AndreaRP/CircaN).

Although we have only tested CircaN with transcrip-
tomics data here, our method should be equally useful for
other types of omics data, such as proteomics or epige-
nomics datasets that display similar circadian variations in
quantifiable parameters (protein or chromatin/DNA modi-
fications). Thus, CircaN, alone or in combination with non-
parametric algorithms, provides an extremely valuable tool
for the identification of circadian parameters under real-life
situations, in which the number of samples is typically lim-
ited, without significant loss of biological information.
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