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Abstract

Large-scale presence-absence monitoring programs have great promise for many conservation applications. Their value can
be limited by potential incorrect inferences owing to observational errors, especially when data are collected by the public.
To combat this, previous analytical methods have focused on addressing non-detection from public survey data.
Misclassification errors have received less attention but are also likely to be a common component of public surveys, as well
as many other data types. We derive estimators for dynamic occupancy parameters (extinction and colonization), focusing
on the case where certainty can be assumed for a subset of detections. We demonstrate how to simultaneously account for
non-detection (false negatives) and misclassification (false positives) when estimating occurrence parameters for gray
wolves in northern Montana from 2007–2010. Our primary data source for the analysis was observations by deer and elk
hunters, reported as part of the state’s annual hunter survey. This data was supplemented with data from known locations
of radio-collared wolves. We found that occupancy was relatively stable during the years of the study and wolves were
largely restricted to the highest quality habitats in the study area. Transitions in the occupancy status of sites were rare, as
occupied sites almost always remained occupied and unoccupied sites remained unoccupied. Failing to account for false
positives led to over estimation of both the area inhabited by wolves and the frequency of turnover. The ability to properly
account for both false negatives and false positives is an important step to improve inferences for conservation from large-
scale public surveys. The approach we propose will improve our understanding of the status of wolf populations and is
relevant to many other data types where false positives are a component of observations.
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Introduction

Presence-absence surveys have become increasingly prominent

in large-scale ecological and conservation research [1,2]. Occur-

rence data have the advantage of being relatively easy to collect

and can be related to many important ecological processes such as

habitat use, range-dynamics, metapopulation dynamics, and

occupancy-abundance relationships [1]. Particularly important

from the standpoint of understanding ecological processes is the

ability to use empirical data to estimate occupancy transition

probabilities (i.e., colonization and extinction) and to investigate

how occupancy dynamics are affected by dynamics of habitat and

co-occurring species [1,3]. New methods for estimating species

occurrence probabilities have opened the door to utilizing large-

scale occurrence data collections, many of which have engaged the

public in the data collection process. Utilizing the public can

expand the scope and scale of data collection by orders of

magnitude as compared to typical research efforts [4,5]. However,

observation error is likely to be an especially significant issue for

these types of data, meaning they should be approached with

proper caution [6–10] If inferences are to be reliable it is necessary

to account for observation uncertainty, including both non-

detection and misidentification [11].

Ecologists have long recognized the need to account for

imperfect detection when estimating parameters for wildlife

populations and have developed an extensive set of methods to

deal with non-detection [12]. Recent effort has focused on the

need to also account for misclassification and misidentification

when estimating population parameters. For example, adaptations

of traditional mark-recapture models have focused on various

types of classification uncertainty [13]. Additionally, the availabil-

ity of analytical techniques to deal with individual misclassification

have increased the utility of techniques that identify individuals

using genetic identifiers [14] and visual patterns [15].

Similarly, most attention for studies of species occurrence have

focused on non-detection [1], although recent efforts have also

considered misclassification errors. In occupancy studies, misclas-
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sification happens when sites that are unoccupied are recorded as

being occupied. These false positive errors are common in many

occurrence sampling methods [7,11,16–18]. This is problematic

because, when unaddressed, even small rates of false positive

errors can result in substantial bias in single season estimators of

occupancy [19,20] and estimators for colonization and extinction

rates [11,21]. Detection errors are often ignored when public

surveys are analyzed and, when addressed, effort has generally

focused on false negative errors [6,10]. Previous attempts to

address misclassification have largely focused on ad hoc methods

to try to reduce their occurrence in data sets [7,22].

Two approaches have been suggested for estimating occupancy

when false positives occur in single season occupancy analyses.

The first is a simple modification of the standard occupancy

estimator [23], which allows for false positive detections to occur at

unoccupied sites [19]. Observed numbers of detections at sites are

treated as a binomial mixture of the true positive detection

probability at occupied sites and false positive detection probability

at unoccupied sites. Miller et al. [20] extend this to deal with cases

where detections can be divided into uncertain detections, which

have some probability of being a false positive, and certain

detections, which are assumed to have zero probability of being a

false positive. Their approach reduces bias and increases accuracy

when this added information is available about the certainty of

observations. Hanks, Hooten & Baker [24] demonstrated a similar

formulation for using Bayesian hierarchical methods. Both Royle

& Link [19] and Miller et al. [20] also discuss parameterizations

for situations where multiple occupancy states occur.

We extend previous methods which allow for false positive

errors in single season data to models used to estimate occupancy

dynamics across multiple seasons. To illustrate the approach, we

examine occupancy dynamics for gray wolves (Canis lupis) from

2007–2010 in Montana. We estimate site level extinction and

colonization probabilities to determine how relative occupancy

differs across habitat types, whether wolves are still expanding

their range in this area, and how frequently the occupancy status

of sites changes. We compare the results from our estimates that

account for false positives to estimates from two methods that do

not. The first is where detection errors are assumed not to occur

(no false negatives or false positives) and the second is where only

non-detections errors are assumed to occur (false negatives occur

but no false positives).

Methods

Statistical Model
Miller et al. [20] described a general approach to obtaining

single season estimates of occupancy when false positive detections

occur. We extend this approach to estimate occupancy dynamics

across multiple seasons where the probability a site is in a given

occupancy state is governed by a Markov process. We focus on the

special case where detections can be divided into those that are

certain (i.e., probability that a detection is a false positive is zero)

and uncertain detections.

There are two possible occurrence sampling designs where both

certain and uncertain detections could be recorded. The first is

where either certain or uncertain detections can occur during a

single sampling occasion. For example during an avian point count

survey, observers may consider visual observations of morpholog-

ically cryptic species uncertain because of the potential for

misidentification, but auditory observations certain if the call is

distinct. The second sample design occurs when only one

observation type may occur during any given sampling occasion

so that detections during a sampling occasion are either all

uncertain or are all certain. As an example, consider a mammal

species where both scat-surveys and direct-trapping occurs. For

many species, the probability of false positives occurring for scat

surveys will be non-trivial due to potential species misidentifica-

tion, and thus we would want to deem detections by this method

uncertain. Our sampling design could be used if a second survey

type that could be considered certain, such as trapping and direct

handling, occurred in at least a subset of the sites. We refer to the

two sampling designs as the multiple detection state model and

multiple detection method model, respectively. In both cases a site

must be occupied for certain detections to be recorded, but there is

some possibility when an uncertain detection is recorded that the

site is actually unoccupied (i.e., false positive detection).

We estimate occupancy dynamics among seasons following the

general framework for multiseason occupancy models described

by MacKenzie et al. [25,26]. The model is comprised of three

types of parameters: 1) the initial state distribution, 2) the between

season transition probabilities, and 3) the detection probabilities.

In the simplest case with two occupancy states (where a site is

either occupied or not occupied), the initial probability of a site

being occupied in time 0 is denoted by y0 and the probability of

being unoccupied by 12y0. The probability an unoccupied site in

time t will be occupied in time t +1 is ct and the probability it will

remain unoccupied is (12ct). Similarly, the probability an

occupied site in time t will be unoccupied in t +1 is et and the

probability it will remain occupied is (12et).

The difference between our approach and the approach

described by MacKenzie et al. [25] for dynamic occupancy

estimation is in how detection probabilities are formulated. First

consider the case with multiple detection states where both

uncertain and certain detections can occur during a single

sampling occasion. For unoccupied sites, by definition certain

detections do not to occur, thus, only two possible observations can

occur: an uncertain detection or no detection. The probability of a

false positive detection occurring for an unoccupied site is p10 and

the probability of no detection is 12p10. For occupied sites, no

detections, certain detections, and uncertain detections can occur.

We use 12p11 to denote the probability of not detecting the

species. The probability the detection will be certain, b, is

conditional on detecting the species at an occupied site. The

probability of an uncertain detection is p11*(1–b) and of a certain

detection is p11*b.

Now consider the multiple detection method design where

individual sampling occasions will include either all certain

detections or all uncertain detections. When the uncertain method

is used, species will be detected at sites that are unoccupied with a

false positive detection probability p10, while no detection will

occur with probability (1- p10). For occupied sites, the true positive

detection probability is p11 and the probability of a false negative

error is (1- p11). When the certain method is used, the probability is

1 that no detections will occur for unoccupied sites. If the site is

occupied, the probability of a true positive detection is r11 and of

not detecting the species is (1- r11).

The parameters above can be used to calculate the probability

of an encounter history occurring for a site, where hi is the

encounter history for the ith site. The product of the probabilities

for data from all the sampled sites is then used to generate

maximum likelihood estimates for parameters. The following

provides examples of how to calculate probabilities for different

potential encounter histories. Consider the case where a site is

sampled on 3 occasions during each of two consecutive seasons.

When both types of observations can be recorded in the same

sampling occasion, we denote non-detections as 0, uncertain

detections as 1, and certain detections as 2. The interval between
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seasons is shown using a space so that the encounter history

h = 000 101 means that the species was not detected at all during

the first season, and uncertain detections were recorded in the first

and third occasions during the second season. The likelihood of

this encounter history occurring is:

(1{y0)(1{p10)3(1{e1)(p10)2(1{p10)

z(1{y0)(1{p10)3e1(p11(1{b))2(1{p11)

zy0(1{p11)3e1(p10)2(1{p10)

zy0(1{p11)3(1{e1)(p11(1{b))2(1{p11):

Because no certain detections occurred, it is possible that the site

could have either been occupied or unoccupied in each of the two

time periods. Thus, the probability is the sum of the probabilities

for each of the 4 possible state combinations: unoccupied in both

seasons, unoccupied then occupied, occupied then unoccupied, or

occupied in both seasons. In each case the probability calculation

is the product of 1) the probability of being in the initial state, 2)

the probability of observing a set of detections conditional on the

starting state, 3) the probability of being in a state in the second

season conditional on the initial state, and 4) the probability of

observing a set of detections conditional on the state of the site in

the second season. Calculating probabilities of encounter histories

that include additional seasons involves iterating the 3rd and 4th

steps for each additional season.

Consider another site where the observed encounter history is

h = 210 011, that is both certain and uncertain detections occurred

during the first season, but only uncertain detection occurred in

the second. The probability of this encounter history is given by

y0(p11b)(p11(1{b))2(1{p11)e1(p10)2(1{p10)

zy0(p11b)(p11(1{b))2(1{p11)(1{e1)(p11(1{b))2(1{p11):

Because a certain detection occurred during the first season we

have only two possibilities for the true state of the site over the two

seasons. The first possibility is that the site was occupied in the first

period but transitioned into being unoccupied in the second. In

this case detections during the second season would be false

positives. Alternatively, the site could have been occupied in both

seasons.

Next consider a survey involving two detection methods

employed on separate occasions, where the site is sampled twice

using an uncertain method and once using a certain detection

method in both seasons. The encounter history h = 00/0 11/0

means that no detections were recorded in the first season with

either method while two uncertain detections were recorded in the

second. Because no certain detections were recorded, all 4 possible

combinations of unoccupied and occupied states for the 2 years

are again possible. The probability of the encounter history is

given by:

(1{y0)(1{p10)2(1{e1)(p10)2

z(1{y0)(1{p10)2e1(p11)2(1{r11)

zy0(1{p11)2(1{r11)e1(p10)2

zy0(1{p11)2(1{r11)(1{e1)(p11)2(1{r11):

Note that the detection portion of the probabilities only has 2

terms for unoccupied sites. This is because the probability of

getting a non-detection for the second survey conditional on the

site being unoccupied is 1.

Next consider the encounter history h = 10/1 11/0 where a

certain detection occurs in the first season. The probability of the

history is:

y0p11(1{p11)r11e1(p10)2

zy0p11(1{p11)r11(1{e1)(p11)2(1{r11):

Because of the certain detection during the first season, only two

possibilities exist for the true states during the two seasons,

occupied in the first season and not in the second or occupied in

both.

Further variation can be accounted for by allowing any of the

parameters to vary among seasons, among sampling occasions, or

among sites. This is easily done by specifying model parameters as

linear functions of covariates (e.g. logit[eit] = b9Xit).

General Approach
We can formulate the estimator for a general sampling design

allowing for additional occupancy and observation states and for

varying degrees of certainty. Sampling designs in which observa-

tions can be divided into certain and uncertain detections are a

special case of the more general estimator described here.

Multistate occupancy models that allow for .2 occupancy states

are useful for many sampling situations [3,26,27]. Similarly

extending the number of possible observation states (i.e., the set

of discrete observations that can be made during a visit to a site)

may be useful both to encompass additional occupancy states and

differences among observation types in their probabilities of

occurrence. In the second case we can relax the general

assumption of a one to one match between occupancy states and

observation states. The utility of such an approach is illustrated by

our example where both certain and uncertain detections occur in

the same sampling occasion. In this case 3 observation states

correspond to two detection states. A more general approach will

also be useful in conditions in which not all detections are either

certain or uncertain, but instead detections vary in their degree of

certainty [20]. The standard occupancy estimator [25], multistate

estimator [26], simple mixture model with false positives [19], and

multiple detection state and method models (here and [20]) are all

special cases of the general formulation shown here. The overall

approach we describe is analogous to the multievent modeling

used for mark-recapture data [13].

We consider a standard multiseason occupancy survey where n

sites are monitored for T seasons. The ith site is visited Rit times

during the tth season. The true occupancy state of the ith site in the

tth season, zit, is one of K discrete occupancy states. Observations of

the ith site on the rth visit in the tth season, yirt, are classified into one

of L observation states that differ in the probability of being a false
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positive detection. The probability of recording an observation

conditional on the true occupancy state is plk = Pr(yirt = l|zit = k). In

cases where a second sampling method is employed, the n sites are

visited S additional times. Observations of the ith site on the sth visit

in the tth season, wist, are classified into one of M observation states.

The probability of detecting a species for the second method,

conditional on the true occupancy state is tmk = Pr(wist = m|zit = k).

The likelihood of the full set of parameters h given the full set of

encounter histories H can be formulated using the general

likelihood for multiseason occupancy (MacKenzie et al. 2003,

2009). The likelihood is made up of 3 components: the initial state

distribution, transition probabilities among states, and state

specific detection probabilities. The full equation for the likelihood

is

L hDhð Þ~P hDhð Þ!w0 P
T{1

t~1
D(ph,t)wt

� �
ph,T:

The initial state distribution w0 is a vector of length K where the

kth element of the vector is the proportion of sites in the kth

occupancy state at the start of the study. Transition probabilities

among occupancy states between years are given by the K by K

matrix wt. The element of the transition probability matrix in the

ath column and bth row give the probability a site will be in

occupancy state b in time t +1 given it was in state a in time t.

The final component is ph,t, which is a vector with one element

for each state that gives the probability of observing an encounter

history h for year t conditional on being in that state. D(ph,t) is a

diagonal matrix with ph,t in the diagonal elements and 09s in all

other elements. These detection probabilities are where our

application differs from previous multiseason occupancy models

by allowing that false positives may occur.

The kth element of ph,t is the product of the probabilities of the

observations occurring for each occasion of the encounter history

given the true state of the site is k. In the case where a single

detection method is used, the kth element is given by

P
R

r~1
pyirtk

and when two methods are used the kth element is given by

P
R

r~1
pyirtk

� �
� P

S

s~1
twisk

� �

The same likelihoods can be used to implement the detection

structure of other single season occupancy estimators that account

for false positives to be used in dynamic analyses. In addition, the

approach is flexible enough to allow for other multistate

occupancy models that incorporate multiple species, abundance

classes, reproductive state, and habitat to be modified to allow for

false positive detections.

Example: Range Dynamics of Gray Wolves
We use the estimator to examine multiseason occupancy

patterns of gray wolves in northern Montana from 2007–2010.

The area includes Montana’s portion of the federally designated

Northwest Montana Recovery Area [28]. We rely on two sources

of data: observations of wolves by hunters collected during

telephone surveys used by the state to estimate deer and elk

harvest (i.e., uncertain method; [29–31]) and known locations of

resident wolf packs collected using radio-telemetry based moni-

toring of marked individuals (i.e., certain method; see [32]).

Hunter survey data offer a wealth of information about the

occurrence and distribution of wolves in the state, representing

millions of hours of time spent in the field each year. However,

these data were likely to include observation errors due to observer

inexperience and the sensitivity of hunters to the recent political

controversies concerning wolves. Alternatively, the known loca-

tions of radio-collared wolves represent an incomplete but

irrefutable sample of occurrence locations from the wolf popula-

tion. We show how our estimator can be used for the combined

data to make inferences not possible using either data set alone.

We make a few key assumptions in using our approach. First,

certain detections only occur for established packs and thus our

estimates of occupancy are for the probability a pack occurs rather

than wolves in general. We suspect that in some cases hunters

report transient wolves, which would be the functional equivalent

of false positive observations in our model. This definition of

occupancy is concurrent with our desired metric for monitoring,

making it a feature of the approach in our case. We also work

under the assumption that the probability a pack is detected using

the certain survey method (i.e., the probability that .1 wolf from a

pack is captured and radio-collared) is not correlated with

detection probabilities of packs by hunters. We believe our sample

of known packs is representative and this was not an issue but

consideration should be given to this condition when using our

estimator. Finally, locations for our certain method of observation

are typically are gathered before and immediately after the

hunting season rather than during the hunting season. We

therefore assume that the resident wolf packs monitored for our

certain detection method use the same territories during the

hunting season.

Our goal was to estimate the proportion of 600-km2 grid cells

(i.e., mean territory size of wolf packs in Montana; [30]) that were

used by wolf packs during the late fall and how occupancy in each

year was influenced by the previous occupancy status of the sites.

Sampling occasions for the hunter surveys were based on temporal

replication. We treated each week of the 5-week general rifle

season as a separate observation occasion. Hunters were asked to

report where and when they saw wolves and this information was

used to assign detection to grid cells during each of the sampling

occasions [31]. We only had a single observation occasion each

year for the known pack location survey. We considered a

detection to have occurred if the centroid of radio-collar locations

during a season was within a cell. This was a conservative measure

of occurrence and allowed us to give equal weighting to packs with

intensive location data (e.g., animals with GPS collars) and those

where monitoring was more intermittent and based on one or a

few locations during the sampling period.

We recognized there was wide variation in the density of wolves

related to habitat quality across this region and classified cells

based on a composite measure of habitat quality. Based on prior

research we identified 4 measures we believed to be good

predictors of wolf distribution [30,31]: the proportion of forest

cover, mean elevation, mean slope, and a measure of terrain

ruggedness of cells. All of these were strongly positively correlated

making it impossible to separate the influence of each. Rather than

arbitrarily selecting one measure, we created a composite

predictor that equally weighted all of them. We z-transformed

values of all 4 and summed them to generate a single habitat

covariate H. We classified cells as low-quality if H was less than

average (H ,0; n = 168 cells), high-quality if the average of the

habitat covariates was greater than 1 SD above the mean (H .4;
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n = 59), and medium quality if H was intermediate (0, H ,4;

n = 54; Figure 1).

Unaccounted-for heterogeneity in observation effort can bias

estimates of occupancy making it important to account for

variation in effort [1,11]. Observer effort, which should be related

to both true positive and false positive detection probabilities, will

be a function of the amount of time spent by hunters in an area.

Based on telephone surveys completed by hunters each year, we

estimated the number of deer and elk hunter days per km2 in each

of the 162 hunting units within Montana using a stratified network

estimator [29]. We assigned a value for the summed estimate of

deer and elk hunter days to each cell according to the hunting unit

in which it occurred. Areas such as national parks and tribal

reservations where hunting did not occur were treated as missing

values to correctly account for the fact that sampling did not occur

in these areas.

All models were fit using PRESENCE v 3.1 [33]. We used

Akaike’s Information Criterion (AIC) to choose among alternative

parameterizations of the model allowing for false positive

detections. First, we selected among alternative parameterizations

for detection parameters (p11, p01, and r11), where the most general

parameterization for other parameters was used (model 5 in the

next paragraph). We considered four alternatives that differed

according to whether detection for the hunter survey (p11 and p01)

varied with respect to hunting effort and whether the known-pack

survey locations (r11) varied by habitat quality. The detection

models were: 1) neither effect, 2) only the effort effect, 3) only the

habitat effect, and 4) both effects. In all cases we specified that all

detection parameters varied among years. Hunter effort was used

to account for the wide variation among grid cells in the

opportunity for hunters to detect wolves, which was likely to

affect detection probabilities. We included an effect of habitat

quality to account for the possibility that a perceived lack of wolves

in low-quality cells may have led to lower detection rates of

established packs.

Using the parameterization for the best detection model (lowest

AIC), we considered 5 alternatives for the occupancy parameters

related to whether or not transitions (e and c ) varied annually and

whether all the parameters (y0, e, and c) varied by habitat quality.

The alternative occupancy models included: 1) neither effect, 2)

only the year effect, 3) only the habitat effect, 4) an additive

combination of habitat and year, and 5) an interaction between

habitat and year.

We also compared the estimates from the model with the lowest

AIC among our alternatives to equivalent parameterizations

where false positives were assumed not to occur and where both

false negatives and false positives were assumed not to occur. First,

we estimated parameters when false negatives were allowed but

false positives were not. We did this by fixing the false positive

probability to equal 0 in the models described above. This is

equivalent to using the standard dynamic occupancy estimator

proposed by MacKenzie et al. [25]. In addition, we generated

naı̈ve estimates assuming that false negatives and false positives did

not occur. To do this we assumed that wolves were present if they

were detected at least once during either survey type and estimated

initial occupancy probabilities and transition probabilities based

on this assumption. We were able to generate naı̈ve estimates from

this data set using Presence. We fixed the false positive probability

to 0 and the true positive detection probability to 1 and generated

encounter histories with a single visit per season where cells with

no detection were assigned a zero and cells with at least 1 detection

by any method was assigned a 1.

Results

In general, medium and high habitat quality cells were in the

western end of the study area and are associated with mountainous

and forested terrain (Fig. 1A). Cells where a known pack was

observed in at least one year are concentrated in the western end

of the study area in the higher habitat quality areas (Fig. 1B).

Observations of wolves by hunters occurred in other parts of the

study area, although in most cases wolves were observed in these

areas during only a few occasions (Fig. 1C). Differences in the

distribution of observations for cells with and without known packs

were consistent with our expectations if false positives occurred

(Fig. 2). The occupancy models we fit allowed us to determine the

support for two alternative explanations for these patterns in the

data. The first was that misidentification was leading to false

positive errors in the eastern part of the state, while the other was

that low numbers of hunter detections and few known packs were

a result of lower hunter effort and fewer collared animals in what

was perceived to be low quality habitat. Determining which of

these had greater support has important implications for

understanding the current range extent of wolves in the state.

The parameterization of our model with the lowest AIC value

was the one where detection for the hunter survey increased with

respect to hunter effort and detection of packs was somewhat

lower in low quality habitat (detection model 4). The best model

for initial occupancy and transitions included an additive function

of year and habitat quality (occupancy model 4). The next best

Figure 1. We estimated the proportion of grid cells in northern Montana that were occupied by wolves. Cells were divided based on
perceived habitat quality into low, medium, and high quality categories (A). Most certain observations of known packs based on collaring and
relocation by radio telemetry were concentrated in the western end of the study area where the higher quality habitat was located (B). While high
frequency of observations by hunters also occurred in high-quality areas, they also reported a low frequency of wolf observations in the eastern
portion of the study area, which we suspected were due to misidentification (C).
doi:10.1371/journal.pone.0065808.g001

Figure 2. The proportion of cells with and without known
packs where wolves were observed by hunters from 0 to 5
times out of the 5 sampling occasions that occurred in each
year. For cells with known packs this distribution increased across the
possible values peaking at the maximum of 5 times. For cells without a
known pack, as expected due to unoccupied cells, the proportion of 0
observations was much higher than for those without a known pack. If
no false positives occurred we would expect the relative frequencies for
1 to 5 hunter observations to be the same for cells with and without
known packs. Instead we see a greater relative frequency of 1 or 2
observations in cells without known packs, which is consistent with a
low probability of false positive errors occurring in unoccupied cells.
doi:10.1371/journal.pone.0065808.g002
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model, which did not include an annual effect on transition

probabilities, had DAIC = 6.3. Because of the strong support for

the best model and for ease of comparison we focused on results

for the best fitting model.

Both the true positive (p11) and false positive (p01) detection

probabilities for the hunter survey data increased as hunter

effort increased (Figure 3). False positive probabilities were

greater than 0.5 in areas with the greatest hunting effort. A

value of 0.5 would correspond with unoccupied cells having a

97% chance of at least 1 false positive detection during the 5

sampling occasions in a year. True positive detection probabil-

ities for the certain survey (r11) were lower in low quality

habitats than medium and high quality, and all detection

probabilities increased across years.

As expected, occupancy dynamics varied among low, medium,

and high quality cells (Figure 4). Medium quality cells had slightly

higher occupancy than high quality, although differences were

small compared to the consistently lower occupancy estimated for

cells with low habitat quality. The medium and high categories

could probably be combined for future work. Occupancy was

similar across all years due to the low probability of transitions

across all habitats. Our best model included annual differences in

transition probabilities. Our best estimate was that no extinction

occurred from 2008–2009 and 2009–2010, and the only

extinctions occurred in medium quality cells from 2007–2008.

Colonization also appeared to increase for 2008–2009 from a

negligible level for 2007–08, only to fall again in 2009–10.

Estimates based on our approach differed significantly from

estimates using a naı̈ve estimator and occupancy estimates when

false positives were assumed not to occur (Fig. 4). Our model had a

much lower AIC value than the traditional approach where false

positives are assumed not to occur (DAIC = 443.2). Differences in

the estimator structure did not allow for a similar comparison to

the naı̈ve estimates. Occupancy estimates were lowest and

extinction and colonization probabilities highest for the naı̈ve

estimator. Occupancy estimates were greatest for the standard

estimator that assumed that false positives did not occur.

Occupancy in the medium and high quality cells was estimated

to be near 100%, and estimates of occupancy in the low quality

cells, which make up the majority of the study area, were moderate

and rapidly increasing across the study period based on the

standard estimator. Estimates of extinction and colonization

probabilities were near 0 in the medium and high quality cells

for the standard estimator, but high transition probabilities were

still estimated for the low quality cells. Because almost all sites in

the medium and high quality habitats were occupied there was

little opportunity to estimate colonization rates. This is reflected in

the large standard errors for these parameters. Occupancy

estimates using our approach were in between those for the other

methods with high occupancy in the medium and high quality cells

and very low (#0.04) and stable occupancy in the low quality cells.

Overall transition probabilities were lowest when we accounted for

false positives.

Discussion

We demonstrate that detection errors in general, and false

positives in particular, can have large effects on estimates of range-

dynamics and other presence-absence processes. False negatives

led to underestimation of occupancy, while false positives led to

over-estimation of occupancy, extinction, and colonization.

Whereas the importance of accounting for false negative errors

is frequently recognized, much less attention has been given to the

potential effects of false positive errors. However, even small

probabilities of false positive errors can lead to significant over-

estimation of occupancy once false negatives are accounted for

[20]. This is illustrated by comparing our results for the low-

quality cells to those of standard occupancy estimators. Estimates

which do not account for false positives were 3–6 times greater in

each of the years than those that did account for false positives.

Further, standard occupancy estimates inferred that wolf occu-

pancy was increasing in low-quality habitats, whereas estimates

from the methods described here did not. Independent work on

wolf population dynamics [32], as well as comparison of the

current known wolf distribution with other wolf habitat models

[33], indicates that wolf population growth in Montana may be

slowing as suitable habitat is becoming filled. Accounting for false

positives is that much more important for rare species with low

occurrence probabilities [20], as is the case with wolves in low-

quality habitat.

The effects of false positives are less predictable when estimating

transition probabilities among time periods [11,21]. This unpre-

dictability makes it even more important to account for false

positives (and negatives) when occurrence dynamics are of interest.

In our study, unaccounted-for detection errors led to higher

estimates of both colonization and extinction. In other cases

unaccounted-for false positives will lead to underestimation of

transition probabilities (DAWM unpublished data).

Our results in general suggest that hunter observations are a

viable survey method to monitor range dynamics of wolves,

particularly when detection errors are accounted for. We found

that range size was generally stable across the years of our study,

with most occurrences restricted to higher quality habitat in the

western end of our study area, consistent with existing models of

wolf habitat suitability [34]. Interestingly, we found that during the

3 annual transition periods measured in this study, turnover of

occurrence status at the site level was rare. Occupied areas almost

always remained occupied, and unoccupied areas were colonized

with low probabilities. This indicates a high degree of stability at

the distribution level, suggesting perhaps that wolves now occupy

most of the highest quality habitat in northern Montana.

In recent years initiatives to collect and analyze large and

extensive data sets collected by the public have increased [35].

Too frequently, analyses of these data give little consideration to

observation uncertainty and in the worst cases are conducted

Figure 3. Both true positive and false positive detection
probabilities increased with increased hunter effort as mea-
sured at the hunting unit level by the number of hunter days in
the field per km2. Plotted lines are the estimated relationships for
2010, and dashed lines are 95% confidence intervals. Our best model
included an additive effect of year so that in other years detection had
the same basic relationship to hunter effort on a logit scale but was
lower overall.
doi:10.1371/journal.pone.0065808.g003
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without properly considering the sampling effort that generates the

data [36]. In many cases it is possible to address issue of sampling

effort and detection in analyses using existing data. Excellent

examples exist for efforts to address non-detection in large-scale

public surveys [5,6,10]. Previous efforts to deal with false positive

errors, however, have largely relied on ad-hoc approaches to

reduce their occurrences in data sets (e.g., [7,22]). Proper effort

should be given to reducing false positives as part of study design.

However, this is unlikely to eliminate errors completely [17],

making it important to estimate and account for false positives as

part of the statistical analysis. Methods such as ours will continue

to improve the inferences for many large-scale endeavors where

false positives are likely to be an issue.

False positive errors are not limited to data collected by the

public, and growing evidence suggests they may be common to

many ecological data sets. Multiple studies have demonstrated that

false positives frequently occur in auditory call surveys for birds

and amphibians [11,17,37–41]. False positives are not limited to

human observers but also occur in data from computer sound

analysis of audio files from automatic recording devices [18,42].

Indirect observations of species such as scat and tracks may also be

prone to false positive errors [7]. In the case of cryptic or variable

Figure 4. Estimates of occupancy, extinction, and colonization for gray wolves in northern Montana from 2007–2010. Cells were
divided into low, medium, and high habitat quality. Parameters were estimated using a naı̈ve approach where false positives and false negatives were
assumed not to occur, using a standard multi-season occupancy estimator where false positives were assumed not to occur, and using our multi-
season occupancy estimator that allows for false positives.
doi:10.1371/journal.pone.0065808.g004

Estimating Occurrence from Volunteer Data

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e65808



species, false positives can be common even when organisms are

identified under close visual examination [16]. False positives are

recognized to occur for many laboratory assays and often

estimated (i.e., sensitivity; [21]). The methods we propose here

are by no means limited in applicability to public surveys and

should be useful for studies that use many of these other data types.

The emergence of large collaborative monitoring efforts is an

exciting development that will provide many unique opportunities

to inform conservation and improve ecological understanding.

The success of these efforts will depend on whether analysis

methods properly account for the observational uncertainty that is

inherent in these data sets. The methods we present here are an

important step in that direction. We believe explicitly accounting

for observational uncertainty can address the limitations of many

data and will open the door to many exciting applications.
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