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ABSTRACT Thermoactinomyces vulgaris strain CDF was isolated from soil and shown to
have the ability to degrade chicken feathers at high temperatures. Here, we report
the complete genome sequence of this bacterium, which is 2,595,509 bp long with
2,642 predicted genes and an average G�C content of 48.14%.

The members of the Thermoactinomyces genus are filamentous and thermophilic
bacteria closely related to the genus Bacillus, and they produce endospores at the

tips of the hyphae (1). The type species of the Thermoactinomyces genus is Thermo-
actinomyces vulgaris, which was initially isolated from decaying straw and manure (2).
Thermoactinomyces species can spread their spores and hyphae into the air and may
cause respiratory disorders such as lung hypersensitivity pneumonitis in humans and
livestock (3). Due to their thermophilic nature, Thermoactinomyces species are generally
used as a source of thermostable enzymes (4, 5). From the soil on the campus of Wuhan
University in China, the extracellular protease-producing bacterium Thermoactinomyces
vulgaris strain CDF (previously named Thermoactinomyces sp. CDF) was isolated on solid
Luria-Bertani (LB) medium containing 1% skim milk at 55°C (6). The colonies were
picked and restreaked until the strain was axenic, and the pure culture was deposited
in the China Center for Type Culture Collection (CCTCC) under the accession
number AB206328. Strain CDF has the ability to degrade chicken feathers, and three
proteases of this bacterium have been previously characterized, including a spore-
associated protease (6), a subtilisin-like keratinolytic protease (7), and a glutamyl
endopeptidase (8).

Here we report the complete genome sequence of strain CDF. Genomic DNA was
prepared by enzymatic lysis and phenol-chloroform extraction using an EasyPure
bacterial DNA kit (TransGen Biotech, Beijing, China) and was used to construct a DNA
library with SMRTbell template prep kit 1.0 (Pacific Biosciences). The library was
constructed using BluePippin size selection (average fragment length, 13 kb; range, 5 to
36 kb) and was sequenced by single-molecule real-time (SMRT) sequencing on a PacBio
RS II platform (9), generating 1,816 Mb of data from 117,832 filtered subreads with a
mean length of 15.4 kb. The genome assembly was performed using the Hierarchical
Genome Assembly Process version 3 (HGAP3) with the default settings (10). The final
assembly yielded one chromosomal contig with a total length of 2,595,509 bp, a G�C
content of 48.14%, and an average depth of coverage of 397�. Average nucleotide
identity (ANI) analysis with Microbial Species Identifier (MiSI) (11) revealed a 99.53%
match to the available reference draft genome of Thermoactinomyces vulgaris Gus 2-1
(GenBank accession number JPZM00000000) (12).

The genome was annotated by the NCBI Prokaryotic Genome Annotation Pipeline
(PGAP) version 4.2 with the default settings (13). A total of 2,642 predicted genes were
identified, including 2,498 protein-coding genes, 21 rRNA subunit genes (7 genes each
for 5S, 16S, and 23S rRNA subunits), and 72 tRNA genes. The complete genome
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sequence of T. vulgaris CDF will be helpful in giving us a better understanding of the
adaptation mechanism of thermophiles and to explore thermostable enzymes.

Data availability. The complete genome sequence of Thermoactinomyces vul-

garis CDF has been deposited at DDBJ/ENA/GenBank under the accession number
CP036487. Raw sequencing data have been deposited in the Sequence Read Archive
(SRA) under the accession number SRX5581015.
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