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ABSTRACT The activity of glycogen phosphorylase, an enzyme that is activated by both cAMP 
and calcium, was used as an indicator of the state of the cytoplasm after chemotactic 
stimulation of polymorphonuclear leukocytes (neutrophils). The activity of the enzyme showed 
a clear dependence on cytoplasmic calcium. Addition of the calcium ionophore A23187 
caused a 4-5-fold increase in activity of phosphorylase a. In the absence of external Ca 2+, 
A23187 caused only brief transient activation of phosphorylase; probably reflecting release of 
sequestered intracellular Ca 2÷. Addition of the chemotactic peptide N-formylnorleucylleucyl- 
phenylalanine (FNLLP) caused a transient 2-3-fold activation of the enzyme. The dose- 
dependence of activation by FNLLP showed a peak at 10 -a M, near the Kd of the receptor for 
FNLLP. The phosphorylase activity peaks by 90 s and then declines, returning to basal levels 
by 20 min after stimulation with 10 -a M peptide and by 60 min with 10 -7 M peptide. This 
finding suggests that the cells do not need to maintain elevated cytoplasmic calcium levels to 
exhibit stimulated locomotion. Thus, if calcium continues to modulate the motility,, there 
either must be highly localized changes that are not detected in measures of the,, total 
cytoplasm, or the sensitivity to calcium must be variable such that basal levels are sufficient 
to maintain locomotion. Cells loaded with the fluorescence calcium probe quin2 (0.6 mM) in 
the presence or absence of external Ca 2÷ had elevated phosphorylase levels before addition 
of FNLLP. Thus, the presence of quin2 may alter the cytoplasmic Ca 2+ level, and it clearly 
alters some aspects of the neutrophil physiology. Phosphorylase a appears to be a sensitive, 
nonperturbing indicator of the cytoplasmic calcium levels. 

Chemotactic peptides are known to have both acute and 
chronic effects on polymorphonuclear leukocytes, neutro- 
phils. The acute effects include cell ruffling, adhesion, and 
secretion of granule enzymes (34, 44). These responses occur 
within seconds of peptide addition, reach peak levels in ~30 
s, and then decline toward baseline levels even in the contin- 
ued presence of peptide. The chronic effects of the peptide 
include a stimulated rate of locomotion (chemokinesis), and 
a directional response to a gradient of peptide (chemotaxis) 
(27, 39, 40, 42, 43). These responses continue for hours in 
the presence of peptide. The sequence of molecular events 
that mediate the various responses is a topic of much current 
interest. Early molecular events include a rapid change in 
phosphatidylinositol metabolism and increases in cytoplasmic 
C a  2+ and cyclic AMP levels. These changes occur rapidly and 
reach their peak levels before receptor binding has reached its 
plateau. These responses then decline toward baseline levels. 
Whether there is a persistent small elevation of these or other 

mediators that regulate the motile responses over long time 
periods is unknown. 

If the Ca 2÷ level continuously mediates the motile response 
stimulated by peptide, one might expect to find a persistent 
increase in the steady-state Ca 2÷ levels in cells in the presence 
of chemotactic factor. It is difficult to measure the activity of 
free cytoplasmic Ca 2÷. Neutrophils are too small for practical 
use of intracellular ion electrodes. 45Ca2÷ labels whole-cell 
calcium, including bound sources, albeit with differing kinet- 
ics (25). The membrane-bound fluorescence probe chlortetra- 
cycline has been used to observe the chemotactic factor- 
induced depletion of a bound Ca 2÷ pool whose location is not 
well defined (24, 31). The soluble fluorescence probe quin2 
has provided much useful information on cytoplasmic free 
Ca 2÷, but its use has several drawbacks, most importantly the 
chelating and buffering properties of the probe itself (4, 26, 
35). There is evidence that the presence of quirt2 alters the 
actual or apparent free Ca 2÷ level, and that it stimulates 
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phosphoinositide metabolism (17). 
To study the long-term effects of the chemotactic peptides, 

we sought a sensitive, quantitative, nonperturbing indicator 
of the state of the cytoplasm. We believe that the enzymatic 
activity of glycogen phosphorylase satisfies a number of these 
criteria: (a) The enzyme is endogenous, thus modifications of 
it occur in a cell undisturbed by any buffering or foreign 
agents. Since the modification is covalent, the enzyme (and 
thus the state of the cytoplasm) can be assayed at any time by 
lysing the cells into medium in which the enzymatic activity 
is stable. (b) The enzyme is known to have a cytoplasmic 
location, thus it is susceptible to the same mediators as is the 
motile machinery of the cell. (c) The enzymatic activity is 
positively regulated by both Ca 2÷ and cAMP, two second 
messengers known to be altered by chemotactic peptides (1- 
3, 12-15, 18-20, 29, 32, 38). The phosphorylase activity 
depends upon the enzyme itself being phosphorylated. Phos- 
phorylase kinase can be activated by a cAMP-dependent 
kinase or by calcium binding directly to a calmodulin-like 
subunit of the enzyme. As is described below, it appears that 
the enzymatic regulation in leukocytes stimulated by che- 
motactic peptide is sensitive to changes in Ca 2÷, and that the 
peptide-induced changes in cAMP do not, on their own, 
activate the enzyme. (d) The enzymatic activity can be quan- 
titated as a monitor of relative levels of cell activation (22). 
The total enzyme present can be assayed by including 5'AMP 
which activates the unactivated phosphorylase, phosphorylase 
b, to 80% of the activity of the phosphorylated enzyme, 
phosphorylase a. 

We now report that: (a) in neutrophils as in hepatocytes 
the activity of the enzyme increased in response to the 
A23187, in a Ca2+-dependent manner; and (b) the enzyme 
activity was rapidly increased by addition of the chemotactic 
peptide N-formylnodeucylleucylphenylalanine (FNLLP) ~ in 
a manner parallel but slightly slower then the changes in 
calcium measured by quin2 (25). (c) Removal of the peptide 
causes the enzymatic activity to rapidly return to basal levels. 
(d) These rapid changes were blocked by pertussis toxin which 
is known to block the quin2 response but not the cAMP rise 
(5, 15). The best (although not exclusive) explanation for 
these findings is that changes in phosphorylase a activity 
reflect changes in cytoplasmic Ca 2+. 

We have used this enzyme to monitor the steady-state 
activation of cells maintained in chemotactic peptides. The 
enzymatic activity is no higher in cells maintained in FNLLP 
than in control medium. Our findings suggest that if Ca 2+ is 
involved in mediating the persistent motile functions of the 
neutrophil, this mediation must occur at basal calcium levels. 

MATERIALS AND METHODS 

Media and Chemicals: Hank's balanced salt solution with 10 mM 
HEPES buffer replacing bicarbonate, at pH 7.2 (Hank's-HEPES), was prepared 
from reagent grade chemicals. A23187 and FNLLP were obtained from Sigma 
Chemical Co. (St. Louis, MO). Quin2-AM and quin2 acid were obtained from 
Calbiochem-Behring Corp. (La Jolla, CA). [~4C]Glucose- 1 -phosphate (290 mCi/ 
mmol) was obtained from Amersham-Seade. Pertussis toxin (islet-activating 
protein) was obtained from List Biochemical Laboratories Inc. (Campbell, CA). 
Dibutryl cAMP and 8-bromo-cAMP were obtained from Sigma Chemical Co. 

Cells and Treatments: Rabbit peritoneal neutrophils obtained as 
described previously (41) were washed in saline and in Hank's-HEPES medium, 

~Abbreviation used in this paper: FNLLP, N-formylnorleucyl- 
leucylphenylalanine. 
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and resuspended at 2 x 107 cells/ml in Hank's-HEPES medium with 0.5% 
fatty acid-free bovine serum albumin (BSA; Sigma Chemical Co.). The cells 
were incubated 30 min with mild stirring at 37"C before the experiment was 
initiated. For experiments with cells in Ca2÷-free medium, the Ca 2÷ in Hank's- 
HEPES was replaced with 1 mM EGTA. At each time point, 200 ul of cell 
suspension was pipetted into 50 ul sample buffer (250 mM NaF/25 mM 
EGTA/25 mM EDTA/250 mM PIPES, pH 7.0) on ice. Samples were then 
assayed for phosphorylase a activity immediately or frozen at -20"C and later 
thawed for assay. 

For experiments using adherent cells, 1.5-ml aliquots of suspension at 5 x 
106 cells/ml were pipetted into 5-cm culture dishes. The cells settled 20-30 min 
at room temperature, then the surrounding medium was aspirated and replaced 
with 0.5 ml fresh Hank's-HEPES. The dishes were moved to a 37"C room for 
the experiment. To maintain the cells in medium with a minimum of secreted 
products, the medium was replaced with fresh medium every 2 min throughout 
the experiment. For each time point, medium was aspirated from the dish, the 
dish was placed on ice, and 0.5 ml of ice-cold sample buffer diluted with saline 
was added (immediately). The dishes were scraped in the cold with a rubber 
policeman, and the samples were stored frozen for phosphorylase a assay. 

For quin2 studies, cells (107/ml) were incubated in either buffer A ( 150 mM 
NaCI, 5 mM KC1, 1.29 mM CaCI2, 1.2 mM MgCI2, 10 mM HEPES, pH 7.4) 
(20), or buffer B (147 mM NaCI, 5 mM KC1, 1.9 mM KH2PO4, 1.1 mM 
Na2HPO4, 5.5 mM glucose, 3 mM MgSO4, 1 mM MgCI2, pH 7.3; Sklar buffer), 
for 60 min at 37"C. Cells were then centrifuged, resuspended in either buffer A 
or buffer B (with 1.5 mM CaCI2 added), and equilibrated for 15 min at 37"C 
before peptide addition. The quantity of quin2 loaded in cells was determined 
by reading emission at 492 nm (excitation 339 nm) in the presence of 0.2% 
Triton with or without 5 mM EGTA. Quin2 free acid was used as a standard. 

Cells (107/ml) were loaded with pertussis toxin (200 ng/ml) in Hank's 
HEPES without Ca 2+ or Mg ÷2 and containing 0.1% BSA for 2 h at 37"C. They 
were spun, resuspended at 2 x 10 7 cells/ml in Hank's-HEPES with 0. 1% BSA. 
and equilibrated for 15 min at 37"C. Peptide was added and samples were 
taken at various times for phosphorylase assay. 

Phosphorylase a Assay: The activity of glycogen phosphorylase a 
was determined by following [~4C]glucose-I-phosphate incorporation into gly- 
cogen, based on the method of Borregard and Herlin (8, 37). Samples were 
sonicated to break >90% of the cells, then centrifuged in the cold to remove 
large particles. 30 ul of sonicate was added to 60 ~1 of assay buffer (15 mM 
[~4C]glucose- l-phosphate [ 1 uCi/ml]/1.5% rabbit liver glycogen/150 mM NaF/ 
100 mM PIPES, pH 6.4) and incubated at 30"C for 30-90 min depending on 
the range of activity expected. To determine the [~4C]glucose-l-phosphate 
incorporation into glycogen, 75 ul of each reaction mixture was spotted onto a 
Whatman No. 1 filter paper circle (Whatman, Inc., Clifton, NJ) and dried 
under a heat lamp. Unreacted substrate was washed out by soaking the filters 
in 66% ethanol, using at least 4 ml per sample, with four changes. The ~4C was 
counted in a New England Nuclear (Boston, MA) Econofiuor in a Beckman 
scintillation counter (Beckman Instruments, Inc., Palo Alto, CA), with an 
efficiency of 65%. 

RESULTS 

A23187 Raises Phosphorylase Activity 
The effect of A23187 on phosphorylase was examined by 

adding ionophore to a suspension of neutrophils in the pres- 
ence of 1.3 mM Ca 2÷ (Fig. 1). Addition of 2 x 10 -6 M A23187 
induced a rise in activity of phosphorylase that reached a 
plateau after 10 min. The maximal activity reached was - 4 -  
5 times the basal level. A lower concentration of ionophore 
(2 x 10 -7 M) caused a much slower rise in enzyme activity, 
presumably due to a slower influx of Ca 2÷. With 1 mM EGTA 
present and no Ca 2+ in the external medium (Fig. 2), 5 x 10 -6 
M A23187 caused a slight transient increase in phosphorylase 
a followed by return to the basal level. Similar results were 
obtained in Ca2+-free medium without EGTA. 

Glycogen phosphorylase activity was also modulated by 
cAMP. The presence of millimolar concentrations of the 
cAMP analogues 8-Br-cAMP or dibutyryl cAMP activated 
glycogen phosphorylase. Both peptide and A23187 were able 
to stimulate the activity further. The peptide-induced response 
in the presence of 5 mM dibutyryl cAMP was similar in time 
course and magnitude to that seen in control cells. In the 
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Time course of calcium ionophore A23187 activation of
phosphorylase a . Neutrophils were resuspended at 1 .5 x 10' cells/
ml in medium containing 1 .3 mM calcium . A23187 was added at
time zero, at 2 x 10-6 M (0), or at 2 x 10 - ' M (0) . For all figures:
G-1-P, glucose-l-phosphate.

0
min

FIGURE 2 Activation of phosphorylase a by A23187 in the pres-
ence and absence of extracellular Cat+. The neutrophil suspension
at 2 x 10' cells/ml was preincubated 15 min at 37°C in medium
containing 1 .3 mM Ca' (0) or no calcium and 1 mM EGTA (0). 5
x 10-6 M A23187 was added at time zero .

presence of millimolar concentrations of 8-Br-CAMP, the
stimulation by low levels (5 x 10- $ M) ofA23187 was greater
than that seen in control cells (data not shown) . This result
suggests that the calcium sensitivity of the kinase may be
increased by the cAMP analogues .

Transient Elevation of phosphorylase a by FNLLP
The addition of the chemotactic peptide FNLLP caused a

transient rise in phosphorylase a (Fig. 3). In the presence of
external Ca", the peak of activation was reached at 1-1 .5
min, with a return to nearly basal levels by 6 min . The
maximum amount of increase was typically 3-4-fold . In the

absence of external Ca", a rise in phosphorylase a activity
was still observed. The peak activity occurred earlier (0.5-1
min), and the overall levels ofactivity were lower. Thus, while
the enzyme did show a dependence upon extracellular Ca",
the chemotactic peptide did not require an external pool of
Cap * in order to raisethe level ofphosphorylase a . This finding
is consistent with the observation by others that chemotactic
factors release Ca" from an internal pool and increase the
permeability of the plasma membrane to Ca" .
The FNLLP dose-dependence ofphosphorylase a activation

in the presence or absence of external Ca' is shown in Fig.
4 . The range of peptide concentration between minimal and
maximal effect was 5 x 10 -I°-10` M in the presence of
external Cal+ (Fig. 4A) . The degree of activation was less at
10 - ' M than at l0 -$ M. 10 - ' M peptide gave a response
similar to that at 10' M. A23187 (10-6 M) given as stimulus

min
FIGURE 3

	

Time course of FNLLP activation of phosphorylase a in
medium containing 1 .3 mM Ca 2 * (!) or no calcium and 1 mM EGTA
(0y . Cell concentration was 3 x 10' cells/ml ; the suspensions were
incubated 30 min at 37°C before 10' M peptide was added .
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FIGURE 4

	

Dose-dependence of FNLLP activation of phosphoryl-
ase a in the presence (A) or absence (B) of external Ca" . Conditions
were the same as for Fig . 3 . Concentration of FNLLP was 5 x 10- ' °
M (9) ; 1 t?F9 M (0) ; 10- ' M (A).
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in the presence of external Ca 2+ activated phosphorylase to 
levels higher than any concentration of peptide, thus this 
finding indicates that the peak activity reached in 10 -8 M 
peptide is not a result of maximally stimulated enzyme. In 
the absence of external calcium, the response continued to 
increase up to 10 -7 M peptide. 

Persistent Activation of Phosphorylase by FNLLP 
It is known that cell locomotion is stimulated for several 

hours in the presence of FNLLP (43). Therefore, if calcium 
levels are involved in the stimulation of locomotion, we would 
expect to find a difference between the steady-state levels of 
Ca 2÷ in cells incubated with or without FNLLP. We sought 
to test this hypothesis by comparing the steady-state levels of 
phosphorylase a activity in the presence and absence of 
FNLLP. 

To improve the sensitivity of these experiments, the phos- 
phorylase a assay was adapted to cells plated on dishes. The 
use of plated cells had several advantages over cells in suspen- 
sion. Cell clumping, which occurs when peptide is added to 
cells in suspension, was avoided. Furthermore, the medium 
surrounding the cells could be removed and replaced rapidly 
(within 5 s). By repeatedly changing the medium on the plated 
cells, we could keep the control cells in fresh medium free of 
activators that might be released by the cells themselves and 
the peptide-treated cells in fresh peptide free of digestion 
products and other possible activators. The initial transient 
increase in phosphorylase activity induced by FNLLP in 
plated cells was similar to that observed in cells in suspension 
(Fig. 6). 

Cells incubated in 2 x 10 -7 or 2 x 10 -s M FNLLP for 60 
min have phosphorylase activities similar to that of control 
cells (Fig. 6). The return of the activity to baseline depends 
on the peptide concentration. In 2 x 10 -8 M peptide, the level 
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FIGURE 5 Effect of intracellular quin2 on activation of phosphoryl- 
ase a by FNLLP. Neutrophils suspended at 107 per ml in Hank's- 
HEPES medium were incubated with (O) or wi thout  (O) 20 #M 
quin2-AM for 60 min at 37°C, then resuspended in medium without  
quin2. The intracellular content of quin2 acid was determined to 
be 0.6 mM, based on comparison of quin2 content in Triton-lysed 
cells with a standard sample of quin2 acid (29). The remaining cells 
were incubated with stirring at 37°C for 30 rain before addit ion of 
10 -7 M FNLLP. 
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FIGURE 6 Time course of the log of phosphorylase activity of cells 
maintained in peptide. Cells were plated on petri dishes and incu- 
bated at 370C for times up to 67 min in Hank's (+), 2 x 10 -8 M 
FNLLP (O), or 2 x 10 -r M FNLLP (0). The medium on the dishes 
was replaced every 10 min. At various times the phosphorylase 
activity of the cells was measured in sonicates of 10 -7 cells/ml. 

returns to baseline within 20 min, while in 2 x 10 -7 M peptide 
the activity remains above baseline at 20 min but returns to 
baseline by 60 min. In this experiment, the medium was 
exchanged every 10 min to ensure that neither peptide deg- 
radation nor depletion was contributing to the decline. Anal- 
ysis of protein on the dishes indicated that there was no cell 
loss during the prolonged incubations. Thus, there does not 
appear to be a permanent change in the levels of cytoplasmic 
calcium in cells maintained in peptide. 

It is known that neutrophils respond to a decrease in 
concentration of chemotactic factor by ceasing to locomote 
and withdrawing their pseudopods (40). Removal of peptide 
must cause some change in the state of the cytoplasm. We 
investigated whether this change would be reflected by a 
change in phosphorylase a levels. Cells incubated for 20 or 60 
min in medium containing peptide were switched to fresh 
medium devoid of peptide. The phosphorylase a level of these 
cells decreased within 1.5 min. The levels of phosphorylase 
observed in these cells sometimes went below that of cells in 
control medium. 

Pertussis Toxin Treatment Blocks Phosphorylase 
Activity Induced by FNLLP 

Treatment of neutrophils with pertussis toxin (islet-activat- 
ing protein) blocks the peptide-induced rise in Ca ÷2 but not 
the cAMP rise (5, 15). We used treatment with pertussis toxin 
to evaluate the effect of the rise in cAMP on phosphorylase 
activity. The activation of phosphorylase by 10 -8 M FNLLP 
was completely blocked in cells treated with 200 ng/ml per- 
tussis toxin for 2 h (Fig. 7). Basal levels of phosphorylase 
activity were not affected. Both A23187 (10 -6 M) and dibutryl 
cAMP (5 mM for 30 min at 37"C) could activate the phos- 
phorylase in pertussis toxin-treated cells to the same level as 
untreated cells. 

FNLLP Activation of Phosphorylase in Presence 
of Quin2 

It was of interest to observe the peptide-induced activation 
of phosphorylase a in the cells loaded with quin2, a fluores- 
cence probe commonly used as an indicator of peptide- 
induced modulation of Ca 2÷ level (20, 26, 38). Cells were 
loaded with quin2 by incubation for 60 min in the presence 
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FIGURE 7 Peptide-induced activa- 
tion of phosphorylase is blocked by 
treatment with pertussis toxin. Cells 
were incubated in Hank's-Ca +2- 
Mg +2, with 0.1% BSA in the presence 
(O) or absence (0) of 200 ng/ml per- 
tussis toxin for 2 h at 37°C. They 
were spun, resuspended in Hank's 
with Ca +2 and Mg +2, and equilibrated 
15 rain at 37°C. Peptide (10 -a M 
FNLLP) was added and samples were 
taken at the time points indicated. 

of 20 ~tM quin2-AM, resulting in intracellular accumulation 
of 0.6 mM quin2 acid. This concentration is typical of those 
used for measurement of intracellular free Ca 2÷. We found a 
substantial elevation of phosphorylase a in the quin2-1oaded 
cells as compared with the control (Fig. 5). Upon addition of 
10 -7 M FNLLP, little or no further activation of enzyme was 
observed. The quin2-1oaded cells could release lysosomal 
enzymes upon peptide treatment in the presence of 5 ttg/ml 
cytochalasin B, confirming that the cells can function when 
loaded with quin2. 

D I S C U S S I O N  

We have used phosphorylase as a nonperturbing indicator of 
cytoplasmic activation by chemotactic peptide. We find that 
this enzyme which is activated by addition of peptide returns 
to basal levels in the continued presence of peptide. This 
suggests that the peptide-stimulated locomotion of cells occurs 
when the mean cytoplasmic calcium levels are at basal levels. 

Usefulness of Phosphorylase Assay 
Since we were interested in investigating the small, long- 

term effects of peptide on cells, we needed a marker that 
would not itself perturb the cells and would be sensitive 
enough to detect small changes. We focused on changes in 
calcium levels since a considerable amount of biochemical 
evidence suggests that calcium is a regulator of cell motility. 
However, there is no evidence that calcium levels are altered 
over the time course that peptide stimulates cell locomotion. 
Quin2 has been useful for many studies on calcium levels in 
neutrophils since it is a highly specific probe of cytoplasmic 
calcium. However, two properties of quin2 limited its useful- 
ness to us in this study. First, it does perturb the cell. It is a 
calcium buffer and can be used to lower cytoplasmic calcium 
levels. It has also been shown to stimulate phosphatidylino- 
sitol metabolism in lymphocytes (16), and we report here that 
the presence of quin2 stimulates the phosphorylase activity. 
The second difficulty with quin2 is its inability to detect long- 
term small changes in levels of calcium. Although sensitive at 
physiological calcium concentrations, the baseline quin2 sig- 
nal often declines over a long time course making it difficult 
to detect small changes between treated and untreated cells. 

Glycogen phosphorylase is an endogenous enzyme whose 
activity is highly regulated. Both calcium and cAMP are 
known to positively modulate the enzyme activity; thus the 
enzyme has the potential to be sensitive to both of these 

second messengers. Furthermore, since the regulation in- 
volves phosphorylation of the enzyme, the level of activation 
can be measured at any time by lysing cells and assaying the 
enzyme activity in medium that prevents further modification 
of the enzyme. As will be discussed below, in neutrophils 
stimulated by chemotactic peptide the enzymatic activity 
appears to be sensitive to changes in C a  +2 but not cAMP. 
However, because of the complexity of the regulation of the 
steady-state activity of glycogen phosphorylase (which in- 
volves the activation of phosphorylase kinase and the activity 
of several phosphatases each of which may also be regulated), 
we cannot ascribe the changes in activity to a single factor. 
We propose that phosphorylase a is a useful indicator of the 
activation of the cytoplasm of neutrophil and that it is partic- 
ularly sensitive to calcium. 

Basis of Phosphorylase Activation 
The activity of the phosphorylase in neutrophils is clearly 

sensitive to changes in cytoplasmic calcium. The early phase 
of enzyme activation by A23187 in medium containing Ca 2+ 
(Fig. l) has a nearly linear time course for either 2 × 10 -7 M 
or 2 x l0 -6 M ionophore. The initial slope shows roughly a 
10-fold increase for the 10-fold increase in concentration of 
ionophore. This is consistent with a dependence of phospho- 
rylase a activation on the Ca 2÷ influx through pores created 
by the A23187. At the higher concentration (2 x 10 -6 M), the 
phosphorylase activity eventually leveled off at a plateau 
about 4-5 times the original basal level. This saturation point 
may represent the limit of available phosphorylase b substrate 
in the cell or a maximal steady-state between kinase and 
phosphatase activities. In the absence of external Ca 2÷, addi- 
tion of A23187 resulted in a brief transient activation of 
enzyme (Fig. 2). The result is probably due to the release of 
cellular bound Ca 2÷ into the cytoplasm and subsequent loss 
from the cell. Our interpretation is consistent with the re- 
ported ability of A23187 to deplete an internal Ca 2÷ pool 
required for lysosomal enzyme release (10). 

Activation of phosphorylase could also reflect changes in 
cAMP. It is known that cAMP induces phosphorylation of 
the Ca2÷-dependent phosphorylase kinase; as a result of this 
phosphorylation the kinase is converted to a more active form 
(12). We find that analogues of cAMP do stimulate the 
phosphorylase activity in neutrophils. In one study, the kinase 
isolated from neutrophils no longer required calcium for 
activity if it was fully phosphorylated (33). However, we found 
that cells treated with concentrations of cAMP analogues that 
maximally stimulated the phosphorylase activity still re- 
sponded to peptide and to A23187. In fact, the responses to 
low levels of A23187 were increased, suggesting an increased 
sensitivity of the kinase to calcium. An increased sensitivity 
of the phosphorylated kinase to calcium has been observed in 
muscle (11). 

The small transient elevation of cAMP known to occur 
during FNLLP stimulation (29) does not appear to activate 
the phosphorylase. We have shown that cells treated with 
pertussis toxin do not increase their phosphorylase activity 
upon the addition of peptide. Pertussis toxin does not block 
the peptide-induced rise in cAMP but does block the calcium 
rise as observed with quin2 (6, 16). The inability of peptide 
to activate the phosphorylase in the pertussis toxin confirms 
the conclusions of Borregard et at. that small cAMP increases 
are insufficient to cause covalent alterations of the phospho- 
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rylase kinase (8, 9). They isolated the phosphorylase kinase 
from cells undergoing phagocytosis. These cells show a small 
increase in cAMP similar to that caused by peptide. The 
isolated kinase does not show the properties of  the phospho- 
rylated kinase (9). Therefore, it appears unlikely that the 
activation of  phosphorylase a induced by phagocytosis or 
chemotactic peptides is mediated by cAMP. 

The level ofphosphorylase activity could also be modulated 
by the activity of  the phosphatases. We have not investigated 
regulation of the phosphatases. The rapid decrease in phos- 
phorylase activity, both after the transient rise and upon 
removal of  peptide, suggest that the phosphatases are active 
and that the steady-state level of  the phosphorylase activity 
does reflect the current or at least recent kinase activity. 

There is a report that the phosphorylase can be activated 
by 0.5 #g/ml phorbol myristate acetate, suggesting a protein 
kinase C-dependent pathway of  activation (9). Whether this 
pathway represents a direct activation of the enzyme or 
whether it represents an indirect effect due to increased leu- 
kotriene production or raised calcium levels (28) is not clear. 
Although phorbol myristate acetate at nanomolar levels does 
not raise cellular Ca 2+ as measured by quin2, Sha'afi et al. 
have shown that (1 #g/ml) phorbol myristate acetate does 
cause a quin2 response (17, 21, 23, 28). 

Thus, it appears that the phosphorylase a levels do reflect 
cytoplasmic calcium levels. However, since the activity of this 
enzyme is regulated at many levels, its activity cannot be 
ascribed uniquely to the calcium levels. The phosphorylase a 
activity can be safely used as an indicator of  an activation of  
the neutrophil cytoplasm for which calcium appears to be a 
primary modulator. 

Peptide Dose-dependence for Activation 
We found that addition of a chemotactic peptide caused 

transient activation of phosphorylase in the presence or ab- 
sence of  external Ca 2+ (Fig. 4). The dose-dependence of this 
transient phosphorylase a activation has several interesting 
features. In the presence of  external calcium, the enzyme 
activity peaked at - 1  x l0 -8 M FNLLP and decreased at the 
higher concentration (10 -7 M). The quin2 signal has also been 
reported to be maximal after stimulation by peptide at con- 
centrations near the Kd of  binding (20, 30). Thus, this level of  
stimulation by peptide may be sufficient to cause the maximal 
change in cytoplasmic calcium levels. This concept proposed 
by Sklar and co-workers is supported by the fact that the 
quin2 signal reaches its peak level within 10-30 s of  peptide 
addition. This time point is well before receptor occupancy 
has plateaued (30). The phosphorylase activity peaks some- 
what later (60-90 s), possibly reflecting the time course of the 
kinase activity after the calcium is raised. However, some 
cellular responses including actin polymerization (36) and 
phospholipase A2 activation (7) continue to increase as pep- 
tide concentrations are raised above the Kd. Thus, these 
responses must either be dependent on features of  receptor 
transduction separate from the cytoplasmic calcium levels or 
may depend on the duration as well as the magnitude of  the 
raised calcium levels. In the absence of  calcium, phosphoryl- 
ase activity was not maximally stimulated by peptide until 
the concentration was in excess of  the Kd. The reason for the 
difference in the dose-response curve is not clear. 
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Significance of Results for Cell Locomotion 
We found that phosphorylase activity of  cells maintained 

in peptide for 20-60 min returned to baseline. These findings 
suggest that cytoplasmic Ca 2+ returns to a prestimulus level 
in the continued presence of FNLLP. Thus, if calcium con- 
tinues to modulate motility, there must either be highly 
localized changes that are not detected in the total cytoplasm 
or the cell's sensitivity to calcium must be variable such that 
basal Ca 2÷ levels are sufficient to maintain locomotion. It is 
possible that a decrease in cell C a  2+ upon removal of  peptide 
plays a role in the negative motile response (cessation of 
locomotion and collapse of  the lamellipodia) which follows 
withdrawal of peptide from the medium of locomoting cells 
(40). 
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