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ABSTRACT

The clustered protocadherins are a subfamily of
neuronal cell adhesion molecules that play an
important role in development of the nervous
systems in vertebrates. The clustered protocadherin
genes exhibit complex expression patterns in the
central nervous system. In this study, we have
investigated the molecular mechanism underlying
neuronal expression of protocadherin genes using
the protocadherin gene cluster in fugu as a model.
By in silico prediction, we identified multiple neuron-
restrictive silencer elements (NRSEs) scattered in
the fugu protocadherin cluster and demonstrated
that these elements bind specifically to NRSF/
REST in vitro and in vivo. By using a transgenic
Xenopus approach, we show that these NRSEs
regulate neuronal specificity of protocadherin pro-
moters by suppressing their activity in non-neuronal
tissues. We provide evidence that protocadherin
genes that do not contain an NRSE in their 50

intergenic region are regulated by NRSEs in the
regulatory region of their neighboring genes.
We also show that protocadherin clusters in other
vertebrates such as elephant shark, zebrafish,
coelacanth, lizard, mouse and human, contain dif-
ferent sets of multiple NRSEs. Taken together, our
data suggest that the neuronal specificity of proto-
cadherin cluster genes in vertebrates is regulated by
the NRSE-NRSF/REST system.

INTRODUCTION

Cell adhesion molecules play an important role in animal
development, including the formation of complex neural
networks in the developing nervous system (1–4).
Recently, a gene-rich locus containing three closely-related
protocadherin gene subclusters, designated as a, b and g,
has been characterized in mammalian genomes (5–9).
Each of these subclusters contains 15–22 ‘variable’
exons, which are driven by independent promoters. Each
variable exon is �2.4 kb long and encodes an extracellular
domain comprising six calcium-binding ectodomain
repeats, a transmembrane domain and a short segment
of the intracellular domain (8,10). In addition to the
variable exons, the 30 ends of the a and g (but not b)
subclusters contain three ‘constant’ exons each, which
are spliced to every individual variable exon in their re-
spective subclusters (8). The constant exons encode the
major part of the intracellular domain. Thus, the
proteins encoded by each of the a and g subclusters
share an identical cytoplasmic domain, but contain differ-
ent extracellular domains. This type of gene arrangement
can potentially give rise to a large repertoire of cell recog-
nition molecules, which differ from each other by possess-
ing a unique extracellular domain, but contain an identical
cytoplasmic domain. Since the b subcluster lacks constant
exons, the protocadherins encoded by genes in this
subcluster lack the common cytoplasmic domain (8,11).
In mammals, clustered protocadherins are predomi-

nantly expressed in neurons and their protein products
are highly enriched in synaptic membranes and axons
(5,12–14). Gene knockout studies have demonstrated
that protocadherins play a crucial role in proper axonal
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projection, synaptic formation and neuronal survival.
Ablation of the protocadherin a subcluster in mice
resulted in defects in axonal projection of olfactory
sensory neurons to the olfactory bulb (15) and abnormal
projection of brainstem serotonergic neuron axons to
substantia nigra, hippocampus and caudate-putamen
(16). Deletion of the entire protocadherin g subcluster in
mice led to a drastic impairment in synaptic formation and
an extensive loss of interneurons in the spinal cord (12,17).
The transcription of protocadherin cluster genes has

been shown to be regulated in a complex manner. On
the one hand, each protocadherin gene is controlled by
individual promoters located adjacent to each of the
variable exons. These promoters presumably provide the
basic and essential cis-elements for the expression of indi-
vidual genes (18). On the other hand, the transcription of
individual genes seems to be controlled at a higher level of
regulation since single neuron RT-PCR experiments have
demonstrated that individual Purkinje cells express an
overlapping but distinct combination of protocadherin
genes. In addition, the expression seems to be allele-
selective (18–20). Two long-range tissue-specific enhancer
sequences located at the 30 end of mouse and human
protocadherin a subcluster have been identified. One of
the enhancer regions in the mouse cluster, designated as
HS5-1, was shown to be responsible for the high levels of
expression of most protocadherin a subcluster genes in the
nervous system (21). However, very little is known about
the molecular mechanisms governing the neuronal expres-
sion or the complex combinatorial expression of the
protocadherin cluster genes. In this study, we have
investigated the molecular mechanism responsible for
neuronal expression of protocadherin cluster genes using
fugu as a model.
At 400Mb, fugu genome is one of smallest known ver-

tebrate genomes (22). Consequently, the intergenic regions
of the fugu protocadherin cluster are very compact
(average �1 kb compared to more than 10 kb in human)
(23). In this study, we have taken advantage of the
compact size of the fugu protocadherin cluster and used
it as a model for elucidating the molecular mechanism
responsible for the neuronal expression of protocadherin
cluster genes. We have identified multiple neuron-
restrictive silencer elements (NRSEs) scattered in the
fugu protocadherin cluster and provided evidence that
these elements play a role in regulating neuronal expres-
sion of protocadherin genes in the cluster.

MATERIALS AND METHODS

In silico analyses

The genomic sequences of fugu, zebrafish, coelacanth,
lizard and elephant shark protocadherin clusters were
retrieved from GenBank (accession numbers: DQ986917,
DQ986918 for fugu; AC144823, AC144826, AC144828,
AC146480, AL929558, AB075928, BX005294, BX957322
for zebrafish; AC150283, AC150284, AC150308–
AC150310 for coelacanth; BK006912–BK006917 for
lizard and EF693954 for elephant shark). The genomic
sequences of human and mouse protocadherin clusters

were retrieved from the UCSC Genome Browser (http://
genome.ucsc.edu). Intergenic sequences of protocadherin
clusters were searched for common sequence motifs by
MEME (24). The consensus sequences were aligned and
plotted as WebLogo images (http://weblogo.berkeley
.edu). Transcription factor binding sites were predicted
by TESS (25). Individual NRSEs identified are listed in
Supplementary Tables S1 (fugu and zebrafish) and S2
(human, mouse, lizard, coelacanth and elephant shark).

Plasmid constructs

The intergenic regions of fugu protocadherin genes,
Fr2�32, �33, �34, �36 and �6, were amplified by
genomic PCR using appropriate primers (Supplementary
Table S3). Luciferase and EGFP reporter constructs were
prepared by subcloning fugu intergenic regions
(‘promoter’ regions) into the promoter-less pGL3-basic
(Promega) and pEGFP-1 (Clontech) vectors, respectively.
Mutations of NRSEs in Fr2�32, �33 and �6 promoters
were introduced by PCR-directed site-specific mutagen-
esis. To add an NRSE downstream of the reporter gene
in the pEGFP1-Fr2a36 construct, two complementary
oligonucleotides (50-GGCCGTCAGCACCATGGCCAG
CGCA-30 and 50-GGCCTGCGCTGGCCATGGTGCTG
AC-30) corresponding to the NRSE in Fr2�32 were
annealed with a NotI compatible overhang at each end,
and inserted into the 30-end of EGFP coding sequence (at
the NotI site). The fugu and rat NRSF/REST expression
constructs, pCMVmyc-fNRSF and pCMVmyc-rNRSF,
were constructed by subcloning respective NRSF/REST
coding sequences into the pCMVmyc vector (Clontech)
at SalI and NotI sites in frame with the N-terminal
Myc-epitope. The dominant negative isoform of rat
NRSF/REST was constructed by subcloning the PCR
fragment corresponding to the amino acids 154–296 of
rat NRSF/REST into the pCMVmyc in frame with
N-terminal Myc-epitope. A mini-cluster system for the
fugu protocadherin cluster was generated by stable trans-
fection of HeLa cells with fugu BAC clone b245G6
(http://www.geneservice.co.uk), which contains genomic
sequence from Fr2�30 to Fr2�6. To facilitate selection, a
Zeocin resistant cassette was inserted into the fugu BAC
vector by Red/ET recombination technology (Gene
Bridges) (26). The siRNA knockdown plasmid was con-
structed by subcloning double-stranded oligonucleotides
that encode siRNA corresponding to the human NRSF/
REST: 50-GAAGAACAGTTTGTGCATCACTTGATA
TCCGGTGATGCACAAACTGTTCTTCCG-30, into
the siRNA delivery vector, pRNAT-CMV3.2-neo
(GenScript) at the BamHI and XhoI sites.

Luciferase assay

Mouse Neuro2A cells were cultured in DMEM
(Invitrogen) supplemented with 10% heat-inactivated
fetal bovine serum, 100U/ml penicillin and 100 mg/ml
streptomycin (Invitrogen). Stable cell lines harboring
protocadherin promoter-luciferase reporter constructs
were generated by co-transfection of the Neuro2A
cells with the linearized reporter plasmid and pXJ41neo
(for conferring neomycin resistance) DNA using
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Lipofectamine 2000 method (Invitrogen). Positive
colonies were selected by using G418 (Invitrogen) at a
final concentration of 600 mg/ml. To determine the effect
of NRSF/REST expression on the protocadherin pro-
moter activity, Neuro2A cells harboring various proto-
cadherin promoter-luciferase reporter cassettes were
seeded in 6-well plates and transiently transfected with
pCMVmyc-rNRSF or the mock plasmid. Parent
Neuro2A cells transfected with the same plasmid DNA
served as the blank. Cells were harvested at 48 h after
transfection and the luciferase assay was performed
using the Luciferase Assay System (Promega) according
to the manufacturer’s instruction. The luminescence was
detected using a Turner Designs TD-20/20 luminometer.
The protein content of cell lysates was measured by
Bradford reagent (Bio-Rad) and used for normalizing
the luciferase activity. The expression of rat NRSF/
REST was examined by western blot and immunostaining
using anti-Myc antibody (Roche).

Electrophoretic mobility shift assay

Nuclear extracts were prepared by high salt extraction
method. Briefly, HEK293 cells transfected with
pCMVmyc-fNRSF or the mock plasmids were first lysed
in sucrose buffer [0.32M sucrose, 10mM Tris–HCl pH
8.0, 3mM CaCl2, 2mM Mg(OAc)2, 0.1mM EDTA,
0.5% NP-40, 1mM DTT and 0.5mM PMSF] in a
volume of 100 ml per 107 cells. After gently mixing by
pipetting, nuclei were collected by centrifugation at 500g
for 5min and resuspended in a low salt hypotonic buffer
containing 20mM HEPES (pH 7.9), 1.5mM MgCl2,
20mM KCl, 0.2mM EDTA, 0.5mM DTT, 0.5mM
PMSF and 25% glycerol. The nucleoplasm was extracted
by slowly adding an equal volume of a high salt buffer
(20mM HEPES pH 7.9, 1.5mM MgCl2, 0.8M KCl,
0.2mM EDTA, 0.5mM DTT, 0.5mM PMSF, 1 mg/ml
aprotinin, 1% NP-40 and 25% glycerol). After rotating
at 4�C for 45min, the nuclear extracts were collected by
centrifugation at 14 000g for 15min. Probes were made by
annealing two complementary oligonucleotides corres-
ponding to the respective NRSEs. The annealed oligo-
nucleotide duplexes, which contain a 50 overhang at
either end, were labeled with a-32P-dATP by Klenow
DNA polymerase. The binding reaction was performed
by mixing 2 mg of nuclear extracts with 40 000 cpm
(�0.1 fmol) of the radiolabeled probe in the binding
buffer (final concentration: 10mM Tris–HCl pH 8.0,
150mM KCl, 0.5mM EDTA, 0.2mM DTT, 0.1mg/ml
polydI-dC, 0.1% Triton X-100, 12.5% glycerol) in a
volume of 20 ml at room temperature for 30min. For
super-shift assay, 1 mg of anti-Myc antibody (Roche) was
added to the reaction mixture. The samples were separated
by non-denaturing PAGE and the retarded bands were
detected by autoradiography.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) assay was per-
formed using anti-Myc antibody (for experiments in
Figure 2) or anti-NRSF/REST antibody H-290
(#sc25389, Santa Cruz) (for experiments in Figure 4)

according to the manufacturer’s instruction. Primers
used for the PCR analysis of immunoprecipitation are
listed in Supplementary Table S3.

RT-PCR analysis of fugu protocadherin expression

The expression profiles of fugu protocadherin genes were
determined by real-time RT-PCR. In this experiment,
total RNA from various fugu tissues was extracted by
the Trizol method (Invitrogen) and reverse-transcribed
using SMART RACE cDNA Amplification kit
(Clontech). The collective expression level of genes in the
fugu Pcdh2a or Pcdh2g subcluster was quantified by real-
time PCR using the LightCycler� Faststart DNA
MasterPLUS SYBR Green I kit (Roche) with primers cor-
responding to the constant exons of fugu Pcdh2a and
Pcdh2g subclusters (Supplementary Table S3). The expres-
sion level of actin was determined by the same method
with specific primers (Supplementary Table S3) and used
for normalizing protocadherin expression levels. The
expression of fugu protocadherin in the mini-cluster
system was determined by semi-quantitative RT-PCR. In
this experiment, the total RNA from cells with various
treatments was extracted by the Trizol method and
reverse-transcribed into cDNA using the SuperScript
First Strand cDNA Synthesis kit (Invitrogen). The
relative expression levels of fugu protocadherin genes
were determined by density quantification of the PCR
products on an agarose gel with the Quantity One
software (Bio-Rad) and normalized by GAPDH expres-
sion level in HeLa cells.

Transgenic Xenopus

Transgenic Xenopus laevis tadpoles were generated by a
modified sperm nuclear injection method (27,28). Briefly,
sperm were collected from adult male testis and the nuclei
were extracted by digitonin treatment. After incubating
with linearized transgene DNA, the sperm nuclei were
diluted and injected into de-jellied eggs using the
constant flow injector (Harvard Apparatus PHD 2000
Infusion). The fertilized embryos were cultured to 4- or
8-cell stage (�3 h post-injection). Only tadpoles that de-
veloped normally with clear perpendicular arrangements
of cleavage furrows were cultured for further analysis.
EGFP expression was photographed under fluorescent
microscope (Zeiss M2 Bio Quad). For immunohistological
examination, tadpoles were fixed overnight in PBS con-
taining 4% paraformaldehyde and embedded in OCT
compound (Sakura). The frozen sections were immuno-
stained by TuJ1 antibody. The immunostaining signals
and the expression of EGFP were examined and photo-
graphed under fluorescent microscopy (Zeiss, Axioskop
40) with an attached Axiocam MRC camera.

3C analysis

The 3C analysis of b245G6-stably-transfected HeLa cells
and the NRSF/REST knockdown cells was essentially
based on standard protocols (29,30). Briefly, the cells
were harvested by trypsinization and treated with 1% for-
maldehyde at room temperature for 10min. An equal
amount of untreated cells were used as negative control.
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Cell nuclei were digested by AseI at 37�C overnight,
followed by ligation at 16�C for 18 h. The linkage of the
genomic DNA fragments was analyzed by PCR with
primers specific to each genomic region (Figure 4E,
Supplementary Table S3). The identities of PCR frag-
ments were verified by sequencing.

RESULTS

Identification of NRSE-like motifs in fugu
protocadherin clusters

Fugu possesses two unlinked protocadherin clusters,
Pcdh1 and Pcdh2, due to a whole genome duplication
event in the fish lineage (23). While fugu Pcdh1 is a
highly degenerate cluster that has lost the entire b and
g subclusters, and retained only two a and one d
subcluster genes, the fugu Pcdh2 consists of at least 74
genes belonging to the a, g and d subclusters (23,31). To
identify potential regulatory elements, we searched for
common sequence motifs in the intergenic regions of
fugu Pcdh1 and Pcdh2 clusters using the motif-finding
algorithm MEME (24). Our search identified a
common sequence motif ‘TTCAGNACCANGGACAG’
present in the intergenic regions of 27 out of 74 genes in
the fugu Pcdh2 cluster (Figure 1A, Supplementary Table
S1). This motif does not overlap with the previously
identified CGCT element in the mammalian (7,32) and
elephant shark (31) protocadherin clusters. We searched
for potential transcription factor binding sites in this
motif using TESS (25) and discovered that this motif is
highly similar to the NRSE, a 21-bp element that was
initially identified in the regulatory region of SCG10
(superior cervical ganglion-10, also known as stathmin-
2) and type II sodium channel genes (33,34), and was
shown to mediate transcriptional repression of these
neuronal genes in non-neuronal cells by binding to the
transcriptional repressor, NRSF/REST (35,36). The con-
sensus sequence of the fugu elements is highly similar to

the consensus sequence of the NRSEs identified in the
genomes of mammals (Figure 1B, left panel). No
such NRSE-like motif was identified in fugu Pcdh1
cluster.

Recently, genome-wide prediction of NRSEs in mam-
malian genomes by ChIP assay has identified two types of
NRSEs: the canonical and the non-canonical NRSEs
(37,38). While the canonical NRSEs contain two non-
palindromic halves separated by two spacer-nucleotides,
the non-canonical NRSEs contain 5–11 nt in the spacer
region. The non-canonical NRSEs nonetheless appear to
function similar to the canonical NRSEs (37–39). To de-
termine whether fugu protocadherin clusters also con-
tain non-canonical NRSE, we searched fugu
protocadherin clusters using the consensus sequence
TYAGMRCCNNGGMSAG with various lengths of
spacer sequences (37–41). We identified two non-canonical
NRSEs, each with an 8-bp spacer sequence, located
in the promoter regions of fugu Fr2�33 and Fr2�34
genes (Figure 1B, right panel). Thus, our in silico
analysis indicated that 38% (29/77) of fugu
protocadherin genes possess a putative NRSE in their
regulatory regions.

NRSE-like motifs in fugu protocadherin cluster regulate
the promoter activity of protocadherin genes

To determine whether the NRSE-like motifs identified
in the fugu protocadherin cluster represent bona fide regu-
latory elements, we first tested their ability to bind to
NRSF/REST in vitro by electrophoretic mobility shift
assay (EMSA). Two canonical NRSE-like motifs present
in the promoter regions of Fr2�33 and Fr2�6 were selected
for this experiment. Double-stranded oligonucleotide
probes corresponding to each of these elements were
radiolabeled and incubated with nuclear extracts
prepared from fugu NRSF/REST (Myc-tagged at
N-terminal) or mock plasmid-transfected HEK293 cells.
Electrophoresis showed that both probes can form a
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protein–oligonucleotide complex with fugu NRSF/REST,
and the binding-complex can be further shifted by the
anti-Myc antibody (Figure 2A). Previous studies have
identified a critical guanine dinucleotide in the NRSE
that is essential for the binding activity (42,43). We
mutated this dinucleotide in the oligonucleotide probes
and found that the mutation completely abolished the as-
sociation between the oligonucleotide probes and fugu
NRSF/REST (Figure 2A, compare lane 2 to lane 6, and
lane 9 to lane 13). These results indicate that the binding

between the oligonucleotide probes and NRSF/REST is
highly specific. In addition to the canonical NRSE-like
motifs, we tested the binding activity of non-canonical
NRSE-like motifs located in the promoter region of
fugu Fr2�34 gene and found that it can also form a
complex with fugu NRSF/REST, similar to the canonical
NRSE probes (Figure 2B, compare lanes 2 and 3 to 8–11).
These results demonstrate that the NRSE-like motifs
identified in the fugu protocadherin cluster are able to
bind specifically to NRSF/REST in vitro.
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We next examined whether these NRSE-like motifs
can regulate the promoter activity of protocadherin
genes. To this end, we generated various fugu proto-
cadherin promoter-luciferase reporter constructs and
tested whether they respond to ectopic expression of
NRSF/REST in cells that lack NRSF/REST expression.
Three fugu NRSE-containing (Fr2�32, Fr2�33, Fr2�6)
and two NRSE-lacking (Fr2�34, Fr2�36) protocadherin
promoters were selected for this experiment. For each
wild-type construct, we also generated a mutant construct
in which the critical guanine dinucleotide was substituted
with adenine nucleotide. The transcriptional regulation
mediated by NRSF/REST requires histone deacetylation
and modulation of chromatin structure (44–47). In order
to recapitulate these molecular actions of NRSF/REST,
we generated stable cell lines for each of these reporter
constructs in Neuro2A cells. Neuro2A was chosen for
this experiment because these cells express undetectable
levels of NRSF/REST and have been widely used for
the promoter activity assay of NRSE-containing genes
(48,49). As shown in Figure 2C, overexpression of rat
NRSF/REST in cells harboring reporter constructs of
the wild-type NRSE-containing promoters led to a 40–
50% reduction in the luciferase activity, whereas it had
little effect on the luciferase activity in cells harboring
NRSE-lacking or mutant NRSE-containing promoter
constructs. The ectopically expressed NRSF/REST was
found to be specifically associated with wild-type
NRSEs, but not with mutant NRSEs or the NRSE-
lacking promoter sequences (Figure 2D). These results
indicate that the NRSE-like motifs in the fugu
protocadherin promoter regions can regulate the
promoter activity of protocadherin genes.

NRSEs confer neuron-specificity to protocadherin
promoters in transgenic Xenopus

The mammalian protocadherin cluster genes are predom-
inantly expressed in neurons (5,9,13,14,50,51). We
examined the expression profile of fugu Pcdh2 cluster
genes by real-time RT-PCR using primers specific to the
constant exons of a and g subclusters. Since the constant
exons are common to all variable exons in the subcluster,
the PCR products amplified with these primers should
reflect the collective expression levels of all the proto-
cadherin genes in the subcluster. Our results show that
protocadherin genes in both the a and g subclusters of
fugu Pcdh2 are predominantly expressed in the brain
(Figure 3A), suggesting that the fugu protocadherin ex-
pression is also neuronal. To test whether NRSEs in the
fugu protocadherin cluster play a role in regulating
neuronal expression of the fugu genes, we generated
EGFP reporter constructs for two fugu NRSE-containing
promoters, the Fr2�33 and Fr2�6, and examined their
promoter activity in vivo by using a rapid transgenic
Xenopus approach described recently (27,28). The trans-
genic Xenopus approach has been demonstrated as a fast
and reliable method for analyzing promoters of fugu and
other vertebrate genes in vivo (52,53). We found that both
promoters direct high levels of EGFP expression specific-
ally to the nervous system of transgenic Xenopus (Figure

3B, left panels), and the EGFP expression is largely re-
stricted to neurons (Figure 3E). We then mutated NRSEs
in the respective promoters by substituting the critical
guanine dinucleotide with adenine nucleotide. This
mutation led to a significant de-repression of EGFP ex-
pression in non-neuronal tissues of transgenic Xenopus,
but had little effect on the promoter activity in the
nervous system (Figure 3B, right panels). This suggests
that the main function of NRSE is to suppress the expres-
sion of protocadherin genes in non-neuronal tissues,
thereby restricting their expression specifically to neurons.

Our in silico analysis has shown that more than half of
protocadherin genes in the fugu Pcdh2 cluster lack an
NRSE in their 50 intergenic regions. Since these genes
are also predominantly expressed in neurons (Figure
3A), we speculated that either they have adopted a differ-
ent mechanism to exhibit neuronal expression or they are
regulated by NRSEs present in the 50 intergenic regions of
their neighboring genes. To test these possibilities, we first
examined the tissue-specificity of an NRSE-lacking
promoter (Fr2�36) in the transgenic Xenopus system. In
contrast to the NRSE-containing promoter (Fr2�33) that
directs EGFP expression specifically to the nervous system
(Figure 3C, upper panel), this NRSE-lacking promoter is
active in both neural and non-neural tissues (Figure 3C,
lower panel). This indicates that the NRSE-lacking
promoter, by itself, is insufficient to confine its expression
to the nervous system. We then investigated whether these
promoters could respond to NRSEs located in the 50-
intergenic regions of their downstream genes. To this
end, we inserted an NRSE at the 30-end of the EGFP
coding sequence in the Fr2�36 promoter–reporter con-
struct and tested its activity in transgenic Xenopus.
Topologically, this NRSE is analogous to the NRSE in
the 50 intergenic region of a downstream protocadherin
gene. We found that the insertion of the NRSE was suf-
ficient to repress the promoter activity of Fr2�36 in non-
neuronal tissues thereby restricting the EGFP expression
only to the nervous system (Figure 3D). This suggests that
neuronal expression of protocadherin genes that lack an
NRSE in their 50 intergenic region can be regulated by
NRSE elements located in the 50 intergenic regions of
their neighboring genes.

NRSEs in the protocadherin cluster regulate
protocadherin gene expression

Having determined the function of NRSEs in individual
fugu protocadherin promoters, we next asked whether
these elements could interact with NRSF/REST in vivo
and regulate protocadherin gene expression in the
context of the gene cluster. Unfortunately, due to the
lack of a suitable fugu cell line and lack of an antibody
that recognizes fugu NRSF/REST, it is difficult to address
this question directly in the native fugu system. As an al-
ternative, we generated a mini-cluster system by stably
integrating a fugu genomic BAC clone (b245G6, 74.8 kb)
in HeLa cells. This clone contains the last eight
protocadherin genes (Fr2�30 to Fr2�37) of the a sub-
cluster, and the first six genes (Fr2�1 to Fr2�6) of the g
subcluster, which together represents about one-fifth of
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the genomic sequence of the entire fugu Pcdh2 cluster
(Figure 4A). This region contains six NRSEs located
one each in the promoter regions of Fr2�32, Fr2�33,
Fr2�35, Fr2�37, Fr2�4 and Fr2�6 (Figure 4A). After
generating the b245G6-stably-transfected cells, we first
examined whether these NRSEs interact with the en-
dogenous NRSF/REST expressed in HeLa cells by ChIP
assay, with an antibody that recognizes the human NRSF/
REST. Our results show that the NRSE sites in the fugu
protocadherin cluster are occupied by NRSF/REST ex-
pressed by HeLa cells (Figure 4B). We next tested
whether this interaction could play a role in regulating
fugu protocadherin genes. To this end, we first used
a vector-based siRNA delivery system to knockdown
the endogenous NRSF/REST expression in the

b245G6-stably-transfected cells. RT-PCR experiments
showed that in all the three independent NRSF/REST-
knockdown cell lines, disruption of NRSF/REST expres-
sion resulted in a significant increase (0.5–3-folds) in the
expression levels of all the fugu protocadherin genes
(Figure 4D). Second, we generated a dominant-negative
isoform of NRSF/REST (NRSF/RESTdn), which
contains only the DNA-binding domain but lacks the re-
pressor domains at both terminals (35). When expressed in
HeLa cells (by transient transfection), the NRSF/RESTdn
is predominantly localized in the nucleus (Figure 4C),
where it presumably competes with the endogenous
NRSF/REST for the occupancy of NRSEs. The RT-
PCR experiment showed that over-expression of NRSF/
RESTdn in the b245G6-stably-transfected cells led to
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elevated expression of the fugu protocadherin genes
(Figure 4D), similar to that observed in the NRSF/
REST-knockdown cell lines. Notably, in both experiments
there is no significant difference in the extent of de-
repression between the NRSE-containing protocadherin
genes (Fr2�32, Fr2�33, Fr2�35, Fr2�37, Fr2�4 and
Fr2�6, with average of 1.8-folds of increase) and the
NRSE-lacking protocadherin genes (Fr2�31, Fr2�34,
Fr2�36, Fr2�1-3 and Fr2�5, with average of 1.6-folds of
increase). This suggests that NRSE-lacking protocadherin
genes are also being regulated by the NRSE-NRSF/REST
system, presumably by long-range interaction between
NRSEs and the promoters of protocadherin genes that
do not contain an NRSE in their 50 intergenic region.
To capture such possible long-range interaction, we per-
formed the 3C analysis (54). Our study shows that the
promoters of the three NRSE-lacking protocadherin
genes (Fr2�1-3) located at the 50 end of the fugu Pcdh2g
subcluster are brought in close proximity to the NRSE of
a neighboring protocadherin gene (Fr2g4). Such an asso-
ciation was significantly reduced in NRSF/REST
knockdown cells (Figure 4E). These results suggest that
there is an interaction between distantly located NRSE-
lacking promoters and an NRSE-containing promoter in
the protocadherin cluster. Taken together, our results
suggest that the expression of fugu protocadherin genes
that lack an NRSE in their 50 intergenic region are
regulated by NRSEs located in the 50 intergenic regions
of their neighboring genes.

NRSEs in the protocadherin clusters of other vertebrates

To investigate whether the clustered protocadherin genes
in other vertebrates are also regulated by the NRSE-
NRSF/REST system, we first performed an in silico
analysis of the zebrafish protocadherin clusters. Similar
to fugu, zebrafish contains two independent protocadherin
clusters, Pcdh1 and Pcdh2, that collectively contain at
least 107 genes (6,55–57). However, unlike the highly de-
generate fugu Pcdh1 cluster, the zebrafish Pcdh1 cluster
contains all the three subclusters (a, g and d), with a total
of 38 protocadherin genes. Our search revealed that seven
out of the 38 genes in zebrafish Pcdh1 cluster and 37 out of
the 69 genes in zebrafish Pcdh2 cluster each contain a
single canonical NRSE motif in their 50 intergenic
regions, whereas Dr2�9 and Dr2�30 genes contain two
such elements each (Figure 5A, Supplementary Table
S1). In addition, we identified six non-canonical NRSEs
in five zebrafish protocadherin genes (Dr1�2, Dr1�19,
Dr1�22, Dr1�23 and Dr2�15) (Figure 5A,
Supplementary Table S1). Thus, the NRSE-containing
genes in the zebrafish protocadherin clusters account for
about half (49/107) of the total number of genes in the
cluster. We performed similar in silico search in the
protocadherin clusters of human, mouse, lizard (58),
coelacanth (56) and elephant shark (31), using the consen-
sus sequence of the NRSE elements identified in fugu and
mammalian genomes (40,41). We found that all of these
vertebrates contain different numbers of NRSEs (25 in
human, 35 in mouse, five in lizard, 11 in coelacanth and
five in elephant shark) in their protocadherin clusters

(Supplementary Table S2). To verify if the NRSEs in the
protocadherin clusters of these vertebrates are functional,
we tested the binding activity of a few selected non-
canonical NRSEs by EMSA. We found that all the
selected NRSEs can bind to NRSF/REST specifically
in vitro (Figure 2B). These experiments indicate that the
NRSEs in the protocadherin clusters of zebrafish and
mammals are indeed functional regulatory elements and
are likely to be involved in regulating neuronal expression
of clustered protocadherin genes.
Interestingly, a majority of NRSEs identified in the

human and mouse protocadherin clusters (20/25 in
human and 19/35 in mouse) are located in the coding se-
quences of the variable exons. This raised the question
whether the occurrence of these sequences is by chance
or they are really functional regulatory elements.
To verify this, we tested the binding activity of two
elements each from the human and mouse protocadherin
clusters by EMSA. Our results show that the NRSEs
located in the coding region of both human and mouse
protocadherin clusters are able to bind to fugu NRSF/
REST in vitro, suggesting that they are likely to be func-
tional regulatory elements (Figure 5B). These functional
NRSEs are likely to have emerged de novo in the mam-
malian lineage.

DISCUSSION

The objective of this study was to determine the molecular
mechanism underlying neuronal expression of the
protocadherin cluster genes in vertebrates. The genes in
the protocadherin cluster exhibit a complex expression
pattern since neurons of the same kind are known to
express an overlapping but distinct combination of these
genes (18–20). This implies that individual protocadherin
genes are regulated by a complex mechanism. Although
NRSE-NRSF/REST system is known to be involved in
specifying neuronal expression of a large number of
genes in vertebrate genomes, it is not known if the clus-
tered protocadherin genes are also regulated by this
system. Using in silico analysis, we identified multiple
NRSEs scattered in the protocadherin cluster of fugu
and other vertebrates. We then demonstrated that these
elements bind to NRSF/REST in vitro and in vivo and are
able to suppress the activity of protocadherin promoters in
non-neuronal cells, thereby restricting their expression to
neuronal cells. Since our in silico analysis showed that only
38% of genes in fugu protocadherin cluster contain an
NRSE in their 50 intergenic regions, we investigated the
possibility whether NRSE-lacking genes are regulated by
NRSEs located downstream of the gene. We showed that
an NRSE placed downstream of a NRSE-lacking
protocadherin promoter can restrict the activity of the
promoter to neuronal cells in transgenic Xenopus. This
finding raised the possibility that an NRSE in the
protocadherin cluster may regulate multiple genes that
lack an NRSE in their intergenic region. To address
this, we used the HeLa cell line that was stably transfected
with a part of the fugu protocadherin cluster and investi-
gated the interaction between neighboring protocadherin
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promoters by 3C assay. Our experiments showed that the
promoter of protocadherin genes that lack an NRSE in
their intergenic region can be brought in close proximity
to an NRSE located downstream of the gene. Moreover,
our mini-cluster experiment showed that the expression of
both NRSE-containing and NRSE-lacking protocadherin
genes can be elevated to a similar extent by ectopic expres-
sion of a dominant-negative NRSF/REST or by siRNA-
mediated knockdown of the endogenous NRSF/REST
expression. Taken together, these results suggest that a
single NRSE in the protocadherin cluster can regulates
multiple genes including those that do not contain an
NRSE in their intergenic regions. Previously, NRSEs
located with in introns or in the 30 non-coding region of
neuronal genes (e.g. the L1 cell adhesion molecule and
GABAA receptor gamma2 subunit genes) have been
shown to be effective in conferring neuronal-specificity

to the upstream promoters (59,60). Genome-wide
analysis of NRSF/REST chromatin occupancy in mouse
TCMK1 kidney cells has also revealed that �60% NRSE
sites that are occupied by the NRSF/REST are located
more than 10 kb away, either up- or down-stream, of the
transcription start site of their putative target genes (38).
Our study provides further support to the notion that
NRSEs can act as long-range repressors. Since the genes
in the protocadherin cluster are tightly linked, NRSEs
scattered within the cluster may even function like
global control regions that are known to regulate expres-
sion of multiple genes [e.g. the b globin gene locus (61) and
the HoxD gene cluster (62)]. In particular we note that
some regions of the fugu Pcdh2 cluster, such as the
sequence between Fr2�16 and Fr2�25 (42.7 kb), and the
sequence between Fr2�13 and Fr2�18 (20.5 kb) are virtu-
ally devoid of NRSEs (Figure 1A). It is possible that these
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protocadherin genes are regulated by NRSEs that are
located upstream or downstream like a global control
region.

Interestingly, in contrast to the fugu Pcdh2 cluster that
contains many NRSEs, fugu Pcdh1 cluster does not
contain any NRSE. RT-PCR and transgenic Xenopus ex-
periments have shown that similar to the fugu Pcdh2
cluster genes, the three protocadherin genes (Fr1�1,
Fr1�2 and Fr1�3) in the fugu Pchd1 cluster are also pre-
dominantly expressed in the nervous system (Li,S.L. and
Yu,W.P.Y., unpublished data). It is possible that
these genes are regulated by cryptic NRSE elements that
could not be identified by the approach used by us.
Alternatively, these genes may utilize an NRSE-NRSF/
REST independent mechanism to accomplish their
neuronal expression, such as by containing tissue-specific
enhancers that activate expression specifically in neurons.

In contrast to the multiple NRSEs located exclusively in
the intergenic regions of fugu and zebrafish protocadherin
clusters, a majority of NRSEs in the human and mouse
protocadherin clusters are located in the coding region
(Supplementary Table S2). We have provided evidence
that at least some of these NRSEs are functional. The
presence of regulatory elements in the protein-coding se-
quences in mammals indicates that during evolution of
mammals, the protein-coding sequence of protocadherin
genes were co-opted to function as transcriptional regula-
tory elements. This is a classical example of exaptation
whereby protein-coding sequences have been recruited to
perform an additional function. Recently, a study aiming
to elucidate regulatory mechanisms underlying mono-
allelic expression of the odorant receptor genes has sug-
gested that some regulatory elements residing within the
coding region of the odorant receptor genes may play a
critical role in the singular expression of these genes in
olfactory sensory neurons (63). Interestingly, like the
protocadherin cluster genes, odorant receptor genes have
been proposed to play a role in specifying individuality of
neurons and the allele-selective expression pattern in
neurons. Thus, it would be interesting to determine
whether the regulatory elements residing within the
coding region of protocadherin cluster are responsible
for the allele-selective expression of protocadherin genes.

Recently, two conserved long-range regulatory regions
located at the 30-end of mouse and human protocadherin a
cluster have been identified by comparative genomics and
DNase hypersensitivity assay (21). Both were found to
function as tissue-specific enhancers in reporter assay
systems. Furthermore, one of the regulatory regions in
the mouse cluster, designated HS5-1 spanning �2.5 kb,
was shown to be responsible for the high-level expression
of most of the protocadherin genes in the mouse a cluster.
It was proposed that a competition among promoters of
individual variable exons for the enhancer components
associated with the HS5-1 may underlie the monoallelic
expression of protocadherin a genes. Interestingly, a non-
canonical NRSE identified by us is located within this
enhancer region (MmaCX, Supplementary Table S2).
Our EMSA confirmed that this element binds to NRSF/
REST (Figure 2B). This site has also been previously
identified by genome-wide ChIP analysis (38). It is

therefore likely that this NRSE is responsible for the
tissue-specific expression of the long-range enhancer
characterized by Ribich et al. (2006). This NRSE is
conserved in the human protocadherin cluster and is
likely to be involved in the neuron-specific regulation of
protocadherin genes in the human a cluster.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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