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Introduction

The retrotransposable elements are able to accomplish 
important roles in the genome evolution.1,2 Their copies numbers 
can rapidly increase by retrotransposition and serve as substrate 
for homologous recombinations in various categories of DNA 
rearrangements including deletions, inversions, translocations, 
duplications and amplifications noted by Ozouf-Costaz et al.3 
Knowledge of the origin and function of these retrotransposons 
and of their role in the structure and organization of chromosomes 
in the teleost fish genomes is still very scarce and fragmented.4

Two classes of transposable elements (TE) are acknowledged 
among vertebrates: retrotransposons and transposons. The first 
class, known as retrotransposon, moves through the genome by 
the action of reverse transcriptase, an enzyme that can promote 
the synthesis of a DNA strand from a RNA primer, and is divided 
into autonomous, i.e., LTR (long-terminal repeat) and non-
LTR, in which LINEs (long interspersed elements) are part of 
the genome, and non-autonomous, in which the SINEs (short 
interspersed elements) are the representatives. The second class 
includes those sequences which transpose by a “cut and paste” 
mechanism known as DNA transposons. Fish genome contains 

all known types of transposable elements,5 and some of these 
have been mapped at the chromosome level.

The retrotransposable elements of the retrotransposon class 
(LTR) in which can be highlighted the Ty3/Gypsy, Ty1/copy, 
DIRS1 retrotransposon and BEL, are the most studied in fish 
species.5-7 Retrotransposons described above, include 10 elements 
that display data regarding the location in fish chromosomes. 
Among these are the elements Rex (Rex1, Rex3 and Rex6) which 
are retrotransposable elements characterized for the first time 
in the genome of the fish Xiphophorus maculatus and appears 
to be the most abundant in different teleostei.7,8 In the order 
Characiformes, little is known about the organization of the 
retrotransposon Rex, and available data are only for Erythrinus 
erythrinus.9

The Rex1 element, represents a non-long-terminal-repeat 
(non-LTR) retrotransposons, related to the group CR1 (Chicken 
Repeat), comprising a LINES, and encodes a reverse transcriptase 
and an endonuclease apurínica / pyrimidine required for cleavage 
of the target sequence.10

Thus, the objective of the present research is to isolate and map 
the retrotransposable element Rex1 in the genome of five species 
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Transposable elements are repetitive DNa sequences comprising a group of segments able to move and carry 
sequences within the genome. studies involving comparative genomics have revealed that most vertebrates have 
different populations of transposable elements with significant differences among species of the same lineage. Few 
studies have been conducted in fish, the most diverse group of vertebrates, with the objective to locate different types of 
transposable elements. Therefore, this study proposed to map the retrotransposable element Rex1 applying Fluorescent 
in situ hybridization (FIsh) in five species of the genus Prochilodus (Prochilodus argenteus, Prochilodus brevis, Prochilodus 
costatus, Prochilodus lineatus and Prochilodus nigricans). after the application of the Rex1 probe, scattered markings were 
found throughout the genome of analyzed species, and also the presence of small clusters located in the centromeric 
and telomeric regions coincident with the heterochromatin distribution pattern. This was the first description of the 
retrotransposable element Rex1 in Prochilodus genome seeking for a better understanding of the distribution pattern of 
these retrotransposons in the genome of teleost fish.
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of the genus Prochilodus (Prochilodus argenteus, Prochilodus 
brevis, Prochilodus costatus, Prochilodus lineatus and Prochilodus 
nigricans) by Fluorescent in situ Hybridization (FISH) by 
studying occurrence of Rex 1 retrotransposon in Prochilodus 
genome and chromosomes and compare the obtained results with 
others teleost fish groups.

Results

All specimens of Prochilodus (P. argenteus, P. brevis, P. costatus, 
P. lineatus and P. nigricans) cytogenetically analyzed exhibited a 
karyotypic constitution of 2n = 54 chromosomes.

The amplification of the retrotransposable element Rex1 in 
the genome of the species of Prochilodus produced a band of 
approximately 600 bp for all analyzed species (data not shown). 
Analysis through the fluorescent in situ hybridization (FISH) 
technique using the Rex1 retrotransposons probes in chromosome 
preparations of the five Prochilodus species (Fig. 1a–e) showed 
a dispersed pattern of the retrotransposable element Rex1 
throughout the genome of analyzed individuals. Furthermore, 
the presence of small clusters in the telomeric and centromeric 
regions was regarded as a common feature in these Prochilodus. 
The presence of these clusters, mainly in the centromeric regions, 
is coincident with the constitutive heterochromatin distribution 
pattern previously observed by C-banding for all specimens of 
these species.

Discussion

Chromosomal information on representatives of the genus 
Prochilodus have revealed a conserved karyotypic structure of 2n 
= 54 chromosomes.11-20 All Prochilodus cytogenetically analyzed 
in this study exhibited conserved chromosomal characteristics 
regarding the diploid number of 2n = 54 in accordance with 
literature data reported for these species.

The evolutionary dynamics of the transposable elements in 
various groups, such as insects, fish, birds and mammals are 
extremely distinct. Mammals genomes contain a large variety of 
transposable elements lineage types, while fish and Drosophila 
lineages show various strains of these genomic elements, which 
are typically less abundant, but apparently more deleterious. 
In many insect and fish species, families of different strains of 
transposable elements with a relatively low number of copies have 
remained active for a long period.5,21 This variation in diversity 

and activity of transposable elements among various animal 
genomes is caused by the difference of the defense mechanisms of 
the host genome in opposition to the activities of the transposable 
elements.

Generally, the transposons have a sufficiently distinct 
organization among the species and are dispersed across the 
genome, usually occupying euchromatic regions, as already 
observed in humans and insects.5 This scattered pattern was 
also observed in this study in the five species of Prochilodus 
analyzed with the Rex1 retrotransposable element, as well as 
in species of the subfamily Hypoptopomtinae using Rex1 and 
Rex3;22 in Erythrinus erythrinus with Rex3;9 in Astatotilapia 
latifasciata with Rex 123 and in some Antarctic Perciformes 
using the Rex1 and Rex3 elements.2 Moreover, fish derived 
from the group of Tetraodontiformes (T. nigroviridis) have an 
extremely compact genome, and the separation between poor 
and rich regions of gene segments is much evident according 
to Fischer et al.24 and da Silva et al.25 Transposable elements 
in heterochromatin are apparently used as shelter, because the 
selection pressure is smaller in these regions noted by Lippman, 
et al.26

As previously mentioned, Rex elements are present in the 
genome of different species of teleosts.2,8 According to a review 
of retrotransposable use in fish genome mapping performed by 
Ferreira et al.,4 it was observed that the Rex elements exhibit 
different organizations among fish species. These elements were 
physically mapped in 28 species of fish. However, in 11 species, 
Rex elements were organized in heterochromatic regions and in 
the other remaining 17 species, were scattered across the genome,4 
as observed in the present study.

A noteworthy example of Rex presence in fish heterochromatic 
regions is attributed to Cichlidae family, which different Rex 
elements analysis revealed a compartmentalization in pericentric 
heterochromatic regions described by Gross et al.27,28 similar 
to that observed in representatives of the Antarctic fish species 
Notothenia coriiceps.2

Additionally, in Cichlidae family, more specifically in 
Oreochromis niloticus (in Nile tilapia genome), transposable 
elements were generally found scattered throughout the 
genome.29,30 This pattern, preferably scattered across the 
euchromatic regions, was also found in five species of the genus 
Prochilodus (P. argenteus, P. brevis, P. costatus, P. lineatus and 
P. nigricans), subject of this study, using the retrotransposable 
element Rex1 (Fig. 1a–e). However, some small clusters were 

Figure  1. Distribution pattern of the retrotransposable element Rex1 in genome of (a) P. argenteus; (b) P. brevis); (c) P. costatus; (d) P. nigricans and  
(e) P. lineatus species.
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found in the heterochromatic regions, such as in the centromeres 
of some chromosome pairs, in the telomeric regions of all samples 
analyzed.

The distribution pattern of the retrotransposons Rex1 
in Prochilodus enabled one to observe a scattered pattern 
common among the five species (Fig. 1a–e), i.e., the Rex 1 
retrotransposable element displays a conserved characteristic for 
this genus, as previously proposed by Pauls and Bertollo12 using 
other cytogenetic markers.

Oftentimes, Rex retrotransposable elements were found 
scattered throughout the genome of the species and more 
intensely in the chomosome euchromatic regions. However, 
some blocks of these transposable elements are coincident with 
heterochromatic regions, suggesting that the distribution pattern 
of these retroelements may be distinct in different orders of fish,4 
which corroborates with the observed in Prochilodus, where 
such retrotransposable elements were scattered throughout 
the genome, but featured a preferential accumulation in the 
constitutive heterochromatin regions.

Transposable elements are generally more abundant in the 
heterochromatin of several genomes and their presence in these 
regions seems to be common among multicellular eukaryotes.31,32 
Despite some discrepancies, plausible explanations about 
the relationship between the retrotransposable elements and 
heterochromatin become reasonable: TEs tend to accumulate in 
regions with low recombination rates as a consequence of their 
removal from the region with high recombination rates, whereas 
ectopic recombination could have more deleterious effects; there 
are more TEs eliminations in gene-rich regions because of their 
potential deleterious effects when inserted within genes; the 
high expression of TE-encoded products might have negative 
consequences for the genome due to cell cost. Thus, these TEs 
would be eliminated from the region with high expression levels;32 
TEs could accumulate in the heterochromatin as a consequence 
of their functional involvement in the maintenance of specific 
genomic regions, such as the pericentromeric and telomeric 
region.31,33

Although the currently available information on the structural 
organization, evolution and functional behavior of TEs in the fish 
genome are still very fragmented and restricted to few species, 
the data contribute to clarify the understanding of transposable 
elements distributions in Prochilodus genome comparing the 
results with those obtained in teleostei order fish groups.

Materials and Methods

It was collected 20 specimens of P. lineatus from wild 
populations of Mogi-Guaçu River, Parana Basin, Pirassununga, 
SP, Brazil, and also 17 specimens of P. nigricans from the Araguaia 
River (TO), Tocantins-Araguaia basin, Brazil. For the present 
study, it was also purchased 30 specimens of P. costatus from 
the TROPICAL AQUACULTURE Fish Farm, municipality 
of Propriá, (SE), Brazil; 6 individuals of P. argenteus from the 
São Francisco River (MG), Brazil; and finally, 5 specimens of  
P. brevis (collected in the DNOCS dam (Departamento de  
Obras Contra a Seca) (RN), Brazil.

The chromosome preparations were obtained by mitotic 
stimulation method,34,35 direct in vitro preparations of anterior 
kidney,36 and direct in vivo preparations of anterior kidney.37

Fluorescence in situ Hybridization (FISH) was performed 
according to Pinkel et al.38 using the retrotransposon probe 
Rex1 obtained by PCR (Polymerase Chain Reaction) from 
amplifications of the genomic DNA of P. lineatus utilizing the 
primers 1: RTX1-F1 (5́ -TTC TCC AGT GGC CTT CAA CAC 
C-3´) and RTX1–R1 (5́ -TTC CTT AAA AAA TAG AGT CTG 
CTC-3´).10 The Rex1 probe was labeled with Digoxigenin-11-
dUTP later detected with an antibody conjugated with rhodamine, 
providing the red color by the PCR (Polymerase Chain Reaction) 
technique, according to the Roche manufacturer’s instructions. 
The slides were denatured in 70% formamide: 2XSSC for  
5 min. DNA was hybridized at 37°C overnight in a moist 
chamber (0.3 µg of denatured probe, 50% formamide, 10 mg 
ml of dextran sulfate; 2XSSC, 5 mg/ml of salmon sperm DNA).

Hybridized Rex 1 probe were detected by anti-digoxigenin-
rhrodamine reactions. Afterwards, slides were counterstained 
with DAPI (4 ,́6-diamidino-2-phenylindole) and examined under 
a fluorescence photomicroscope (BX 61, Olympus) equipped with 
the Olympus DP70 cooled digital camera. Photomicrographs 
were taken using Pro MC 6.0 software.
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