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High-risk HPV is clearly associated with cervical cancer. HPV integration has been confirmed to promote carcinogenesis in
the previous studies. In our study, a total of 285 DNA breakpoints and 287 RNA breakpoints were collected. We analyzed the
characteristic of HPV integration in the DNA and RNA samples. The results revealed that the patterns of HPV integration in RNA
and DNA samples differ significantly. FHIT,KLF5, and LINC00392were the hotspot genes integrated by HPV in the DNA samples.
RAD51B, CASC8, CASC21, ERBB2, TP63, TEX41, RAP2B, and MYC were the hotspot genes integrated by HPV in RNA samples.
Breakpoints of DNA samples were significantly prone to the region of INTRON (P < 0.01, Chi-squared test), whereas in the RNA
samples, the breakpoints were prone to EXON. Pathway analysis had revealed that the breakpoints of RNA samples were enriched
in the pathways of transcriptional misregulation in cancer, cancer pathway, and pathway of adherens junction. Breakpoints of
DNA samples were enriched in the pathway of cholinergic synapse. In summary, our data helped to gain insights into the HPV
integration sites in DNA and RNA samples of cervical cancer. It had provided theoretical basis for understanding the mechanism
of tumorigenesis from the perspective of HPV integration in the HPV-associated cervical cancers.

1. Introduction

HPV is a DNA virus that has been widely detected in humans
and animals. High-risk HPV is clearly associated with cer-
vical intraepithelial lesions and cervical cancer. Generally,
about half of HPV infections could be eliminated within
one year. However, infection by high-risk HPV usually could
persist for several years and these types of HPV are also asso-
ciated with reduced removal efficiency [1]. Moreover, persis-
tent HPV infection for decades is likely to induce invasive
cervical cancer [2].

The microscopic HPV particle is 50-60nm in diameter,
and its surface consists of 72 capsomere [3]. Wrapped inside
the capsid proteins is the double-stranded HPV DNA. The
HPV genome may be divided into three regions, an early
(E; E1, E2, E3, E4, E5, E6, E7, and E8 genes), late (L; L1
and L2 genes), and noncoding long control region (LCR).
The E region is crucial for HPV replication, transcription,
translation, and transformation. The L region (∼2500 bp)
encoded functional regulators for HPV replication and tran-
scription [4]. Generally, absence of HPV integration in the
host genome is associated with benign lesions. Positive HPV
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integrations are linked to cervical CIN grades and cervical
cancer [5].

In recent years, high-throughput sequencing technology
had provided robust means to investigate the characteristic
and biological significance of HPV integration. Previous
study had revealed that HPV integration could trigger
genome instability; for instance, it results in genome structure
rearrangement and copy number variation [6]. A recent study
had shown thatHPV integrationwithin 8q24 region triggered
a great number of rearrangement events in the study of
HeLa cells haplotype and it might suggest HPV integration
could directly initiate tumorigenesis [7]. In addition, a series
of hotspots genes integrated by HPV had been found in
the recent study [8]. Despite increased attention on HPV
integration hotspots, the characteristic of HPV integration
and the relationship between HPV integration and cervical
cancer remained elusive.

In this study, a total of 285DNAbreakpoints and 287RNA
breakpoints were collected from previous studies [6, 8–12].
Our data revealed that the patterns of HPV integration in
RNA and DNA samples differ significantly. Pathway analysis
had revealed that breakpoints were enriched in the different
pathways between RNA samples and DNA samples. Our
study could further help to gain insights into the charac-
teristic of HPV integration in DNA and RNA samples and
provide theoretical basis for understanding the mechanism
of tumorigenesis.

2. Material and Method

HPV integration sites were collected from 6 recent stud-
ies (Table S1, Table S2). Functional annotation analysis of
breakpoints was performed using DAVID based on Gene
Ontology and KEGG pathway databases [13, 14]. The cate-
gories of KEGG Pathways were as background databases.The
breakpoints are annotated through the latest ANNOVAR in
hg19 coordinates [15].The region list of genomic elementswas
downloaded from the UCSC genome browser [16].

3. Gene Frequency

Because HPV integration was considered a strong cis-
activator of flanking genes and cis-acting enhancers can
influence their target genes over long distances [17, 18] (up
to 1 Mb for upstream enhancers and 850 kb for downstream
enhancers), breakpoints located <500 kb from annotated
genes were included to calculate the affected gene frequency
in HPV-integrated samples [8].

4. Results

4.1. HPV Integration Hotspots in DNA and RNA Samples.
Based on frequency analysis, HPV integration hotspots had
been identified in these samples. FHIT(8), KLF5(6), and
LINC00392(4) were the most integrated genes in the DNA
samples. In contrast, RAD51B(9), CASC8(5), CASC21(5),
ERBB2(5), TP63(5), TEX41(5), RAP2B(4), andMYC(4) were
the most integrated genes in RNA samples (Figures 1 and 4).
Totally, we obtained 12 and 18 recurrent genes (frequency ⩾ 2)

integrated by HPV in the DNA and RNA samples, respec-
tively (Table S3, Table S4).

4.2. Distribution of Genetic Elements. We surveyed the distri-
bution characteristics of the HPV breakpoints in DNA and
RNA samples. The results revealed that HPV breakpoints
were more prone to INTRON in the DNA samples than the
RNA samples (P < 0.01, Chi-squared test, Figure 2). However,
HPV breakpoints were more prone to EXON in the RNA
samples than the DNA samples (P < 0.01, Chi-squared test,
Figure 2).

4.3. Genomic Element Distribution. The HPV integration
sites (breakpoints) in our RNA and DNA samples showed
similar distributions in fragile, CpG, TFBS sites. However, the
HPV integration sites in the RNA samples were more prone
to fragile, CpG, andTFBS than that of theDNA samples (Chi-
squared test, Figure 3).

4.4. Pathway Analysis. The results revealed that the DNA
pathway was enriched on the pathway of cholinergic synapse.
However, the main enriched pathways of breakpoints from
RNA samples were the pathways of transcriptional misreg-
ulation in cancer, cancer pathway, and pathway of adherens
junction. It revealed that there was significant difference
between the enrichment pathway of RNA and DNA samples
(Table S5).

5. Discussion

In this study, the 285 DNA breakpoints and 287 RNA
breakpoints were used to carry out the bioinformatic anal-
ysis. Among 285 integration sites of DNA breakpoints, 163
integration sites were mapped by Hu and colleagues [8]. In
total, Hu et al. had identified 3,667 breakpoints in 135 samples
and obtained a validation rate ∼83% by PCR and Sanger.
However, many of the breakpoints have low integration
frequencies (NNSS value < 3). Generally, the integration
events with low frequenciesmight have fewer impacts toward
tissue functions. Additionally, the breakpoints with higher
NNSS values often mean more support-reads, hence greater
reliability. Owing to this matter, breakpoints of NNSS value >
3 were selected in our study. In order to get the major break-
points, we filtered out these breakpoints surrounding the
major breakpoints and obtained the 163 breakpoints (Table
S6).

In theory, it would be ideal to study the characteristics
of HPV integration using paired DNA and RNA samples.
However, there were only 5 overlapping samples between
DNAandRNA samples in our study.Those small size samples
were not enough to study the relation of breakpoints in the
DNA and paired RNA. In addition, we had noted that it
was difficult to find sufficient breakpoints (paired RNA/DNA
samples) from second-generation sequencing in the existing
databases. Therefore, most of the breakpoints that we used
to carry out the analysis were from unpaired RNA/DNA
samples.
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Figure 1: Gene frequency integrated by HPV between RNA and DNA samples. The figure showed the difference of gene frequency in DNA
and RNA samples.The inner circle revealed the gene frequency (blue color) in RNA samples and the outer circle revealed the gene frequency
(red color) in DNA samples. The height represented the frequency of gene integrated by HPV.

As suggested by our results, the hotspots of HPV
integration in the genome and transcriptome appeared to
locate in different genes. Intriguingly, certain high frequency
genes (i.e., ERBB2) in RNA samples appeared to have higher
mutation frequencies (i.e., ERBB2, 5%) in the COSMIC data-
base (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic).
Further, mutations in ERBB2 had been known as therapeutic
targets in lung and breast cancer in vitro [19, 20]. Our study
had also observed that there were several important genes
with high frequencies are preferential for HPV integration.

The RAD51B gene belongs to the RAD51 family, which is
known to play important roles in DNA repair. Frequent
HPV integrated into RAD51B might disrupt the DNA repair
mechanism, which could partially explain the HPV-rendered
genomic dysfunction and chromosome instability in cancers
[21].

FHIT is another gene in high frequency of HPV integra-
tion, and it is located in a fragile genomic region (FRA3B
region). This leads to a speculation that HPV integration
into such region might trigger great chromosomal instability,

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic
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Figure 2: Distribution of breakpoints in genetic elements.The ratio of breakpoints in each genome element was counted.The expected ratio of
each genome elements was calculated according to the random distribution of breakpoints in the whole human genome. Grey bar represented
the expected ratio of breakpoints. Orange bar represented the observed ratio of breakpoints in RNA samples. Green bar represented the
observed ratio of breakpoints in DNA samples. P values were calculated by Chi-squared test and were corrected by Fisher exact test.

probably via chromosomal translocation [22]. Moreover,
TP63, RAP2B, KLF5, and MYC are closely related to tumori-
genesis and were identified as hotspots of HPV integration
[23–25]. Therefore, it is highly likely that these four genes
could potentially drive tumorigenesis after genes are inte-
grated by HPV.

As observed in the DNA samples, the HPV integration
sites were inclined to INTRON region. In contrast, the HPV
integration sites found in the RNA samples were enriched in
EXON, CpG, and transcription factor binding sites (TFBS).
Interestingly, a large portion of HPV integration sites in RNA
samples was located on the no-coding region (INTRON,
INTERGENIC). It might suggest that HPV integration could
directly trigger the abnormal transcription and these func-
tions of novel transcript kept unclear. Further, we found that
the ratios ofHPV integration siteswithinALUandLINEwere
significantly higher in the DNA samples than those of RNA
samples. Most importantly, the overall HPV breakpoints in
the RNA samples suggested specific enrichments on the
pathways of transcription regulation, cancer, and adherent
junction. Furthermore, we noted that Xu et al. had compared
the DNA junctions with the paired RNA junctions and
they found that 12 of the 20 carcinomas (60%) contained
a single transcriptionally active HPV16 integrate. The other
8 tumors (40%) are featured by a transcriptionally active
HPV16 integrate together with one or two probably silent
HPV16 integrates [12]. The phenomenon might suggest that

only part of integration sites from DNA could be transcribed
efficiently. The different characteristics of HPV integration
in DNA and RNA might be associated with transcriptional
activity of DNA breakpoints.

Due to the significant difference observed while compar-
ing the breakpoint profiles of the DNA and RNA samples, it
raises the speculations that the genomic and transcriptomic
breakpoints might play the different role in tumorigenesis.

In this study, our results had revealed characteristics
of HPV integration sites in the DNA and RNA samples.
Additionally, the breakpoints in the RNA samples suggested
tumorigenesis might arise from disrupting transcription
and interrupting DNA repair mechanism. Altogether, this
study had provided theoretical basis for understanding the
mechanism of tumorigenesis from the perspective of HPV
integration in the HPV-associated cervical cancers.

Data Availability
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